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Abstract. In this paper the Nijenhuis tensor characteristic distributions on a non-integrable
four-dimensional almost complex manifold is investigated for integrability, singularities and
equivalence.

1. Introduction. For a non-integrable four-dimensional almost complex manifold
we will canonically define a distribution IT? by the Nijenhuis tensor N;. In Section 2 we
complete the description [K1] of invariants of an almost complex structure in dimension
four, using this distribution. In Sections 3-4 we describe singularities of II12. We show
they are standard if our field of planes is considered as a distribution, but they become
quite specific if it is considered as a differential system.

In Sections 5-6 we study moduli and hyperbolicity of the germ of a neighborhood of a
pseudoholomorphic curve. Section 7 is devoted to a geometric meaning of the integrability
of the Nijenhuis tensor characteristic distribution IT? and its relation to a question of
V. Arnold.

In [HH] Hirzebruch and Hopf proved the following topological result: If a 4-dimensional
manifolds admits a rank 2 distribution, it admits an almost complex structure as well.
Moreover if the manifold admits two almost complex structures, defining opposite orien-
tations, then it admits a rank 2 distribution.

We associate a rank 2 distribution to a non-integrable almost complex structure,
realizing the above topological correspondence (to one side) canonically on the differen-
tial level. Note that any almost complex structure on a 4-dimensional manifold can be
perturbed to be non-integrable outside a discrete set.
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2. Local classification of almost complex structures in dimension 4. Let
(M, J € Aut(TM)) be an almost complex manifold of dimension 4, J? = —1. Its Nijenhuis
tensor is the following (2, 1)-tensor

(1) Ny e PT*M ®TM, Nj(&n)=I[JE In— J[JE 0] — JE In] — [£,].

Integrability of J is expressed via it as Ny = 0 ([NW]).

This tensor satisfies the property N;(J¢,n) = Ny(&, Jn) = —JN;(€,n) and so can
be considered as an antilinear map Ny : A2C? — C?, C? = (T,M*,J). The image is
invariant under J and if N # 0 it is a complex line C C C2.

Thus in the domain where the structure J is non-integrable a canonical distribution
is obtained:

DEFINITION 1. We call 12 = Im N; C TM the Nijenhuis tensor characteristic dis-
tribution on a 4-dimensional almost complex manifold (M4, .J).

This distribution IT? is in general situation non-integrable. Therefore it has a non-
trivial derivative II> = OII2, which is defined as the differential system with C°°(M)-
module of sections Pz = C*°(II?) generated by the self-commutator of the submodule
Py = C®°(I1%) C D(M): P3 = [P, Pa]. II is not a distribution everywhere and its
singularities form a stratified submanifold %% of codim = 2.

The distribution II* on M \ ¥? is generically non-integrable, so that OII* = T'M (or
[P2, P3] = D(M)) outside a stratified submanifold Y32 of codim = 2.

If x ¢ % then 112 C II2 has a transversal measure. In fact since the J-antilinear
isomorphism Nj(-,£3) : 112 — 12 is orientation reversing, there exist vectors &1, &p € 112,
& € I3\ 112 such that Nj(&1,63) = &1, Ny(€2,&3) = —&. These &1, &, are defined up
to multiplication by a constant, while £3 (mod I12) is defined up to multiplication by 1.
Therefore 113 /112 is normed. By a similar reason T, M /I3 is normed outside %% via the
vector £4 = J&s.

Note that IT2 /T2 is oriented. Actually [¢1,&] (modII2) depends only on the values
of £1,&; at the point z. It is a vector f&3 (modII12) for some f. So if we require & = J&;
then &3 can be chosen so that f > 0. This produces a coorientation on I12 C II2 and then
via J a coorientation on II2 C T, M.

Moreover the requirement f = 1 determines canonically vector field &; (still however
up to £1) and hence & = J&;. Then we set {5 = [£1,&2] and & = JE&s. So the pair
(£1,&2) is defined canonically up to a sign and the pair (£3,&,) is absolutely canonical.
The following statement generalizes Theorem 7 [K1]:

THEOREM 1. Let an almost complex structure J be of general position. Then at a
generic point x € M* the canonical frame (£1,&s,€3,€4) is defined. It restores uniquely
the almost complex operator J and the tensor Nj by the tables:

[N &6 Te&] & | & |
& &

1 0 0 &1 —&o
&2 —&1 &2 0 0 —&o —&1
&3 &4 &3 —&1 &2 0 0

&4 —&3 a4 &2 &1 0 0
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Note that reducing a geometric structure to a frame ({e}-structure) solves completely
the equivalence problem. The idea is as follows. Consider the moduli of the problem, i.e.
functions cék given by the formula [£;, &) = > cﬁkgi. Denote by A= {cék} the space of all
invariants and by ® : M — A the “momentum map” z +— {c;k(x)} Then two equivalent
structures have the same images and the equivalence follows. See [S] for more details.

3. Singularities of a Nijenhuis tensor characteristic distribution. A distri-
bution V' = V; is called completely non-holonomic if one of its successive derivatives
V; = 0V;_1 equals the whole tangent bundle T'M and the minimal such ¢ = r is called
the degree of non-holonomy (can vary from point to point). The growth vector of a
distribution at a point x € M is the sequence of the dimensions (rk, Vi,...,1ks V,(4)).

Generically a Nijenhuis tensor characteristic distribution is completely non-holonomic
outside a discrete subset in M. In an open dense set the growth vector is (2, 3,4). Then
it is an Engel distribution, which has the following local normal form ([E]):

I1? = (&1 = 05, & = 04 — 2302 — 1201); 0; := 0/0x;.

Locally this IT? can be realized as a Nijenhuis tensor characteristic distribution ([K2]).
In fact, consider two transversal symmetries of the distribution: 77 = 01, 72 = 0o — 2401
Define the almost complex structure by the formula

(2) J& = @2, Jm = np; ¢ # 0.
Then one easily checks that Im N; = II? whenever (9, 0)* + (0y,¢)? # 0.
Moreover the following statement holds:

PROPOSITION 2. Let I be an analytic distribution of rank 2 in R:. Then it can be
locally realized as a Nijenhuis tensor characteristic distribution.

Proof. Let T2 be generated by & = 05 and & = 04+ h101 4+ hoOa. A pair of generators
can always be chosen in such a form. Consider &, as a vector field in R? (1,22, x4) depend-
ing on a parameter x3. It has two independent symmetries 01,72 € D(R3): [n;, 2] = 0.
Let us differentiate these fields by the parameter: dsn; = [03,1;] = af n; + bi&a.

Define the almost complex structure by the formula

J& = &, Jm = am + P B0 #0.
The condition Im N; = II? is equivalent to the system
1 2
060+ a1+ ?) - afas Tt adas - a1+ o)
©0e, 3 = B0z, — g, B+ [a%aﬂ + a%(l — 042) + a3 — a%aﬂ]

and the inequality (0;, ¢ —bia—b23)% + (D, 0 — b1 1_;2 +bga)? > 0. The system is in the
Cauchy-Kovalevskaya form and so possesses a local solution. After this the inequality is
arranged to hold. =

1+ a?

PO, = ale, o —

THEOREM 3. Nijenhuis tensor characteristic distributions in the domain of non-in-
tegrability for J have the same singularities as the usual two-dimensional distributions
in R?.
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Proof. Let us first define the degeneration locus of a distribution. Introduce the partial
order on the growth vectors: (mq,...,ms) < (ni,...,n,) iff s > r and m; < n; for
i=1,...,r. Fix one growth vector I. Then the degeneration locus ¥; C M is the set of
points with the growth vector less than or equal to I. Proposition 2 (it holds formally as
well—on the jets of the structure) and the Thom transversality theorem imply that for
a typical J the sets X are nice subvarieties, stratifying the manifold M. The statement
follows. m

The generic degenerations of two-plane fields in R*, up to codimension 3, were classi-
fied by Zhitomirskii [Z]. Let us show how generic codimension 2 singularities are realized
as a Nijenhuis tensor characteristic distribution.

There are two different types of such singularities, defined by the growth vectors
I = (2,2,4) and I = (2,3, 3,4). All other growth vectors are subordinated to these two
and hence the singular set is

Y =¥2U¥%3 Y2 =%
Generically the loci 7 are smooth 2-dimensional submanifolds ([Z]), which intersect non-
transversally along a curve X1. There is also a curve ¥} C 33 separating the locus into
the elliptic/hyperbolic parts 33, .
The codimension 2 loci of I1? = (&1, &) have the following normal forms:

Z% \ E% : fl = 837 52 =04 — $3$482 - x%@l;
5 & =03, & =05 — (325 + w323) 02 — w301
22_ : & =03, &=04— $§IE452 — x301.

In each of these cases the choice n; = 01, 2 = J2 and formula (2) will lead to realization
112 = Im N;. The cases of higher degenerations are studied similarly.

4. Singularities of II = Im N; as of a differential system. As differential systems
Nijenhuis tensor characteristic distributions have singularities different from those of the
usual differential systems in R*: The rank of a Nijenhuis tensor characteristic distribution
is even and so is 2 or 0.

PROPOSITION 4. For a generic structure J the set where Ny =0 (the rank of I falls
to zero) is a discrete set X° C M*. For each point of X° there is a centered coordinate
neighborhood (x1,y1,x2,y2) around it such that the almost complex structure is given by
the formula

1+a?
146
where the functions «;, B; are of the second order of smallness at the origin.

Jc‘)ml = aiﬁxi + (]. + ﬂl)ﬁyl, Jé)yl = 8% — aif)y%, 1 =1,2,

Proof. Singularities of the differential system II = Im N; are given by the vector
equation Njy(&,n) = 0 for some J-independent vector fields &, 7, and so are generically
isolated points given by the integrability condition N; = 0.

To get the other claim recall ([K1]) that an almost complex structure can be approxi-
mated by a complex structure to the second order of smallness at the integrability points.
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Let (wi,ws2) be the corresponding complex coordinates. By a theorem of Nijenhuis and
Woolf [NW] (see also Proposition 9 below) there are two J-holomorphic foliations by
disks C'-close to the foliations {w; = const.} at the origin, i = 1,2. Let z; be a complex
coordinate on the disk of the first family passing the origin and zo—on the second. They
define the complex coordinate system (z1,22) in a neighborhood of the origin with the
required properties. m

REMARK 1. For dim M > 4 the set where N; = 0 is generically empty.

Let of, 87 be the quadratic parts of «;, 8;. Using the coordinate system from Propo-
sition 4 we calculate: 1> = Im Ny = (&1, & = J&;), where linearizations of the generators
at the origin are

ops 0as do§  0pBY 003
€o_( i 1)3x1+( i ﬂ)ayl (ﬁ

RN dry Oy + %)8” + (ﬁ B @) v2

S dxg Oy Jr1 Oy Oy Oz
and £ = Jo&? (Jp is the constant coordinate extension of J from the origin).

Thus we see that the linearization of the considered differential system is special, not as
for the usual differential systems. If we consider linear vector fields £ as linear operators,
we represent the first order approximation of IT by a two-dimensional subspace V2 C gl(4).
The condition V2 = (X1, Xs = JX;) for some J 2 = —1 characterizes admissible 2-planes
and thus linearizations. The higher order terms in &7, &> are special as well.

5. Moduli of a PH-curve neighborhood. Let C? be a pseudoholomorphic (PH-)
curve, i.e. a surface with J-invariant tangent bundle. At every point z € C we have two
J-invariant planes 7,C? and II2, which generically intersect by zero, except at a finite

number of points X, C C. The sets 3 = ¥2NC and 2, = 22N C are generically finite as
well. The arrangement of all these points

Y=3juxjux,cc
gives a (finite-dimensional) invariant of C.
For points € C \ X} we define field of directions L' = TC N II3. The integral
curves of this 1-distribution foliate the set C \ X} and in general C foliates with only

non-degenerate singular points. Denote the number of elliptic points by e(L') and the
number of hyperbolic points by h(L'). One can prove:

PROPOSITION 5. Under C'-small perturbation of the structure J the foliation L' has
minimal number of singularities: min{e(L), h(L)} = 0, max{e(L),h(L)} = |x(C)|. For
instance if C = T? we get a foliation without singularities.

Due to Section 2 the foliation L' is oriented, cooriented and has parallel and transverse
measures outside ¥’. Thus there exist canonical vector fields v; along L' and vy = Ju;
transverse to it. Consequently the curve C has a lot of dynamical invariants like winding
classes of v; and vy. Moreover, decomposing

[v1, V2] = Y101 + Y202,

we obtain two invariant (under pseudoholomorphic isomorphisms) functions 71, v2. These
together with the germs of the functions c;k from Section 2 form moduli of the C-neigh-
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borhoods germ. They solve the equivalence problem for PH-embeddings C?> — M* (of
general position).

EXAMPLE. Let M = T?(p,v) x R?(x,%) be equipped with the structure

92— 2 2
JO, =0y JO, = 2”y Dy + %aw + 20,
4+ g2 y? xy? 21
JO, = —0p; JOyp=—2—0, — =0 B, 8, .
! T e R T

Then C = {z = y = 0} is a PH-torus and the winding number of v; is p. Similarly one
shows the other considered invariants are non-trivial.

6. Hyperbolicity of a PH-curve neighborhood. In this section we consider the
case of PH-tori C = T?. We assume for simplicity that the normal bundle is topologically
trivial, though in general case the result is the same.

Recall that the Kobayashi pseudometric dj; measures the distance between points via
pseudoholomorphic disks ([Ko, KOJ]). An almost complex manifold is called Kobayashi
hyperbolic if djs is a metric. Let || - || be a norm on T'M.

PRrOPOSITION 6. Let O be a small neighborhood of a pseudoholomorphic torus
T? C (M*,J). Then the domain O\ T? is not Kobayashi-hyperbolic.

Moreover, for some constant C > 0 and any R > 0 there exists a smooth family of
PH-disks fE . Dr — O, with uniformly bounded norms ||(fE).(2)|| < C satisfying
I(FE).(0)|| = 1, that fills some smaller neighborhood O' C O of T?:

o' c | JE(Dr).

Proof. Let us take the universal covering @ ~ C x D2 of O. The torus is covered by
the entire line C — T2, Changing the structure J at infinity in @ and near the boundary
to the integrable one we glue the manifold to the product S? x S? with the line C being
glued to the first factor S7. Then the introduction of the taming symplectic product
structure w = w; @ wy yields a foliation of S? x S2 by PH-spheres S? in the homology
class of the first factor if we additionally demand that the homology class [S?] of the
first sphere-factor is symplectically indecomposable (for example, if w;(S?) = kwa(S3),
k € N). Here we use the fact that the dimension is 4: due to positivity of intersections
[M1] we actually have a foliation ([M2]).

This foliation of $2x 52 gives a family of big PH-disks on O parametrized by the radius
R of disk in C out of which the almost complex structure is changed. The estimates follow
from the Brody reparametrization lemma as in [KO]. Pulling-back we get the required
family. m

We now consider filling by pseudoholomorphic cylinders Cr = [~ R; R] x S* ¢ C\ {0},
which is topologically different from the disk-filling (Fig. 1).

PROPOSITION 7. In the statement of Proposition 6 we can change disks Dy to the
cylinders Cr and get for every R > 0 a filling family of PH-cylinders fI :Cr — O with
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uniformly bounded norms and normalization ||(f2).(0)|| = 1:

o' c|JrEcn).

Figure 1. Filling by PH-cylinders

Proof. Actually take a covering of the neighborhood O which corresponds to one cycle
of the torus. The torus is covered by the entire cylinder Co. — T2. We can change the
almost complex structure J at infinity so that it makes possible to “pinch” each end of
the cylinder. This means we perturb the structure J so that it is standard integrable
outside some Cgr, C Cs and the support is also a big cylinder Cgr, . Then we glue the ends
to the disks. This operation gives us a sphere S? instead of the cylinder Coo = R x S?.
We can also assume that neighborhoods of two cylinder ends are pinched (Fig. 2).

“Pinched”,
sphere

Figure 2. Cutting and gluing

Thus we have a neighborhood U of the sphere S3. It is foliated by PH-spheres close
to S3. Actually, we can change the structure J near the boundary of this neighborhood,
glue and get the manifold product M = 52 x S2. As before it is foliated by PH-spheres.
Thus U is foliated by PH-spheres and in the preimage they give a PH-foliation by cylin-
ders. =
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REMARK 2. Neighborhoods of PH-spheres C = S? are also non-hyperbolic and if
the normal bundle is topologically trivial can be foliated by close PH-spheres. Small
neighborhood of PH-curves of higher genus C = Sg, g > 1, are Kobayashi hyperbolic.

Moreover the above non-hyperbolicity for the cases g = 0,1 can be strengthened as
follows: Even the punctured neighborhoods O \ C are non-hyperbolic.

7. Arnold’s question. In [A2] (1993-25) Arnold asks about almost complex version
for his Floquet-type theory of elliptic curves neighborhoods ([A1]) in the spirit of the
Moser’s KAM-type theorem ([Mo]). Namely he asks if a germ of neighborhood O of a
PH-torus C = T? C (M*, J) is determined by its normal bundle N¢M.

The following result is a direct consequence of the definition:

PROPOSITION 8. If F: M* — C? is a (local) PH-surjection and the structure J is
non-integrable, then the Nijenhuis tensor characteristic distribution I1? is integrable and
1s tangent to the fibers of F'.

Thus there is a functional obstruction to the equivalence of the C-germ in M* and of
the C-germ in the normal bundle (we do not discuss here the normal bundle: If dim M = 4,
the almost complex structure on NeM can be obtained via linearization along a family
of transversal PH-disks; for the general case see [K3]). Integrability and transversality of
I12 to the torus C is a necessary, but by no means sufficient condition for the existence
of an equivalence: There are other functional moduli.

In search of a proper generalization of Arnold’s result we notice that a neighborhood
of an elliptic curve in a complex surface is foliated by half-infinite cylinders: They are
given as |z| = const. in the representation of the neighborhood as C2(z,w)/(z,w) ~
(z+2m,w) ~ (z+v, \w), where v € C\R and A € C\ {0} (see [A1] for the representation).
The hypothesis is then that for a non-integrable perturbation J of the complex structure
Jo most of the cylinders persist (as in Moser’s theory).

Let us sketch how to prove existence of one such a half-cylinder. In Proposition 7 we
have constructed a pre-compact family of finite cylinders f£ for different R. If it winds
up to the curve C (as in the holomorphic normal form with |A| # 1), then one can extract
a subsequence f(i’“ with R — oo converging to a pseudoholomorphic curve due to the
standard technique ([G, MS]). This is the required half-cylinder.

There are no tools however to complete this construction to a PH-foliation (also a
filling is problematic—a remark of V. Bangert). Note though that even if we construct
a foliation, it is not necessarily so nice as its holomorphic original. To explain this let us
notice the following fact, which is a corollary of a theorem by Nijenhuis and Woolf [NW]:

PROPOSITION 9. A small neighborhood O of a PH-curve C C M* can be foliated by
transversal PH-disks D?.

Now consider a neighborhood of a PH-curve C with topologically trivial normal bundle
and suppose we have a foliating family f, : B — O with unbounded or compact leaves
in it. Let D, ¢ € C, be the family of normal disks from Proposition 9. Then every path
7(t) on C with v(0) = ¢o, 7(1) = ¢1 gives a mapping ®, : D, — D, of shift along the
leaves of f.. For a loop v we have an automorphism of D,. Since f, is a foliation there
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is no local holonomy: ®, = id for contractible loops . Thus we can consider the map
m1(C) — Aut(Dy,).

DEFINITION 2. We call &, € Aut(D,) the monodromy map along v € 7 (C) and
@, : D,, — D,, the transport map.

For example there is no monodromy for the sphere C = $2 and each choice of local
coordinates in a normal disk D, gives coordinates for the others D.,.

Let now C = T?(27,v) and we have a foliating family f, of half-infinite cylinders.
Since every leaf B is a cylinder, there is no monodromy along one generating cycle.
Normalize it to be the cycle ¢ — ¢ 4 27. Denote by ®,, the monodromy along the other
cycle ¢ — @ +v.

Unlike the complex case, the almost complex monodromy can be non-holomorphic
mapping of the fibers: It is possible to construct examples of PH-foliations with any
prescribed monodromy &,,.

Moreover even if the monodromy is complex, the transport maps ®. : (Dy,,J) —
(Dy,,J) can be non-complex. In fact there are functional obstructions for the transports
to be complex:

THEOREM 10. Let C be a PH-curve in a 4-dimensional manifold (M,J) and let
fa : B — O be a local PH-foliating family in some neighborhood O of C. Then if all
transport maps ®~ are holomorphic, then the Nijenhuis tensor characteristic distribution
12 is integrable and is tangent to the leaves of f.

Proof. Actually this is because the foliation provides a local bundle 7 : O — D, and
so Proposition 8 applies. m

Again the integrability is not a sufficient condition: There are other moduli.

So we see that the existence of foliating PH-family with complex transports (as in the
original holomorphic case) is generically obstructed, and the obstructions are of the same
nature as for the existence of equivalence between a germ of a neighborhood of a PH-
curve C and its normal bundle (though in the first case the Nijenhuis tensor characteristic
distribution is tangent to the curve C, while in the second one it is transversal).
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