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Abstract. We describe the structure of minimal round functions on compact closed surfaces

and three-dimensional manifolds. The minimal possible number of critical loops is determined

and typical non-equisingular round function germs are interpreted in the spirit of isolated line

singularities. We also discuss a version of Lusternik-Schnirelmann theory suitable for round

functions.

1. Introduction. A differentiable function on a differentiable manifold is called a

round function if its critical set is a union of embedded one-dimensional submanifolds.

In general it is not assumed that the critical submanifolds are non-degenerate critical

submanifolds in the sense of R. Bott [3] so this is a straightforward extension of the

notion of round Morse function introduced by W. Thurston [30].

Our main concern in this paper are round functions on a given compact closed (i.e.,

without boundary) smooth manifold with the minimal possible number of critical sub-

manifolds (critical loops). By analogy with the terminology of [29] they will be called

minimal round functions as in [21]. We are especially interested in describing possible

changes of the topology of their Lebesgue sets (preimages of semi-infinite intervals) and

typical local models of their singular behaviour near critical loops. Our setting and ap-

proach are much in the spirit of F. Takens’ paper [29] which contains a comprehensive
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treatment of similar questions for functions with isolated critical points.

It should be noted that unlike to the round Morse functions which gained a lot of

attention [1], [30], [24], [8], round functions with degenerate critical loops (called below

degenerate round functions) are rather poorly understood. For example, it is still unclear

how to describe the class of compact closed manifolds which possess round functions.

Some results about general (not necessarily Morse) round functions may be found in [1],

[2], [24], [26], but to the best of our knowledge there exists no systematic exposition of

this topic in the literature. The present paper may be considered as an attempt to fill

this gap and provide a framework for further investigations.

As we were able to conclude from [2], [24], [26] and discussions with colleagues, many

natural questions about round functions remain unanswered even in low dimensions. Thus

it seemed reasonable to begin by discussing round functions on low-dimensional manifolds.

Specifically, we consider round functions on surfaces (two-dimensional smooth manifolds)

and 3-manifolds (three-dimensional smooth manifolds) and their local behaviour near

critical submanifolds. Some of these results are rather simple and we do not exclude that

they may be known for the experts or even belong to “mathematical folklore”, but we

have good evidence to believe that in any case our presentation contains certain novelties

arising from the treatment of round functions from the singularity theory viewpoint in

the spirit of isolated line singularities [27], [28].

One of the basic ideas we want to formulate and illustrate here, is that round functions

with degenerate critical loops appear quite naturally in a certain simple context and their

transversal singular behaviour along critical loops resembles some patterns exhibited by

the so-called isolated line singularities [27]. The context we have in mind is related to

certain homotopy invariants similar to the classical Lusternik-Schnirelmann category [18]

and invariants considered by F. Takens [29]. We describe this setting in some detail as

well as typical examples of degenerate round functions in low dimensions.

In order to endow the whole topic with a proper background, we first address the

general existence problem for round functions on closed manifolds. We recall main results

in this direction from [1], [23] and complement them by some observations about the

Euler characteristic of Lebesgue sets. Results of the first section imply, in particular, that

degenerate round functions, generally speaking, cannot be approximated by round Morse

functions. This shows that degenerate round functions are in some sense inevitable and

should be studied by themselves.

We proceed by considering examples of minimal round functions on compact closed

surfaces. It turns out that, in the orientable case, critical loops of such functions are

transversally non-degenerate except at a finite number of points of Whitney umbrella

type (D∞-points in notation of [27], [28]). For a round function with critical loops of

such type, we describe possible changes in topology of Lebesgue sets under passing of a

critical level. This enables us, in particular, to determine the minimal possible number

of D∞-points on a given orientable surface. We also find out that round functions exist

on any closed 3-manifold, which is in a contrast with the fact that not all of 3-manifolds

possess round Morse functions [24].

Thus we achieve a rather detailed description of minimal round functions on closed
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surfaces. These two-dimensional results serve as one of the main paradigms for our re-

search and suggest some approaches to higher-dimensional cases although it should be

noted that in higher dimensions the situation is much more complicated. In particular,

it becomes hard to compute the relevant invariants, like the round complexity, by visual

geometric considerations so one has to develop some topological machinery suitable for

this purpose.

With this in mind, we describe some tools sufficient to obtain lower estimates for the

number of critical loops. As is well known, the classical Lusternik-Schnirelmann category

gives a lower estimate for the minimal number of isolated critical points of a smooth

function on a given manifold [18]. We follow the same pattern in the context of round

functions by using an appropriate version of generalized category-like invariants intro-

duced by M. Clapp and D. Puppe [4] (cf. also [2], [20]). In such a way we come to lower

estimates for the minimal possible number of critical loops in terms of these invariants

and conclude the section by computing them in some simple cases.

In the last section we discuss minimal round functions on 3-manifolds. In particu-

lar, we present a complete list of (homeomorphy types of) 3-manifolds possessing round

functions with two or three critical loops and obtain some corollaries concerned with

the computation of round category and round complexity. These results rely on some

elaborate results of three-dimensional topology and may be considered as our main new

contribution to the topic. A short announcement of some of our results appeared in [21].

We are grateful to J. Gómez-Larrañaga for useful comments and suggestions concerning

an earlier version of the manuscript.

The authors acknowledge partial financial support by INTAS, projects 96-713 and

00-259, during the period of joint work on this paper.

2. Definitions and setting. For brevity, throughout the whole text the word

“smooth” means “infinitely differentiable”. Manifolds are always assumed to be smooth

compact and closed (without boundary), those with boundary will be referred to as

∂-manifolds.

Let f : M → R1 be a smooth function on a (smooth compact) manifold M . As usual,

the critical set C(f) of function f is defined as the set of all points where differential dpf

vanishes. In our situation C(f) is evidently non-empty and carries a lot of topological

information about manifold M . The latter circumstance is well known and has spectacular

manifestations in the case of functions with isolated critical points, especially Morse

functions [22]. It should be noted that often it is also necessary (or useful) to consider

functions with non-isolated critical points [3], [30], [8].

In many problems of differential topology and Hamiltonian mechanics an important

role is played by so-called round Morse functions , with critical sets consisting of several

smooth loops which are non-degenerate in the sense of Bott [1], [30]. In some situations

the condition of non-degeneracy does not seem natural, so we introduce a more general

class of functions. As usual, the term “loop” refers to a continuous image of circle S1

and a loop is called simple if it has no self-intersections. In line with that, the image of

a smooth embedding of S1 into a given manifold M will be called a smooth simple loop

in M .
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Definition 1. Function f is called a round function if its critical set C(f) is a disjoint

union of several smooth simple loops. Components of C(f) are called critical loops of f .

If all critical loops of f are non-degenerate in the sense of Bott, then f is called a round

Morse function [30]. If all critical loops are non-degenerate except a finite number of

points on them, we will say that f is an almost Morse round function.

Examples of round functions are immediate, but unlike to Morse functions, they do

not exist on all manifolds.

Proposition 1. No round functions exist on two-sphere S2 and real projective

plane RP2.

Indeed, on S2 any critical loop bounds an embedded disc in interior of which the

function in question evidently should have further critical points (maxima or minima, at

least). On the other hand, by an evident compactness argument one always finds a critical

loop containing no other critical loops in its interior. So there should exist some isolated

minima or maxima in its interior, which contradicts the definition of round function. In

the case of RP2 one arrives at the desired conclusion by considering lifts of functions to

the universal covering space S2.

At the same time there are many evident examples of round functions in all dimen-

sions. For example, on any manifold of the form M × S1 round functions arise from

arbitrary functions with isolated critical points on M . The same holds for circle bun-

dles over manifolds, which provides, in particular, round functions on odd-dimensional

spheres from Hopf fibrations S2n+1 → CPn, the most visual example being a well-known

function (“height-Hopf”) on S3 having two critical loops which are linked (as fibres of

the Hopf fibration S3 → S2).

Thus the existence issue for round functions is not completely trivial and we will

present some more comments upon it in the sequel. Note that in three-dimensional case

the mutual position of critical loops is also a non-trivial issue.

Proposition 2. On S3 there are no functions with two critical loops which are un-

linked.

Indeed, any function with two critical loops gives a decomposition of S3 in a union

of two solid tori S1 × D2 (which are suitable tubular neighbourhoods of critical loops)

glued by certain diffeomorphism of their boundaries. Clearly, only homotopy classes of

gluing diffeomorphisms are important and those are known to be described by elements

of SL(2,Z) expressing the effect of gluing on H1(T 2,Z) [17]. Discussion in [17] shows

that the result of such gluing is diffeomorphic to S3 if and only if the core circles of those

solid tori are linked with linking number ±1 (in other cases one obtains S1 × S2 or such

lens spaces which are not even homeomorphic to S3).

On the other hand, it is clear that round functions with unlinked critical circles exist

on direct products of the form M 2×S1. These simple observations already suggest some

natural problems which seem to be open.

Problem 1. Characterize closed 3-manifolds which possess round functions with un-

linked critical circles.
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Problem 2. For a given compact connected 3-manifold, characterize links which may

be represented as critical sets of round functions.

We would like to point out that results of [15] provide many examples of links rep-

resentable as critical sets of round functions on S3. Actually, we believe that the second

problem in the case of three-sphere can be completely investigated by methods of [15].

Using Bott’s theory of non-degenerate critical manifolds it is quite simple to indicate a

topological invariant responsible for the existence of round Morse functions. Indeed, it is

clear that if a non-degenerate critical manifold is homeomorphic to the circle, then under

passage of this critical level the Euler characteristic of Lebesgue sets {f ≤ a} remains

unchanged [3]. Thus round Morse functions may only exist on manifolds with vanishing

Euler characteristic.

D. Asimov proved that the converse is also true in all dimensions bigger than three [1]

(this is not the case in three dimensions because there exist compact closed 3-manifolds

which do not possess round Morse functions [24]). As follows from [19], one can generalize

these observations by looking at possible changes of the Euler characteristic in the so-

called transversally equisingular case. It turns out that the transversally equisingular

behaviour is often exhibited by minimal round functions, so we give a precise definition.

Definition 2. A function f is called transversally equisingular at a critical subman-

ifold K if, for every point p ∈ K, germs at p of restrictions of f to small discs transversal

to K at p belong to the same right-left equivalence class [9].

Obviously, natural examples of equisingular critical submanifolds emerge from fibre

bundles. For example, given a smooth circle bundle π : E → M one gets equisingular

round functions on E by taking compositions f · π, where f is any function with isolated

critical points on M . In particular, if f is a Morse function then f · π is a round Morse

function.

Proposition 3 ([19]). If K is a transversally equisingular critical submanifold of

function f then, under the passage of level f(K), the Euler characteristic of Lebesgue set

χ({f ≤ a}) is changed by an integer multiple of χ(K).

Corollary 1. Equisingular round functions exist on a manifold M if and only if

χ(M) = 0.

In order to prove this proposition, one uses the multiplicative property of the Euler

characteristic and existence of a locally trivial fibration structure in a neighbourhood of

an equisingular critical submanifold (compare similar statements in [6]), to show that

the total change of the Euler characteristic of Lebesgue set 4χ{f ≤ a} is equal to the

product 4χ(slice) ·4χ(K). Actually, it is not difficult to show that in this case 4χ(slice)

is equal to the gradient index indp grad(f |Dp) of restrictions of f to small transversal

discs Dp at p.

For further reference, it is also convenient to introduce another natural class of de-

generate round functions.

Definition 3. A point p ∈ K on a critical loop K of a round function f is called a

point of D∞-type (for f) if, in some system of local coordinates (x1, . . . , xn) around p,
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function f takes the form x1x
2
2±x2

3±. . .±x2
n. A critical loop K is called a Morse-Whitney

critical loop if f is transversally non-degenerate on K with only possible exception of a

finite number of points which are all of D∞-type. A round function is called a Morse-

Whitney function if all of its critical loops are Morse-Whitney critical loops.

In this paper we are basically concerned with estimating the minimal possible number

of critical loops of a round function on a given manifold. Recall that F. Takens in [29]

introduced an interesting topological invariant F.(M) of a smooth manifold M , defined

as the minimal number of critical points of smooth functions on M . In some cases he was

able to show that F.(M) coincided with the Lusternik-Schnirelmann category catM , and

explicitly constructed so-called exact functions which have precisely catM critical points

on M . Our strategy is to mimic his approach in the context of round functions.

Definition 4. Round complexity rocM of a manifold M is defined as the minimal

possible number of critical loops of round functions on M . If round functions on M do

not exist, we put rocM = ∞. A round function f is called a minimal round function if

the number of components of C(f) is equal to rocM .

Round complexities are usually hard to compute. Below we will introduce an appro-

priate homotopy invariant of M , round category TcatM , which gives a lower estimate

for rocM . We will be interested in finding situations in which rocM = TcatM . If this

is the case, we will say that a round function is exact if it has precisely TcatM critical

loops. In the sequel we are mainly concerned with minimal and exact round functions on

surfaces and 3-manifolds.

3. Round functions in low dimensions. We describe now some constructions of

round functions on surfaces and 3-manifolds and discuss the structure of minimal round

functions. Existence of round functions on surfaces and three-manifolds was also stated

in the note [2] but neither [2] nor other publications of the same author contain any

comments about construction and local behaviour of minimal round functions. A weaker

version of the following result was presented in [21].

Theorem 1 (cf. [2], [21]). Round functions exist on all closed surfaces, except S2 and

RP2. Transversally equisingular round functions, as well as round Morse functions, exist

only on T 2 and Klein bottle K2. The round complexity is equal to two for T 2 and K2,

and it is equal to three in all remaining cases. On all closed surfaces there exist almost

Morse round functions. On surfaces with the even Euler characteristic there always exist

minimal round functions which are Morse-Whitney functions. The minimal number of

D∞-points of a minimal Morse-Whitney function on an orientable surface of genus g is

equal to 2g − 2.

We prove this using a sort of surgery suitable for round functions on surfaces the

best description of which could be probably given just by drawing some pictures. We

prefer nevertheless to present a few concise comments which should make clear the main

point of construction. For simplicity, we only consider the orientable case and start with

a standard model of a (usual round) torus T 2 with the evident minimal round function

on it (“height function on a lying tyre”).
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We take two such tori and arrange that the circle of maxima on the first copy lies on

the same level with the circle of minima on the second copy, say on the zero-level. Then

we take a point P on one circle and a point Q on the other, delete small discs around

these points and perform our surgery. To this end we glue a cylinder to boundaries of

deleted discs and try to extend our function to that cylinder.

A simple visual examination of arising picture shows that this is really possible and the

simplest way of doing so is to join “free ends” of original critical circles by two segments

on the cylinder with one Whitney umbrella (D∞-point) on each of those segments. As one

immediately sees, the result is a round function with three critical loops on a connected

sum of two tori and it becomes clear that this procedure may be iterated, which yields

round functions on all orientable closed surfaces.

A slight modification of the same surgery enables one to fuse any pair of critical loops

containing points of different types (max vs. min). This shows that the number of critical

loops may be reduced to three, for any orientable surface with the genus higher than one,

and the arising round functions are Morse-Whitney functions. Using (an adapted version

of) standard Morse theory we can easily check that the number of Whitney umbrellas on

every critical loop is even and the Euler characteristic of Lebesgue sets changes by −2k

under passage of a Morse-Whitney loop with 2k points of D∞-type on it, which gives the

last statement of the theorem.

In the non-orientable case one can develop similar surgery which uses gluing of Möbius

bands. It should be noted that critical loops provided by this procedure are of the transver-

sal type A2 [27] so in this way one cannot derive existence of almost Morse functions on

non-orientable closed surfaces. To prove the latter statement one may apply another

natural procedure which uses blow-ups of isolated extrema and produces almost Morse

critical loops with points of J2,∞-type, in the notation of [27]. Thus we obtain all state-

ments presented in Theorem 1.

We consider now round functions on 3-manifolds. Here situation is substantially more

complicated and our results are less complete. For the sake of clarity we first formulate the

existence result. Recall that there exists an especially well understood class of 3-manifolds,

the so-called Waldhausen class , which consists of unions of Seifert fibrations patched along

parts of their boundaries [17].

Theorem 2 (cf. [2], [21]). Round functions exist on all closed 3-manifolds. Round

complexity of a closed 3-manifold does not exceed four. Transversally equisingular round

functions, as well as round Morse functions, exist only on 3-manifolds of Waldhausen

class.

The simplest way to prove the first statement is to refer to the well known result [17]

which states that any 3-manifold M 3 can be obtained from three-sphere S3 by surgery

along a certain link L ⊂ S3. This basically amounts to cutting out several solid tori Ti

(tubular neighbourhoods of the components of L) from S3 and then gluing them back to

the remaining part Y = cl(S3 −⋃Ti) with certain twists defined by diffeomorphisms of

their boundaries T 2
i . Granted this, we may start by taking a standard round function F

on S3 (“height-Hopf”) and then properly modify it on the interiors of deleted solid tori to
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obtain a round function on M3 with critical loops coinciding with the core circles of solid

tori Ti. To this end it is sufficient to be able to extend a given function with non-vanishing

gradient on the boundary of a solid torus T to the whole of T so that the critical set of

extension coincides with the core circle. Existence of such an extension on each meridian

disk follows from the key technical result of [29] (Theorem 2.7) which we call “Takens

trick” for short. The fact that those extensions can be done in such way that one obtains

a smooth function on the whole solid torus, is merely an evident “parametrized version of

Takens trick” (cf. [6]). In fact, in the case of solid torus existence of the desired extension

can also be proven by an elementary direct argument in the spirit of [6].

Furthermore, we notice that another possible way of dealing with 3-manifolds is based

on the fact that each 3-manifold is representable as the union of several solid tori glued

along parts of their boundaries [17]. Actually, the above reasoning can be performed in

terms of unions of solid tori (cf. [16], [10]). Moreover, according to [12], any 3-manifold

M3 can be obtained by gluing together not more than four solid tori. Since the critical

loops of the function constructed by such an extension procedure coincide with the core

circles of those solid tori, we conclude that one can always construct a round function

with no more than four critical loops, hence the round complexity of M 3 does not in fact

exceed four.

The statement about transversally equisingular round functions is reduced to the

particular case of round Morse functions by a procedure of “round morsification” which

amounts to saying that each equisingular round function can be approximated by round

Morse functions [24]. The statement about round Morse functions follows from the results

of [24]. Indeed, in [24] it was shown that a 3-manifold belongs to Waldhausen class if and

only if it admits so-called round handle decompositions introduced in [1]. The desired

conclusion follows by noticing that, as was established in [23], existence of a round handle

decomposition is equivalent to existence of a round Morse function.

Remark 1. Other instances of application of a “parametrized version of Takens trick”

may be found in [6]. We emphasize that results of [6] cannot be automatically applied in

our case because they were obtained with the assumption that critical submanifolds are

simply connected.

Two important general conclusions which one may derive from the above results

are that, first, degenerate round functions are inevitable outside Waldhausen class, and,

second, an arbitrary round function not always can be approximated by round Morse

functions. In our opinion this provides additional motivation for not restricting one’s

considerations to round Morse functions. The papers [12], [13], [14] which contain de-

velopments in this spirit and refer to some results outlined in our short note [21], also

witness in favour of usefulness of the above setting.

4. Round category and cup-length. In higher dimensions, there is already little

hope to succeed in studying round functions by purely geometric means so one has to

develop some suitable topological tools. We introduce below two relevant notions, round

category and round cup-length, and present analogues of the two basic inequalities of

Lusternik-Schnirelmann theory (Propositions 4 and 5). Similar notions and results can
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be found in [2] and [20] but actually they are just versions of a general discussion in [4].

We compute these invariants in some cases of interest, including closed surfaces and

certain 3-manifolds. Combined with results of Section 3, this proves existence of exact

round functions on closed surfaces and certain connected sums of Seifert fibrations.

Recall that a subset A ⊂ X of a topological space X is called T -categorical if the

inclusion map i : A→ X may be factored through the circle T up to homotopy [4], that

is, there exist continuous maps φ : A → T and ψ : T → X such that ψφ is homotopic

to i.

Definition 5 (cf. [4], [2], [20]). Round category TcatX of a connected paracompact

space X is defined as the minimal possible cardinality of coverings of X by T -categorical

closed subsets. A round function on manifold M is called an exact round function if the

number of its critical loops is equal to TcatM .

This is just a special case of the general definition from [4] so we may use results

from [4]. In particular, from the discussion in [4] it follows that, for any closed manifold M

which is not homeomorphic to S1, one has inequalities: 2 ≤ TcatM ≤ catM ≤ dimM+1.

In particular, it follows that, for any n ≥ 2, TcatSn = 2.

Proposition 4. For a closed manifold M , one has TcatM ≤ rocM .

This follows from a more general statement found in [4] (Theorem 2.3) so we omit the

proof. It is now easy to verify that Theorem 1 enables one to compute round category

for closed surfaces and yields examples of exact round functions.

Corollary 2. Exact round functions exist on all surfaces except two-torus and Klein

bottle.

For evident reasons, it is tempting to compare round category of a circle bundle with

the usual Lusternik-Schnirelmann category of its base. It may be proven that for a circle

bundle E over a closed surface M , one always has TcatE = catM (this is actually a

direct consequence of our Theorem 3 in the next section, as the reader can easily verify).

There is little hope that the same holds if the base is an arbitrary CW-complex but there

is good evidence that this is true for direct products with the circle.

Problem 3. Prove that Tcat(X × S1) = catX if X is an arbitrary two-dimensional

CW-complex.

It seems that in higher dimensions this equality cannot hold for all smooth manifolds,

so looking for a corresponding counter-example might be a reasonable enterprise. In

general, computation of round category in higher-dimensional cases cannot usually be

done by purely geometric considerations like the ones used in the proofs of Theorems 1

and 2. Some tools from algebraic topology are helpful here and we borrow one of them

from [4].

Definition 6 ([4]). Round cup-length Tcl(X) of a topological space X is defined as

the nilpotency index [18] of the subring H∗T (X,Z) equal to the intersection of all kernels

of induced mappings F ∗ : H∗(X,Z) → Z, where F : T → X runs over all continuous

mappings of the circle T into X.
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Proposition 5. For any CW-complex X, one has Tcl(X) + 1 ≤ TcatX.

As in the case of Proposition 4, the proof is obtained by a simple modification of the

proof of a similar statement in [4] (Proposition 3.1) and is therefore omitted. This result

enables one to compute the round category in some higher-dimensional cases. We only

present two results of this kind which illustrate some general phenomena exhibited by

these invariants.

Proposition 6. rocS5 = 3.

Since it is easy to construct a round function with three critical loops on S5 from

fibration S5 → CP2, it is sufficient to show that S5 admits no round functions with just

two critical loops. The latter fact can be proven by analyzing possible topological types

of unions of two copies of S1×D4 glued along some diffeomorphism of their boundaries.

Namely, it is not difficult to show using van Kampen’s theorem that the result of such

gluing can never have the homotopy type of S5.

Proposition 7. rocTn = TcatTn = n.

This follows by first showing that TcatT n ≥ n and then constructing a round function

with n critical loops. An elementary examination of cup-products in H∗(Tn) shows that

Tcl(Tn) = n− 1 (cf. [4]), and it is also easy to obtain a desired function on T n. Indeed,

it is well known that catTn−1 = n [18] and one easily shows by induction that a function

with exactly n isolated critical points exists on T n−1.

Thus exact round functions exist on all tori, while S5 admits no exact round functions.

Hence the inequality in Proposition 4 cannot be substituted by equality and of course the

same refers to the inequality in Proposition 5. Nevertheless, we know many cases when it

is possible to prove that one or both of these equalities take place, so this issue deserves

further investigation.

Remark 2. It is also easy to prove that, for all n ≥ 3, rocS2n−1 ≥ 3 by a similar

topological analysis of unions of two copies of S1×D2n−2. Actually, one can even compute

the round complexity in question and show that, for all n ≥ 2, rocS2n−1 = n. We do

not make here any attempts to describe the proof, since the argument which we possess,

relies on results of Conley index theory which do not seem appropriate to be discussed

here.

5. Minimal round functions on 3-manifolds. In order to formulate the last main

result, we need some notation and conventions. For brevity, we only discuss orientable

3-manifolds.

The symbol # will always denote the connected sum of two closed 3-manifolds. By Bj
we denote a copy of the product S1 × S2 and by B = #Bj an arbitrary finite connected

sum of such products. By Lj or simply L we denote any lens space with a non-trivial

finite fundamental group. Finally, let Sf(3) denote any Seifert fibration [17] with no more

than three exceptional fibres.

Theorem 3. Let M be an orientable compact closed 3-manifold. If rocM is equal

to two, then M is homeomorphic to a lens space. If rocM is equal to three, then M is
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homeomorphic to one of the manifolds of the following type:

L#B,L1#L2, L1#L2#B,L1#L2#L3, L1#L2#L3#B, Sf(3), Sf(3)#B.

From this result it follows, in particular, that the upper bound four for round category

of 3-manifolds established in Theorem 2, is exact.

Corollary 3. There exist 3-manifolds M with rocM = 4 and such examples can be

found within the Waldhausen class.

Remark 3. Theorem 3 enables one to compute the round complexity for many

3-manifolds and may be considered as an analogue of Theorem 3.3 from [29]. Despite

apparent similarity of formulations of these two results, their proofs use essentially differ-

ent techniques. In particular, we make no use of so-called fillings [29] playing the crucial

role in Takens’ approach.

The proof of Theorem 3 makes an essential use of the existing comprehensive struc-

tural theory of 3-manifolds [17]. The crucial ingredient is an analysis of possible home-

omorphy types of unions of several solid tori in the spirit of [16]. First, applying an

appropriate modification of Morse theory we show that a manifold with the round com-

plexity not exceeding three is representable as a union of two or three solid tori appearing

as suitable tubular neighbourhoods of critical loops. Results of [16] actually contain the

topological classification for certain types of unions of two solid tori, and with some ad-

ditional effort we are able to show that they are applicable in our situation. It remains

to extend the classification to unions of three solid tori, which is done in an analogous

way by making proper use of results of [10].

Remark 4. A straightforward attempt to prove that in situation of Theorem 3, a

manifold M is actually diffeomorphic to one of the manifolds in these lists, meets some

serious difficulties typical for low-dimensional differential topology. The situation here is

analogous with [29] since availability of classification of 3-manifolds M with F.(M) = 2

depends on validity of the Poincaré conjecture. If, as the recent results of G. Perelman [25]

enable one to hope, the Poincaré conjecture appears true, this will also simplify some of

the issues related to round category and make our “caveat” unnecessary.

Thus it turns out that the round category is more hard to compute than the round

complexity. Nevertheless, Theorem 3 apparently computes the round category of any

3-manifold M with rocM ≤ 3. It is also possible to develop explicit constructions of

minimal round functions on many 3-manifolds from the above lists and obtain some

information on the transversal behaviour of resulting functions along their critical loops.

Note that one should indeed check existence of the desired round functions on

3-manifolds from the above lists, since the latters are only homeomorphic to 3-manifolds

on which the existence of a minimal round function is granted, and we do not have a proof

of the fact that rocM is a topological invariant. We construct desired round functions

by using an extension of surgery applied in the proof of Theorem 1. Such surgery enables

one, in particular, to fuse two extremal loops of different types (a “max-min pair”) lying

on the same critical level in such a way that the result is again a round function with

only two exceptional points on the corresponding critical loop. This leads to an induc-
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tive construction of round functions on 3-manifolds from our lists and yields exact round

functions on some of them but the results are not yet complete.

Proposition 8. All 3-manifolds from the above lists possess almost Morse round

functions.

One can prove this by checking that our surgery produces an almost Morse round

function on a connected sum of two 3-manifolds from a pair of almost Morse round

functions on summands.

Remark 5. We want to emphasize that existence of exact round functions on the

above 3-manifolds cannot be discussed since we have not yet computed their round cat-

egories. Moreover, even their round complexities should be computed by a separate ar-

gument since we do not know if round complexity is a topological invariant (from the

definition it only follows that round complexity is an invariant of diffeomorphic type).

Thus it remains unclear if exact round functions exist on all 3-manifolds. The latter

fact would be established, if the following problem has positive solution.

Problem 4. Prove that for a compact closed 3-manifold M , TcatM = 3 if and only

if rocM = 3.

As a natural first step, one should of course try to compute round categories for

3-manifolds in our lists. It is quite simple to see that the 3-manifolds with round com-

plexity equal to two, have the round category also equal to two. We have checked that the

round category is equal to three for some manifolds from our second list, but we do not

see any “a priori” reason why the same should hold in remaining cases so the whole issue

remains open. In general, round category is difficult to compute and the situation here

seems much more complicated than with the classical Lusternik-Schnirelmann category.

For example, the Lusternik-Schnirelmann category of a 3-manifold can be read off its

fundamental group [11], but we are not aware of any results of such type for the round

category.

In order to keep the exposition within a reasonable length we consciously omitted

some closely related results and topics. In particular, most of our results have natural

generalizations for low-dimensional ∂-manifolds and some other types of stratified spaces.

Another promising line of development is related with functions on manifolds endowed

with codimension-one foliations [7] (cf. also [5]). Moreover, some aspects of the discussion

above fit into a more general context of round mappings , i.e., mappings with smooth

one-dimensional singular sets. We postpone discussion of those topics for forthcoming

publications.
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