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Abstract. We survey some recent results concerning the behavior of the contact structure

defined on the boundary of a complex isolated hypersurface singularity or on the boundary at

infinity of a complex polynomial.

1. Introduction. Let f : (Cn+1,0) → (C, 0) be a germ of holomorphic function

having an isolated singular point at the origin. Its boundary B0(f) is the intersection of

the hypersurface V (f) := f−1(0) with a small sphere Sε centered at the origin, of radius

ε > 0. This is a closed oriented (2n − 1)-dimensional smooth manifold, which does not

depend on ε� 1 up to isotopy. If we consider its embedding in the sphere Sε, that is, the

link L0(f) := (Sε, Sε∩V (f)), then it determines completely the topological type of V (f)

(see [Mi]). On the other hand, the natural CR-structure on Sε ∩ V (f), defined by the

maximal complex hyperplane distribution in its tangent bundle, determines its analytical

type (see [Sch]). Thus we see that the boundary equipped with some additional structure

can encode a lot of information on the singularity.

If we consider a polynomial function f : Cn+1 → C then we have to deal with more

global objects. Replacing small spheres by large ones, the boundary at infinity of the
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general fiber of f can be defined. Its embedding in the large sphere or its naturally

defined CR-structure also provide potentially interesting invariants of f .

We present here some recent results on an intermediate structure: the contact structure

defined by the maximal complex hyperplane distribution. Section 2 collects the definitions

and results in contact geometry that we use in the following.

In the local case, Varchenko [V] showed that this structure is an analytic invariant of

the singularity; we review this work in Section 3. In the global case, we present the authors’

construction [CT] of the contact boundary at infinity attached to some polynomial. We

therefore have well-defined contact boundaries attached to isolated singularities or to

complex polynomials.

These contact boundaries are analytic (respectively algebraic) invariants, but a priori

not topological invariants. This motivates the study of their variation in topologically

trivial families of hypersurface singularities or of polynomials.

Section 4 is devoted to recent results showing that the formal homotopy class (i.e.,

the most primitive contact invariant, see Example 2.5) of these contact boundaries is

constant in the following types of families, provided n > 2:

1. topologically trivial families of isolated hypersurface singularities, [C1].

2. families of polynomials fs such that their general fibers are homotopy equivalent

to a wedge of n-spheres and such that their n-th Betti numbers are constant in the

family, [CT].

We end this survey by some remarks and questions in Section 5.

2. A reminder on contact and almost contact structures

2.1. Families of contact manifolds. For generalities on contact structures, see e.g. [Bl]

or [El2] for a more up-to-date overview.

Definition 2.1. A contact form on a (2n − 1)-dimensional manifold M is a global

1-form α on M satisfying the non-integrability condition α ∧ (dα)n−1 > 0. A contact

structure on M is the hyperplane distribution defined by a contact form. The notions of

contactomorphism or of contact isotopy are naturally defined.

Example 2.2. Any smooth level set of a strictly plurisubharmonic function on a

complex manifold admits a natural contact structure, given by the maximal complex

distribution in its tangent bundle (see e.g. [El1] for more details about contact structures

and plurisubharmonic functions).

We now give the most general criterion for two contact structures to be isotopic.

Theorem 2.3 (J. W. Gray [G]). Let π : M → B be a smooth fiber bundle such that

the fiber M∗ is a closed, oriented, odd-dimensional manifold. Suppose we are given a

contact structure ξb on each fiber Mb which depends smoothly on the points b of the base.

Then the contact manifolds (Mb, ξb)b∈B are all contact isotopic.

This theorem will be used in Section 3 to show that the contact manifolds we associate

to isolated singularities or complex polynomials are well defined.
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2.2. Homotopies of almost contact manifolds

Definition 2.4. Let M be a smooth closed oriented odd-dimensional manifold. An

almost contact structure(1) on M is a hyperplane distribution ξ ⊂ TM endowed with a

complex multiplication J : ξ → ξ. An almost contact manifold is a manifold endowed

with an almost contact structure. Finally, two almost contact manifolds (M1, ξ1, J1) and

(M2, ξ2, J2) are almost contact homotopic if they are isotopic submanifolds of a mani-

fold W and if any isotopy between them carries (ξ1, J1) on an almost contact structure

on M2 which is homotopic to (ξ2, J2) in the space of almost contact structures on M2.

Example 2.5. Let (M, ξ) be a contact manifold. Then any choice of a Riemannian

metric on M and of a contact form defines a complex structure on ξ: the restriction of

the 2-form dα on ξ is non-degenerate, so it gives a complex structure on ξ in presence of

the metric. While this almost contact structure is not well defined, its homotopy class in

the space of all almost contact structures on M is: it is called the formal homotopy class

of the contact structure ξ. This class is easily seen to be invariant up to contact isotopy,

and provides the most primitive global invariant of contact structures (see [El2]).

Example 2.6. Any (real, cooriented) hypersurface M in an almost complex manifold

(W,J) is naturally endowed with an almost contact structure: the complex hyperplane

distribution (ξM , JM ) is just the maximal complex subbundle TM ∩J TM of the tangent

bundle to the hypersurface equipped with the complex structure induced by J . Moreover,

we have the following:

Proposition 2.7. Any two isotopic real hypersurfaces in an almost complex manifold

are almost contact homotopic.

Sketch of proof. There are two equivalent ways to prove this. The first is to consider

homotopy classes of almost contact structures on a (2n−1)-dimensional oriented manifold

as group reductions of its tangent bundle from SO2n−1 to Un−1. Then in the context

of this proposition, one builds a homotopy between the Gauss maps induced from the

embeddings of the hypersurfaces in the almost complex manifold, which gives a homotopy

of almost contact structures. This is the approach used in [C1].

The second way, used in [CT], is to identify almost contact structures with 2-forms

of maximal rank when a Riemannian metric is fixed. One then chooses a Hermitian

metric on the ambiant almost complex manifold and constructs a homotopy between the

associated 2-forms on the two hypersurfaces.

This proposition means that if we define the formal homotopy class of a hypersurface

in an almost complex manifold as the homotopy class of its almost contact structure,

this formal homotopy class is an isotopy invariant. Of course, for a strictly pseudocon-

vex hypersurface (that is, a smooth level set of a strictly plurisubharmonic function) in

a complex manifold, which is then also a contact manifold, the two notions of formal

homotopy classes coincide.

This proposition will be used in Section 4 to show that the contact manifolds we asso-

ciate to isolated singularities or complex polynomials stay in the same formal homotopy

class in certain deformations.

(1) This definition differs slightly from the common one, see e.g. [Bl].
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3. Definition of the contact boundary in the local and global cases

3.1. The local case: Varchenko’s work. We summarize in this subsection the main

results obtained by Varchenko in [V]. While it was known long before that the regular level

sets of strictly plurisubharmonic functions on complex manifolds were natural examples

of contact manifolds, it was the first time when this was used in the context of singularity

theory.

Definition 3.1. Let f : (Cn+1,0)→ (C, 0) be a germ of holomorphic function with 0

as an isolated singular point. The contact boundary of f is the boundary B0(f) of f

equipped with the contact structure defined by the maximal complex distribution of its

tangent bundle.

The fact that this hyperplane distribution is indeed a contact structure is due to the

strict plurisubharmonicity of the squared norm function z 7→ |z|2.

Proposition 3.2 ([V]). The contact boundary of an isolated hypersurface singular-

ity does not depend on the radius of the small sphere defining it up to contact isotopy.

Moreover, it neither depends on the choice of analytic coordinates at 0 in Cn+1.

Sketch of proof. Gray’s Theorem 2.3 is used two times. First, the squared norm func-

tion restricted to V (f) is a proper submersion over (0, ε0) for ε0 � 1 sufficiently small: this

defines a family of contact manifolds, hence a contact isotopy. Second, since the group of

analytic changes of coordinates is path connected, and because of Whitney’s (b)-property

satisfied by (V (f) \ {0}, {0}) (see [V] for details), one can construct a convenient family

of contact manifolds and then conclude.

This proposition shows that the contact boundary is a well-defined analytic invariant

of the singularity defined by f .

Having shown this invariance, Varchenko applies it to quasi-homogeneous singulari-

ties. He proves that in this case the contact boundary is Sasakian (a certain integrability

condition, see e.g. [Bl]), which implies that its odd Betti numbers are even up to half

its dimension. This gives a strong restriction for a singularity to be topologically equiv-

alent to a quasi-homogeneous one. Varchenko considers as examples Brieskorn’s cusp

singularities:

fp,q,r : (x, y, z) 7→ xp + yq + zr + xyz,
1

p
+

1

q
+

1

r
< 1.

Their boundaries satisfy dimH1(B0(fp,q,r)) = 1, hence these singularities are not topo-

logically equivalent to quasi-homogeneous ones.

3.2. The global case. Let us first take a complex algebraic set V ⊂ Cn+1 having

at most isolated singularities. It is proved in [CT] that, for large enough radius R, the

intersection SR ∩ V is a contact manifold, which is independent on R, up to contact

isotopy. It turns out that instead of using spheres SR, which are levels of the squared

distance function, one can use the levels of some pseudo-convex rug function at infinity,

i.e. a proper real polynomial map ρ : Cn+1 → R≥0 which is strictly plurisubharmonic
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(see Remark 5.1 for the relation with the local case). Then the intersections ρ−1(R) ∩ V
do not depend on the choice of ρ and of R ≥ Rρ � 1, up to contact isotopy. These

observations yield a well-defined contact boundary of V which we shall denote in the

following by B∞(V ).

Let now f : Cn+1 → C be a complex polynomial function. It is well-known (see

[Th], [Br]) that there exists a finite set Bf ⊂ C (which we shall suppose minimal) such

that the restriction f| : f−1(C \ Bf ) → C \ Bf is a locally trivial C∞ fibration. Any

value t /∈ Bf is called typical, as is the corresponding fiber f−1(t). The atypical values

(i.e., those in Bf ) are due not only to the critical points of the function f , but also to a

certain bad asymptotic behavior at infinity.

It follows from the above discussion that any typical fiber f−1(t) has a well-defined

contact boundary B∞(f−1(t)). Moreover, we shall show how to define a generic contact

boundary, independent on the fiber f−1(t), except for finitely many values of t.

Let ρ : Cn+1 → R≥0 be a pseudo-convex rug function at infinity. We say that the

fiber f−1(t0) is ρ-regular-at-infinity if there exists a (small enough) disk Dδ ⊂ C centered

at t0 and a (large enough) real Rδ � 0 such that, for any R ≥ Rδ, the level ρ−1(R) is

transversal to f−1(t) for all t ∈ Dδ.

It follows from this definition that a ρ-regular-at-infinity fiber can have at most iso-

lated singularities. By [T1], [T2, Prop. 2.6], if the fiber f−1(t0) is non-singular and is

ρ-regular-at-infinity for some ρ, then t0 is a typical value of f (2).

Let Reg∞ f denote the set of values t ∈ C such that the fiber f−1(t) is ρ-regular-at-

infinity, where ρ is some pseudo-convex rug function at infinity. Then the precise meaning

of the notion of “generic contact boundary” of a polynomial f is given by the following:

Theorem 3.3 ([CT]). Let f : Cn+1 → C be a complex polynomial function. The con-

tact boundary of a regular-at-infinity fiber f−1(t) does not depend, up to contact isotopy,

on the choice of the value t ∈ Reg∞ f .

Sketch of proof. Let d0 denote the squared distance function. We have proved in [T2,

Cor. 2.12] that the set of values t such that the fiber f−1(t) is not d0-regular-at-infinity

is a finite set. It then follows that the complement of Reg∞ f in C is a finite set (which

of course contains Bf ).

We first reduce the problem to the case when t1, t2 ∈ Reg∞ f are both d0-regular-at-

infinity values. Then use a path Γ from t1 to t2 such that Γ consists of only d0-regular-at-

infinity values. For sufficiently large R, f|Γ : f−1(Γ)∩SR → Γ is a smooth fibration. One

applies Gray’s Theorem 2.3 to show that the contact boundaries of the fibers f−1(t1) and

f−1(t2) are contact isotopic.

The above theorem defines an invariant which we call contact boundary of f and

denote by B∞f . Let us remark that it does not depend on changes of coordinates in the

automorphism group AutCn+1 since the class of pseudo-convex rug functions at infinity

is right-invariant by the action of AutCn+1.

(2) The converse of this statement is an open problem, to our knowledge (see [ST], [T2]).
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4. Evolution of the contact boundary in numerically constant deformations

4.1. The local case: invariance of the formal homotopy class in µ-constant deforma-

tions. Let f : (Cn+1,0)→ (C, 0) be a holomorphic germ defining an isolated singularity

at 0. In [C1], the first named author addresses the following question: how does the

contact boundary vary in topologically trivial deformations f? A partial answer was ob-

tained (see also Remark 5.2 on Eliashberg’s question): the most primitive global invariant

of the contact boundary is preserved in such deformations. More precisely, we have the

following:

Theorem 4.1 ([C1]). Let n > 2 and let (fs)s∈[0,1] : (Cn+1,0) → (C, 0) be a smooth

family of holomorphic function germs having an isolated singular point at 0. Suppose that

all these germs are topologically equivalent. Then the contact boundaries B0f0 and B0f1

are almost contact homotopic.

Sketch of proof. We rely on the proof in [LR] of the Lê-Ramanujam theorem relating

topological triviality and µ-constancy of deformations. For small enough, well-chosen

positive real parameters s, t, ε0, εs, one can use Gray’s Theorem 2.3 to show the following

contact isotopies:

B0f0 = f−1
0 (0) ∩ Sε0

cont' f−1
0 (t) ∩ Sε0

cont' f−1
s (t) ∩ Sε0 := M0

B0fs = f−1
s (0) ∩ Sεs

cont' f−1
s (t) ∩ Sεs =: Ms.

Denote by W := f−1
s (t)∩

(
Bε0 \B̊εs

)
the piece of the fiber f−1

s (t) between the two spheres

of radius ε0 and εs. The same reasoning as in [LR] shows that, under our hypotheses,

W is a h-cobordism between M0 and Ms. Since n > 2, the two hypersurfaces M0 ' B0f0

and Ms ' B0fs are isotopic in the complex manifold W . We then use Proposition 2.7 to

conclude.

4.2. The global case: invariance of the formal homotopy class in γ-constant V-de-

formations. We shall call family of polynomials a family fs : Cn+1 → C depending

smoothly on the parameter s ∈ [0, ε], for some real ε > 0. We have used in the local case

the equivalence between the topological triviality and the µ-constancy, which allowed us

to conclude by using the h-cobordism theorem. In case of polynomial functions, even

if we suppose that fs has isolated singularities, the total Milnor number is by far not

enough to control the topology of fs. A class of polynomials which turns out to be a good

candidate for the analogue of the class of germs of isolated singularities is given in the

following.

Definition 4.2. We say that a family of polynomials is a V-deformation of f = f0

if, for all s ∈ [0, ε],

(V) the typical fiber of fs is homotopy equivalent to a bouquet of spheres
∨
γs
Sn.

If moreover the number γs of spheres is independent on s, then we say that we have a

γ-constant V-deformation.

The class of γ-constant V-deformations has been considered in [T1], [T2] for proving

a Lê-Ramanujam type result concerning the constancy of the monodromy at infinity. It
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is easy to see that if a V-deformation is topologically trivial then it is γ-constant. The

converse is not true, see [T2], [CT].

Example 4.3. The polynomials with isolated W-singularities at infinity in the sense

of Siersma-Tibăr [ST] are examples of polynomials satisfying condition (V). This class

includes the polynomials such that all their fibers are ρ-regular-at-infinity (for some ρ)

and all polynomials of 2 complex variables with irreducible fibers.

Theorem 4.4 ([CT]). Let n > 2 and let (fs)s∈[0,ε] : Cn+1 → C be a γ-constant

V-deformation of polynomial functions. Then the contact boundaries B∞f0 and B∞f1

are almost contact homotopic. In particular, this is the case in topologically trivial

V-deformations.

Sketch of proof. It has been observed in [T1], [T2] that the arguments used in the

local case by Lê-Ramanujam ([LR]) can be applied in case of polynomials satisfying

the condition (V) when replacing the small spheres by large ones. In our context, we

paraphrase the proof of Theorem 4.1 like this: for a smooth d0-regular at infinity fiber

f−1
0 (t) and for a good choice of parameters satisfying 1� R−1

0 � s� δ � R−1
s > 0, we

get the following contact isotopies:

B∞f0
cont' f−1

0 (t) ∩ SR0

cont' f−1
s (t) ∩ SR0

cont' f−1
s (t+ δ) ∩ SR0

,

B∞fs
cont' f−1

s (t+ δ) ∩ SRs .
The cobordism W := f−1

s (t + δ) ∩
(
BRs \ B̊R0

)
between the two contact boundaries is

a product h-cobordism under our hypotheses, which allows us to conclude using Propo-

sition 2.7. Notice that we were bound to pass from t to t + δ in the base, since the

d0-regularity at infinity of f−1
s (t) is not guaranteed.

5. Remarks and questions

Remark 5.1. For simplicity, we have defined in the local case the boundary of an

analytic function germ by means of the squared norm function. But this choice may seem

too restrictive: for instance, in [Lo] the boundary in defined by any rug function, that

is, any proper real analytic function ρ : (Cn+1,0) → R≥0 such that ρ−1(0) = 0. This

does not change the isotopy type of the boundary. Since we want to get a well-defined

contact structure on the boundary, the good generalization in our context is the notion

of pseudo-convex rug function, that is, a strictly plurisubharmonic rug function(3). This

does not change the contact isotopy type of the contact boundary, which gives another

proof of Proposition 3.2: the class of pseudo-convex rug functions is right invariant by the

action of the group Aut(Cn+1,0) of analytic changes of coordinates. This is the approach

we have used in the global case.

Remark 5.2. In [El1], Eliashberg raises the following “J-convex h-cobordism prob-

lem”: suppose we have a strictly plurisubharmonic function f on a productW = M×[0, 1],

such that the two boundary components M × {i}, i = 0, 1, are level sets of f . Is it pos-

sible to find another strictly plurisubharmonic function g which coincides with f on the

boundary and without critical points?

(3) This was used by Ehlers, Neumann and Scherk in [ENS] for surface singularities.
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Were this true, the proof of Theorem 4.1 would improve to yielding that the contact

boundary is invariant in topologically trivial deformations. In the global case too (Theo-

rem 4.4) this would yield the invariance of the contact boundaries in γ-constant (and, in

particular, topologically trivial) V-deformations.

Remark 5.3. The results of Section 4 were proved by using the h-cobordism theorem,

which excludes the surface case n = 2. For normal surface germs, thanks to the plumbed

structure of the boundary given by its topological type (see [N]), one can show that the

formal homotopy class of the contact boundary is in fact a topological invariant. This

will appear elsewhere [C2].

Remark 5.4. Following the preceding remark, one may ask in the general case if

the formal homotopy class of the contact boundary is a topological invariant, which is a

priori a stronger condition than being an invariant of topologically trivial deformations.

The answer is only known in the particular case when this boundary is diffeomorphic

to the standard sphere S2n−1. This is yes, in the local case, by Morita’s work [Mo].

Morita gives formulae expressing the formal homotopy class (which is then an element

of π2n−2(SO2n−1/Un−1)) in terms of the Milnor number µ and of the signature of the

Milnor fiber, which are both topological invariants.
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