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Abstract. Excitation wave propagation in a heterogeneous medium around a circular obsta-

cle is investigated, when the obstacle is located very eccentrically with respect to the interfacial

circle separating the slow inner and the fast outer region. Qualitative properties of the permanent

wave fronts are described, and the calculated wave forms are presented.

1. Introduction. Wave propagation in excitable media is widely studied in chem-

istry and biology. Such excitation waves are usually described by using reaction-diffusion

equations. However, these waves can be treated by geometrical approach too [7]. The

first 2D application of this approach goes back to Wiener and Rosenblueth [14] who con-

structed a model to describe propagation of excitations in cardiac muscle. This model is

the base of the kinematic model or geometrical wave theory. By using reaction-diffusion

equations the wave fronts are derived from partial differential equations as equiconcen-

tration surfaces. In the geometrical approach the initial front is given and the evolution

of the front is defined by the Fermat principle of minimal propagation time.

A travelling wave can be described by a wave function u of the form

u(r, t) = A(r)f(t− S(r)),

where r is the space vector, t denotes the time, A is the amplitude, f is the phase, and

S is the eikonal. The wave fronts are defined as level surfaces of the eikonal S. The
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propagation process can be described without involving amplitude, by using only the

basic concepts of rays and fronts. The main advantage of this approach is the pictorial

concept. The solutions of the PDEs are hardly visual without further processing, while

the usage of rays and fronts in the geometrical wave theory enables us to represent the

development of the fronts easily. Furthermore, the computer program [4] based on the

geometrical wave theory is faster than the ones used for reaction diffusion equations. On

the other hand, the geometrical wave theory accounts for the shapes and evolution of the

wave front, but not for such interesting phenomena like curvature effect, wave splitting,

chemical turbulence.

Previously the geometrical wave theory was successfully applied to describe chemical

waves in non-uniform membrane rings. At first, the symmetric arrangement was studied,

basic concepts were introduced and fundamental features were established [10, 5]. Later

[12, 13], the moderately asymmetric arrangement was examined and new phenomena

were recognized.

In this paper we examine the strongly asymmetric arrangement. For this case, some

additional features of wave propagation are shown.

2. Terminology and the model. The geometric wave theory is based on Fermat’s

principle of least propagation time:

τ(g) =

∫

g

ds/v = minimum

where g is a curve, s is the arc length, v is velocity of propagation and τ is the propagation

time. This condition specifies the Fermat ray(s) connecting the given points P1 and P2.

Furthermore, for a given initial wave front f0 we can define Fermat’s rays starting from f0.

The orthogonal trajectories of rays starting from f0 will be the subsequent wave fronts

belonging to different instants from the initial front.

Here we follow the terminology and definitions used in [12], but we apply them to

the strongly asymmetric arrangement. Let vs and vf be two positive numbers, vs < vf .

Furthermore, let us denote by S(r, P ) the circle with radius r centered at P , and by

B(r, P ) the open disk with radius r centered at P .

Definition 1. Let C and CO be points on the plane and RO < R < RB , Rk =

Rvs/vf be positive numbers for which R − RO is greater than the distance of C and

CO. The circle O := S(RO, CO) is called obstacle, I := S(R,C) is called interface (or

interfacial boundary), B := S(RB, C) is called (outer) boundary , K := S(Rk, C) is called

caustic. Let S := B(R,C)\B(RO, CO) be called slow region, F := B∪B(RB, C)\B(R,C)

be called fast region and V := S ∪ F be called reactor . (See Fig. 1.)

Assumption 1. We assume that B(RO, CO) ∩ B(Rk, C) = ∅ (strong asymmetry).

In this case the circles O and K have two pairs of common tangents: the external

common tangents, and the internal common tangents. Denote the point of O which is

the nearest to K by OK . The tangent points on O with the four common tangents are

Od, Oa, Ob, and Oc ordered in the anticlockwise direction starting from OK . Kd, Kb,

Ka, and Kc will denote the corresponding tangent points in K with the same common
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tangents, respectively. The common tangents have 8 endpoints on I, namely Id, Ia, Ib,

Ic, as well as I ′d, I
′
b, I
′
a, I ′c. (Those farther from O are primed, see Fig. 1.)

Each of the four common tangents is divided into three segments by the obstacle and

the caustic:

• IaI ′a = a ∪ a′′ ∪ a′ where a = IaOa, a′′ = OaKa and a′ = KaI
′
a;

• IbI ′b = b ∪ b′′ ∪ b′ where b = IbOb, b
′′ = ObKb and b′ = KbI

′
b;

• IcI ′c = c ∪ c′′ ∪ c′ where c = IcOc, c
′′ = OcKc and c′ = KcI

′
c;

• IdI ′d = d ∪ d′′ ∪ d′ where d = IdOd, d
′′ = OdKd and d′ = KdI

′
d.

Ia

IcId

I'
c

I'
a I'

b

I'
d

d
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c

Oc

Ob

Od

Oa O

K KbKa
I
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BSF
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Fig. 1. Strongly asymmetric arrangement. Illustration of notation:

K: caustic, O : obstacle, I : interface, B : outer boundary, S : slow region (gray),

F : fast region, a, b : common outer tangents, c, d : common inner tangents,

k: tangent line drawn from the center of K to O. The notation of common points

of two curves indicates both curves, e.g. Ia and I ′a are common points of I and a.

Definition 2. Let the velocity v : V → R be the function

v(x) :=

{
vs if x ∈ S
vf if x ∈ F .

Remark that if a part of the path lies on the interfacial boundary, then we should

assign the greater velocity for that part due to Fermat’s principle.

Definition 3. Let f0 ∈ V be a straight segment, the endpoints of which are on O

and B, respectively; this will be referred to as initial front .

The assumption that f0 is a straight segment is only a technical condition.
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Definition 4. Let G be the set of piecewise smooth curves in V for which the

following two conditions hold:

• The starting point of the curve is on f0.

• The curve can intersect f0 only in positive direction, that is, a small arc of the curve

after the intersection point is on the local positive side. (The points on the local positive

side can be obtained from the points of f0 by a small anticlockwise rotation around CO.)

These curves will be called admissible curves.

The second condition in the above definition ensures that starting from the initial

front the propagation is allowed only in the anticlockwise direction.

Definition 5. Let g ∈ G be an admissible curve given in arc length parametric

form; the length of g is denoted by l(g). Let us denote by τ(g) the propagation time along

g, that is,

τ(g) =

∫ l(g)

0

1

v(g(s))
ds.

Definition 6. A piecewise smooth curve in V is called a Fermat ray or extremal ,

if there is no other piecewise smooth curve with same endpoints having less propagation

time.

Until now Fermat rays belonged to two points, now we define Fermat rays belonging

to a front.

Definition 7. Let f be a piecewise continuous curve in V . The Fermat rays starting

from f are such Fermat rays for which their starting point are on f and there is no other

Fermat ray with the same endpoint having less propagation time.

The Fermat rays starting from f are orthogonal to f (transversality condition for the

extremals).

Definition 8. A simple closed curve surrounding the obstacle in V is called a

minimal loop if there is no other closed curve surrounding the obstacle O having less

propagation time.

Theorem 1. The minimal loop consists of Fermat rays.

Proof. If a part of the minimal loop were not a Fermat ray, we could substitute that

part by a Fermat ray with the same endpoints. This way we could construct a loop with

shorter propagation time, which is a contradiction.

Definition 9. The mixed loop M is the convex closed curve consisting of the circular

arc ObOa on O, the circular arc IaIb on I and the connecting segments OaIa, IbOb of the

external common tangents.

The mixed loop does not exist if the segments a and b (Fig. 1) have intersection point

in S.

Theorem 2. The minimal loop is either O, or I, or M .

Proof. Obviously, if the minimal loop has no point inside S, then the minimal loop is

either O or I. On the other hand, if it has a point P in S then the arc of the minimal
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loop containing P is a line segment, since the minimal loop must consist of Fermat

rays. The connection of this line segment with I must be with the critical angle of

total reflection, and the connection to O must be tangential according to the junction

rules [12]. Consequently, this line must be common tangent to O and K. The internal

common tangents cannot be parts of the minimal loop. Suppose the contrary: then a

contradiction would arise at the joining at I, since the ray coming from O would turn

at I at the “bad” direction, the loop would not encircle O. Since the rays departing

from I are Fermat rays until they reach K, it is not possible to interconnect two points

of I through P with a Fermat ray. Thus the arc must have an endpoint on I and the

other one on O. As a consequence of this the arcs of the minimal loop are on I, O and the

common tangents of O and K. Inside S only the following line segments which connect

I and O are Fermat rays: IdOd, IaOa, IbOb, IcOc (Fig. 1). From this, any closed curve

using IdOd or IcOc lines with correct arc connections would exclude the obstacle. Finally,

the only remaining possibility is the closed convex curve IaIbObOa, that is the mixed

loop M . The wave propagation in the geometric wave theory is determined by Fermat’s

principle, therefore the fronts are defined as the level curves of the following eikonal.

Definition 10. Let Σ : V → R+ be the eikonal , that is

Σ(P ) = inf{τ(g) : g ∈ G, g(l(g)) = P}.
Let the wave front at time t be

ft = {P ∈ V : Σ(P ) = t}.

The aim of this paper is to determine the shape and evolution of the fronts ft. It turns

out that after a transient interval, the process will be periodic in time with period T ,

that is an ‘asymptotic’ or ‘permanent’ front portrait. Its fronts rotate around the obstacle

periodically, during a round the shape of the front changes (not as in the symmetric case),

but for the case of simplicity we refer to these fronts as ‘permanent’ fronts.

Our aim is to determine this permanent front portrait. The fronts are orthogonal to

the extremals, therefore in order to get the shape of the fronts it is enough to determine

the extremals. In our case the Fermat rays consist of arcs. There are two types of arcs:

interior arcs, which are straight segments, and boundary arcs, which lie on the interfacial

boundary or on the obstacle. The rules of their connections (junction rules) were derived

from the Fermat principle: two adjacent arcs can be joined together according to the

laws of refraction. Interior arcs in different media are attached according to Snell’s law.

Interior and boundary arcs can be connected in two ways: tangentially (toward the faster

region) or with the critical angle of total reflection (toward the slower region).

In the following we use the term reverse involute in the case when the center of the

involute’s osculating circle is before the front. The permanent wave fronts in our case

are made of involute parts of the obstacle, reverse involute parts of the caustic (K) in

region S, while in region F they are made of involute parts of the interfacial boundary

and involute parts of caustic (K2, see below).

The caustic K (Definition 1 and Fig. 1) is the envelope of the rays departing from

the interfacial boundary into the slower region with the critical angle of total reflection,
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while the caustic K2 is the envelope of the refracted rays.

While determining the extremals, certain points of the fronts (the “leading points”)

play a distinguished role. The permanent wave portrait is determined by the leading point

which moves along the minimal loop. It strongly depends on the relative position of the

obstacle and the caustic.

Definition 11. The point P of the front ft0 is called a leading point if for a certain

t > t0 there exists a positive measure set of points Q ∈ ft for which there exists an

extremal starting from P at t0, ending in Q at t.

Usually a point of a front generates a single point of each subsequent front. A leading

point is exceptional: it generates a finite front part.

Definition 12. A front loop is a closed part of the front, and along it the front

moves inside.

3. Break point dynamics. To study the evolution of fronts we first consider the

“break point dynamics”. Break point is used in the same sense as in the previous pa-

per [12]. After a certain transient period some parts of initial front will disappear. Only

the front components generated by leading points will survive. So the entire front will be

generated by rays emanated from the leading points running along O and I, respectively.

There are eight elementary families of rays, four of them are related to O and four

are related to I:

SO+: the family of straight rays departing tangentially from a leading point on O

running in the anticlockwise direction, the generated fronts are involutes of O moving

anticlockwise,

SO−: the family of straight rays departing tangentially from a leading point on O

running in the clockwise direction, the generated fronts are involutes of O moving clock-

wise,

FO+: the rays belonging to SO+ refract at I, according to Snell’s law, and those

refracted rays constitute the family FO+,

FO−: the rays belonging to SO− refract at I, according to Snell’s law, and those

refracted rays constitute the family FO−,

SI+: the family of straight rays departing (with the critical angle of total reflection)

from a leading point running on the interface I in anticlockwise direction, the generated

fronts are reverse involutes of K moving anticlockwise,

SI−: the family of straight rays departing (with the critical angle of total reflection)

from a leading point running on the interface I in clockwise direction, the generated

fronts are reverse involutes of K moving clockwise,

FI+: the set of rays emanated tangentially from the leading point running on I in

the anticlockwise direction respectively, the generated fronts are involutes of I moving

anticlockwise,

FI−: the set of rays emanated tangentially from the leading point running on I in the

clockwise direction respectively, the generated fronts are involutes of I moving clockwise.
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The same notation will be applied to the corresponding front components (a front is

composed of one or more parts, each part is generated by rays of a given family of rays,

and we refer to these parts as front components).

A break point separates parts of a front generated by these two leading points, or more

precisely, generated by rays from two different “elementary families of rays” belonging

to different leading points. In contrast, a refraction point separates parts of a front gen-

erated by rays from two different “elementary families of rays” belonging to O. Along a

particular front there may be three different types of singular points, where the tangent

is discontinuous: break points (SO+SI+, SO−SI+, SO+SI−, SO−SI−, FO+FI+,

FO−FI+, FO+FI− and FO−FI−), refraction points (SO+FO+, SO−FO−) and

leading points (SI+FI+, SI−FI− and on O).

In the evolution of fronts three different stages can be distinguished:

• first transient stage,

• second transient stage,

• periodic stage.

The first transient stage terminates when the entire front is generated by rays from

the above eight elementary families. During the second transient stage the competition

of leading points takes place. As a result of this competition the final permanent wave

fronts are established, and the process becomes periodic in time (periodic stage).

In this paper the break points will be labeled with the two joining front components,

e. g. break point SO+SI+ separates an obstacle involute and a caustic reverse involute,

both rotating anticlockwise.

3.1. Virtual break point dynamics and the bisector rule. In the previous work it turned

out that break points are important when studying the evolution of wave fronts. At

the break points the tangent of the front is discontinuous. Let us imagine an arbitrary

piecewise smooth front. Any break point within a homogeneous medium moves along the

bisector of the left-side and right-side tangents joining at the break point (bisector rule,

Fig. 2). Recall that not only the direction but also the magnitude of the velocity yields

from the bisector rule [12].

αv*

v

f0 f1

Fig. 2. The bisector rule in homogeneous medium. The break point of a concave front f0

moves along the bisector with the velocity v∗ = v/ sinα, where v is the wave velocity

and 2α is the angle at the break point.

Now the concept of break point needs a slight refinement. It seems reasonable to

include such points where the tangent is continuous, but the front part at one side is
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generated by rays from an elementary family of rays which differs from the elementary

family generating the front part at the other side of the break point. So, the break point

in this new sense is determined by two elementary families of rays, and the break point

is labeled by them. The term ‘virtual break point’ is used in such sense.

Definition 13. {P, (A,B)} is called a virtual break point , where P ∈ V \ I and

(A,B) is a pair of elementary families of rays with the requirements

• if P ∈ S then the first index of A and B must be S,

• if P ∈ F \ I then the first index of A and B must be F .

Remark that the order of A and B is not significant: {P, (A,B)} = {P, (B,A)}.
Definition 14. {P, (A,B)} is called a refraction point if P ∈ I and

• (A,B) = (SO+, FO+)

• or (A,B) = (SO−, FO−).

Remark that {P (A,B)} is a leading point on I if P ∈ I and (A,B) = (SI+, F I+) or

(A,B) = (SI−, F I−).

O

I

Fig. 3. Leading points (medium gray), refraction points (light gray)

and the corresponding rays and fronts.

In typical cases the front is not smooth at virtual break points, but smooth connection

can also occur. Applying the bisector rule, we can compute the velocity of any virtual

break point at any inner point of the reactor. To construct the “velocity field” we have

to consider that through each point two wave front parts of different type pass and then

apply the bisector rule. This way we can associate a velocity field to any given class of

virtual break points, that is different virtual break point dynamics yield. Those dynamics

and their velocity fields will be labeled in the same way as the classes of virtual break

points, namely by a pair of elementary families of rays. Using virtual break point dynamics

we can follow the evolution of a front locally in the vicinity of virtual break points.

The introduction of virtual break points at each point of the reactor helps us to

understand the qualitative motion of the actual break points, especially at the permanent

stage. By applying the bisector rule to the motion of the virtual break point, the velocity

field inside S can be computed. Not like in the previous paper, now six different types of

break point exist in S, those imply six different velocity fields.

The dynamics of the break points SI+SI− is very simple: the bisector rule shows

that such break points always move inward to the center C. Similarly, the break points
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SO+SO− always move outward from the center CO.

Fig. 4 shows the velocity fields of the break points SO+SI+ and SO+SI−, respec-

tively. In this figure the length of the arrows is proportional to 1 + arctan(v∗−vs) (where

v∗ is the velocity of the break point): we used this transformation to avoid the difficulties

arising from the infiniteness of the velocity at certain points.

C

CO

C

CO

a b

cd

a' b'c' d'

a'' b''
d''

c''

C

CO

a b

cd

a' b'c' d'

a'' b''
d''

c''

C

CO

Fig. 4. The velocity fields of the virtual break points SO+SI+ (on the top left)

and SO+SI− (on the top right). The two bottom figures illustrate the connection

between the break point velocity vector and the corresponding front parts.

The dotted lines are continuations of the front parts.

Finally, the velocity field for SO−SI− is the reflection (with respect to the axis CCO)

of that for SO+SI+, and similarly, the velocity field for SO−SI+ is the reflection of

the one for SO+SI−.

For the case SO+SI+, in a domain limited by the inner tangent segments c′ and d,

the arc I ′cId and the segment K ′cOd the break point moves opposite to the motion of the

leading points. Along the segments c′ and d the angle of the two Fermat rays is π, so
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there is no unique direction of the bisector (two opposite directions are possible), and

the break point velocity is infinite, so the points on these segments are singular. If we

consider the neighborhood of these common tangents, it turns out that the break points

depart from d and approach to c′. It means that in one point of d the involute and the

reverse involute collide, and two new break points arise. In any point of c′ some break

points belonging to a front loop cease to exist.

The break point velocity has its minimum (with the minimum value vs) when the two

Fermat rays have the same direction. In these points an SO+SI+ break point can be

born. Now these points are on b′′.

Similarly, for a break point of the type SO+SI−, the break point velocity is infinite

along a and b′. The break points depart from a and approach to b′. The break point

velocity is minimal on c′′ (v = vs).

3.2. Permanent wave portraits. As was stated formerly, after a transient period, per-

manent wave fronts move around the obstacle. These permanent fronts establish as a

result of competition of leading points running along O and I, respectively. These leading

points have their own regions in which the wave fronts are generated by rays emanating

from them.

Earlier we introduced the concept of the elementary families of rays. In this section we

restrict this concept to the permanent rays. The elementary families of permanent rays

contain only the rays which really exist on the permanent wave portrait. The permanent

wave fronts divide the medium into zones: one zone belongs to one elementary family of

permanent rays. The permanent rays cannot go beyond the border of the relevant zone.

The borders of the zones are the conflict sets of certain previous fronts, or, on other

hand, they are the Voronoi diagrams of the two competing leading points running along

the obstacle and along the interface, respectively, see e.g. [2, 6, 8, 9]. The zones themselves

are territories of those previous fronts or of the moving leading points.

To describe permanent waves qualitatively we should determine the structure of zones.

The borders of zones consist of parts of break point trajectories, arcs of the obstacle, of

the interface, or of the outer boundary, respectively. To get information about the zone

structure, we investigate the creation and cessation of break points.

3.3. Appearance of break points. One break point can be born in a point of O or I,

where two Fermat rays belonging to different families of rays coincide. Such points on I

are Ia and Id, where from an arriving FO+ (and SO+) front component, break points

FI+FO+, SI+SO+ (and FI−FO+, SO+SI−, respectively) can be born, and also a

new FI+ (FI−) front component can appear (Fig. 5, subclass O3). On the other hand,

on the obstacle at point Od and Ob, from an arriving SI+ front component, a break point

SO+SI+ (and SO−SI+, respectively) can be born, and also a new SO+ (SO−) front

component can appear.

Two break points can be born when two parts of the same front collide frontally. In

this case the two newly born break points move to the opposite direction, and the Fermat

rays belonging to the colliding fronts must also have opposite direction in the point of

the collision.
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In the strong asymmetric arrangement two leading points can collide frontally on the

interface, and after the collision there will be two new break points moving perpendic-

ular to I, one of them moves in S (SI+SI−) and the other in F (FI+FI−) (Fig. 5,

subclass O3). Two leading points can collide also on O in a similar manner, except that

in this case only one new break point can appear (SO+SO−), and it moves outward

perpendicular to O (Fig. 5, subclass I3-2).

On the interface a leading point also can collide with a refraction point. In this case

there must be a break point SO+SI+. When such points on I collide, this break point

also arrives to I, and after that the break point changes its type to FO+FI+, and

departs from I in F (Fig. 5, subclass O0).

3.4. Collision and disappearance of break points. The simplest way for one break

point to disappear is a collision with the obstacle or with the outer boundary. Collision

of two adjacent break points assumes three different parts in the actual front. The break

points collide in a point where the middle front component disappears, so only one break

point remains, that is, the two break points merge.

Two break points can collide frontally (with an angle π) only if they are in a front

loop (Fig. 5, subclasses I2, O2). A simple type of front loops consists of only two front

components, and it contains only two break points. Such a front loop can be born when

two front components collide in a point of the common tangent d. Since the front moves

inward the loop, the loop will be smaller and smaller until it vanishes, and the two break

points collide frontally. In this critical point the direction of the break point velocity is

not unique, so there must be a singularity of the break point velocity field inside such

diminishing front loop. This singularity occurs only at points of c′.

In our case there is another type of front loops, which consists of three front compo-

nents, and so they contain three break points (Fig. 5, subclass O3). While such a loop is

diminishing, two of its break points can collide, and it becomes a simple two-edged loop.

However, as we can see, there is another possibility: when the three break points collide

and disappear simultaneously.

3.5. Leading points on I and O. The following consideration aims to determine the

possible behavior of the permanent wave propagation along the interface.

Recall that a front component is labeled by three characters which will be called

indexes in the following. The first index refers to the region (S or F ), the second one

refers to the generating leading point (O or I), and the third one gives the direction of

rotation (+ or −).

At the interface two front components join, the first index of the one is S, that of

the other is F . Their third index must be identical, it characterizes the propagation

direction of the wave near the interface. The virtual velocity of the two joining front

components should be equal [12], consequently the second index also must be the same

for the joining front components. Otherwise, in asymmetric case the equality of the two

virtual velocities can occur only at few isolated points. Therefore, only the following four

possibilities remain: SO+FO+, SO−FO−, SI+FI+, SI−FI−. The first two fronts

contain a refraction point, the latter ones contain a leading point at the interface.
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In addition to the above exclusion rules, certain parts of the interface are forbidden

for some type of fronts. If the virtual velocity of an obstacle generated front reduces to the

velocity vf , then a leading point appears, or, in other words, the refraction point changes

into a leading point running along the interface. This transformation occurs when the

ray SO+ reaches the interface at the critical angle of total refraction, that is, at the

points Ia, Id, and I ′b, I
′
c, respectively (Fig. 1). Therefore, the arcs (Ia, I

′
b), and (I ′c, Id)

are forbidden to the fronts SO+FO+. (It is easy to see that the SO− front part cannot

reach the obstacle.)

Arc Possible front pairs

(Ia, Ib) SI+FI+

(Ib, I
′
d) SI+FI+

(I ′d, I
′
b) SI+FI+, SI−FI−

(I ′b, I
′
c) SI+FI+, SI−FI−, SO+FO+

(I ′c, Id) SI+FI+, SI−FI−
(Id, Ia) SI+FI+, SO+FO+

Table 1. Leading points on I.

From the two possible directions of rotating waves let us choose the anticlockwise (+).

For this case the following possible leading or refraction points occur in I (Table 1).

If the minimal loop is the interface, then the leading point SI+FI+ runs on the

entire interface. The details for the other possible cases are discussed later.

Arc Possible fronts

(Ob, OK) SO+

(OK , Od) SO+, SO−
(Od, Ob) SO+, SI+

Table 2. Front parts on O.

Considering the leading point on the obstacle is simpler. At the obstacle there can

be only three types of fronts: SO−, SO+, SI+. (Remark that SI− cannot occur at

the obstacle for waves rotating anticlockwise.) The endpoints of the first two fronts are

leading points on the obstacle. The virtual velocity of the interface generated front SI+

on the obstacle can never be smaller than vs. The two velocities are equal at the points

Ob and Od. If the minimal loop is the obstacle, then SO+ front runs along the entire

obstacle. Otherwise, at some parts of the obstacle there is a front SI+, and a leading

point on O running along the positive direction appears at Ob. Under certain conditions

a leading point on O running along the negative direction appears at Od. The appearance

of leading point on the obstacle is due to the fact that O shadows the rays coming from I

in certain regions.

All the possible cases are listed in Table 2.
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4. Classification of permanent wave portraits

FI+

SI+

SO+

FO+

FI+

FO+

SI+

SO+

FI-

SI-

SO+

SI-

SI+

FI+

FO+

FI-

SI+

FI+

SI+

SO+

FO
+

FI-

FO+

FI+

SO+

SI+

FI+

SI+SO
+

SO+

SO-

SI+

Fig. 5. The maps of the subclasses: O2, M3-2, O3, O0, I2, I3-2.

The fronts are thin lines, the borders of the zones (break point,

leading point and refraction point trajectories) are thick lines.

Construction of wave portraits and zones. In the investigation of the permanent wave

portraits and in their classes, the creation and cessation of break points plays an im-

portant role. It is also necessary to follow the fate of the newly born break points, their

motion and possibly collisions during a whole round. The trajectories of the break points
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are governed by break point dynamics, and they mark the borders of the zones. From the

map of zones the stationary fronts can be drawn.

Classification. As was shown in the previous paper [12], the minimal loop plays a key

role in the permanent wave portraits. There are three types of minimal loops (obstacle,

mixed and interface), the corresponding three classes of permanent wave portraits will

be labeled by the letters O, M and I, respectively.

The classes O and M have four, the class I has two subclasses based on the topology

of the zone structure (shortly map) determined by the layout of the permanent fronts.

The number of the front components in the front loop characterizes subclasses: we use

this number to label the subclasses. Number 0 stands for the case when there is no loop

in the fronts. Number 1 cannot occur. In certain subclasses a three-arced loop reduces to

a two-arced one, we use the symbol 3-2 for those subclasses.

Class O (minimal loop is the obstacle). In this case there is a leading point moving

forward along the whole O, so the zone SO+ engulfs O totally. At the point Ia two break

points and a leading point appear: a break point SO+SI+, which moves inward, and an

FI+FO+, which moves outward tangentially from the interface, and a SI+FI+ leading

point, which runs along the interface (Fig. 5, subclasses O2, O3, O0). This anticlockwise

moving leading point cannot reach Ia, on the remaining part of the interface there is

a refraction point or a clockwise moving leading point (the details of its trajectory are

discussed in the different subclasses).

Subclass O2. The front loop is born by colliding of the obstacle involute and the

caustic reverse involute in a point of d (Fig. 1), and this loop is always two-edged until

its cessation. In the point of collision two new break points appear: one of them goes

through the interface and reaches the outer boundary; and the second turns backward,

while it collides with the break point appearing in Ia at a point of c′ (Fig. 1), and then

the front loop disappears.

Subclass O3-2. The obstacle involute reaches the Id point, where two new break points

(SO+SI− and FI−FO+) and a backward moving leading point appear in a manner

similar to the point Ia, but in the opposite direction. Later on the interface two leading

points collide frontally, and then two break points (SI−SI+ and FI−FI+) appear. In

the moment of the collision a three-edged front loop is born. This takes place in the I ′cId
arc of the interface. Later the backward moving caustic reverse involute vanishes, when

the break points SO+SI− and SI−SI+ collide, so the front loop contains only two

front components when it disappears at a point of c′ like in subclass O2. When the outer

boundary is far enough, the break points FI−FI+ and FI−FO+ can collide, and so

an FO+FI+ break point remains.

Subclass O3. If the backward moving leading point on I passes I ′c, then it collides

with the other leading point in I at a certain point of the arc I ′bI
′
c, and a three-edged

front loop is born, like in subclass O3-2. This loop disappears by the colliding of its three

break points simultaneously.

Subclass O0. This case can occur if the break points SO+SI− (arising in Id) and

SO+SI+ (arising in Ia) reach the interface again before the corresponding leading points
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collide on I. Between these leading points one or two SO+FO+ refraction points move

on I.

Class M (minimal loop is the mixed one). In this case the obstacle involute arrives at Ia
similarly to the previous case, but the break point SO+SI+ collides with the boundary

of the obstacle before Ob. So a caustic reverse involute arrives at the point Ob, where a

new SO+SI+ break point moving along b′′, and a leading point moving anticlockwise

on O arise. The behavior of the front is the same as in the previous case between points

Ob and Ia, so there are the same subclasses for this class as those in the class O. As a

contrast to class O, now the leading point on O cannot exist on the whole circle O.

Class I (minimal loop is the interface). If the minimal loop is the interface, a leading

point runs all over the whole I. The caustic’s reverse involute reaches the point Ob, where

an SO+SI+ break point and a leading point on O arise. The obstacle involute cannot

reach the interface, so no break points can appear on I.

Subclass I2. A two-edged front loop arises when the obstacle involute collides with

the caustic reverse involute in a point of d. In that point of d two new SO+SI+ break

points appear: one of them reaches the boundary of the obstacle before the point Ob; and

the other one moves backward, until it collides with the break point coming from Ob at

a point of c′, and then the front loop disappears.

Subclass I3-2. The caustic reverse involute touches the obstacle, and then it splits.

The left part of that involute reaches the point Od, where a backward moving SO−SI+

break point and a backward moving leading point on O appear in a manner similar to

the point Ob, but in the opposite direction. The two leading points on the boundary

of O collide frontally, and then one SO−SO+ break point is born. In the moment of

the collision a three-edged front loop arises. Later the backward moving involute of the

obstacle vanishes, when the break points SO−SO+ and SO−SI+ collide, after that the

front loop contains two front components until it disappears at a certain point of c′.
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