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1. Introduction. We require the following to begin.

Definition 1. Let g = (g′, g′′) be a transformation of Cn×C such that f ◦g′ = g′′◦f
for some function f on Cn. We call g a symmetry of f and we say that f is g-equivariant.

If however g′′ = id then we say that f is g-invariant and identify g with g′.

In [6] and [8] finite order symmetries of simple function singularities were found to be

related to finite complex reflection groups. To be more precise, the monodromy groups of

the symmetric singularities were shown to coincide with certain Shephard-Todd groups.

A natural extension to this work stems from asking about what information one could

obtain from Arnol′d’s parabolic singularities [1] and moreover, what role complex affine

reflection groups might play for these particular unimodal singularities.

2. Formulation. In this paper we only examine representatives of the J10 class of

singularities

J10 : x3 + pxy4 + qy6, 4p3 + 27q2 6= 0

where p, q ∈ C. One of the two parameters here can be normalized to 1. The zero level

of any representative f from this class consists of three distinct parabolas and hence

one can write f = (x + αy2)(x + βy2)(x + γy2), where α, β, γ ∈ C and chosen so that

α+ β + γ = 0.

Now consider a general quasihomogeneous diffeomorphism

g′ :

{
x 7→ ax+ by2

y 7→ cy

where a, b, c ∈ C, ac 6= 0. Here the pair of maps g′, g′′ constitute a symmetry if and only if

f(g′(x, y)) = g′′(f(x, y)). The existence of such a symmetry implies that g′ must permute
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the parabolas. Indeed, under the prescribed f and g′ we see that g′′ ◦ f = a3f . These

permutations can happen in one of three ways: (I) each parabola is sent back to itself,

(II) a pair of parabolas swop and, (III) all 3 parabolas swop. Equating the coefficients of

x2y2 results in finding b = 0, unanimous for all three options. On closer examination one

can reduce g′ and f to more convenient and simplified forms:

(I) f = x3 + pxy4 + y6, g′ :

{
x 7→ c2x

y 7→ cy

(II) f = x3 + xy4, g′ :

{
x 7→ −c2x
y 7→ cy

(III) f = x3 + y6, g′ :

{
x 7→ ε3c

2x

y 7→ cy

where p = αβ+βγ+αγ
(αβγ)2/3 is the modulus and ε3 is a primitive third root of unity. The

simplified forms of f shall henceforth be referred to as stems.

3. Classification. We anticipate that Popov groups [10]—complex affine reflection

groups—can be constructed from the monodromy of smooth Milnor fibres obtained from

g-equivariant deformations of the three stems described above. However, as in [6]–[8],

we restrict ourselves to smoothable symmetries of g (below) to ensure straightforward

computation of the intersection forms on the Milnor fibres.

Definition 2. A symmetry g of f is called smoothable if there exists a g-equivariant

deformation germ ft of f , f0 = f , t ∈ C, such that the curve ft = 0 is smooth for all

t 6= 0.

Proposition 1. If a symmetry g of f is smoothable then g must be a symmetry of

at least one of the functions 1, x, or y.

The condition above is necessary since if none of 1, x or y is in the deformation then

no constant term will appear for a fixed t 6= 0 in either ft = 0, ∂ft
∂x = 0 or ∂ft

∂y = 0 (we

keep in mind that g′, in (I)–(III) above, acts by multiplying monomials by individual

constants). In these cases the origin will be a singular point thus implying that ft = 0 is

not smooth.

Notice that if f is g-invariant then g is always smoothable: just set ft = f − t in the

above.

With the prescribed function f and transformation g′ from the previous section,

g = (g′, g′′) is a symmetry of 1, x or y if and only if g′′(1) = 1, g′′(x) = ax or g′′(y) = cy

respectively, that is a3 = 1, a, c. Taking each in turn gives rise to the explicit forms

for our symmetries. Symmetries that are powers of each other correspond to the same

overall group action. Taking one representative symmetry for each group leaves us with

19 different cases. These are listed in our main result.

Theorem 1. The complete list of finite cyclic symmetry groups of any member of the

J10 family, for which the conclusion of Proposition 1 holds, is given in Tables 1–3.

In the Tables, εk = e2πi/k.
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Case 1 2 3 4 5 6

g :



x

y

f


 7→



x

y

f





ε3x

ε6y

f





ε3x

ε23y

f






x

−y
f





−x
iy

−f





ε25x

ε5y

ε5f




Action of g id Z6−inv Z3−inv Z2−inv Z4−equ Z5−equ

Table 1. f = x3 + pxy4 + y6, arbitrary p

Case 7 8 9 10 11

g :



x

y

f


 7→



ε23x

ε12y

f





x

iy

f





−x
y

−f





−x
−y
−f





ε710x

ε10y

ε10f




Action of g Z12−inv Z4−inv Z2−equ Z2−equ Z10−equ

Table 2. f = x3 + xy4

Case 12 13 14 15

g :



x

y

f


 7→



ε3x

y

f





ε23x

ε6y

f






x

ε3y

f





ε3x

−y
f




Action of g Z3−inv Z6−inv Z3−inv Z6−inv

Case 16 17 18 19

g :



x

y

f


 7→



ε3x

ε3y

f






x

ε6y

f





−x
ε12y

−f





ε15x

ε5y

ε5f




Action of g Z3−inv Z6−inv Z12−equ Z15−equ

Table 3. f = x3 + y6

4. Versal deformations. From the local ring(1) of f , the set of monomials multi-

plied by g′ by the same factor as f provides a g-equivariant miniversal deformation F

of f . We represent such deformations on diagrams below. Each case number from the

tables corresponds exactly to the diagram of the same number. Black monomials belong

to the stem f , white monomials represents a monomial in the base of the deformation, a

hatched monomial (whose coefficient is the modulus) is one that is both black and white.

(1) We take the spanning set {1, x, y, y2, y3, y4, xy, xy2, xy3, xy4} for permutations of types (I)

and (III), and {1, x, y, y2, y3, y4, y5, y6, xy, xy2} for type (II).
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Case 1

Case 3

Case 5

Case 7

Case 9

Case 2

Case 4

Case 6

Case 8

Case 10

����
����

����
����

	

��


�
�
����

��

��
��

��
��

�� ��
��� 

!�!"

#$
%&

'( )*
+�+,

-�-.

/0
12

34

Recall from Proposition 1 the condition that 1, x or y must be in the deformation is

a necessary condition. It is not a sufficient one and so, in consequence, we may pick up

symmetries that are not smoothable. From the tables, only Case 9 is not smoothable. The

zero level of any deformation from it is reducible as it will always contain, as a factor,

the line x = 0. We therefore dismiss Case 9.

5. Interesting cases. In this section we extract cases from our remaining 18 for

which a standard construction can be applied to obtain complex affine reflection groups

on Cµ. The construction begins with a semi-definite Hermitian form on Cµ+1 (the ad-

dition of an extra variable is detailed below) whose kernel is one-dimensional. We fix a

non-zero vector v from the kernel and take the set H ⊂ Cµ+1,∗ of all the linear forms

ϕ on Cµ+1 for which ϕ(v) = δ for some fixed non-zero δ ∈ C. The duals of the Picard-
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Lefschetz operators are then affine reflections that generate a Popov group on H (details

in a forthcoming paper).

Case 11

Case 13

Case 15

Case 17

Case 19

Case 12

Case 14

Case 16

Case 18
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Before continuing we must establish a general set up. First of all, in order to switch

to the Hermitian intersection form on the homology, instead of the skew-Hermitian, we

shall consider the one-variable stabilizations: f̃ = f + z2 and F̃ = F + z2.

To incorporate the new variable z into the symmetry, we extend g to g̃ = (g̃ ′, g′′) by

setting g̃′(x, y, z) = (g′(x, y), a3/2z). In all the invariant cases, that is when a3 = 1, we

choose a3/2 = 1.

Let Ṽ be the Milnor fibre F̃∗ = 0 where F̃∗ is a generic member of the g̃-equivariant

versal family. The kernel of the intersection form on H2(Ṽ ,C) has rank 2. Since g̃′ acts
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on Ṽ and thus on its homology, we have the splitting

H2(Ṽ ,C) =
⊕

χ

Hχ, χm = 1

where m is the order of the transformation g̃′ (which coincides with the order of g̃). Here

g̃′ acts on Hχ as a multiplication by χ. The subspaces Hχ are called character subspaces.

With the above one can now begin extracting the cases that give way to the standard

affine construction mentioned earlier. Such cases are called interesting.

Definition 3. A case from the tables is interesting if

1. the dimension of the base of its g̃′-equivariant miniversal deformation is greater

than one whenever the case has no modulus, and greater than two otherwise,

2. if two different character subspaces in H2(Ṽ ,C), each of dimension at least 2, share

the kernel of the intersection form. That is, the restriction of the form to each of the two

character subspaces has a one-dimensional kernel.

Remark 1. A reason for the first requirement is that a deformation which does not

satisfy it can provide no more than one Picard-Lefschetz operator, not enough for us to

obtain an affine reflection group from (since these require at least two generators).

Let us show how we can check the splittings against condition 2 of the above definition.

For example, the character splitting of H2(Ṽ ,C) in any of the g-invariant cases of type

(I) or (III) is the same as that in the smaller g-invariant sub-family

x3 + y6 + z2 + λ

where λ ∈ C. However, this small family is much more symmetric: its members are

invariant with respect to the group Z3×Z6×Z2 generated by transformations acting on

individual variables only:

g1 : x 7→ xe2πi/3

g2 : y 7→ ye2πi/6

g3 : z 7→ −z.
Respectively we have a finer splitting H2(Ṽ ,C) =

⊕
Hχ1,χ2,χ3

where χ3
1 = χ6

2 = χ2
3 = 1,

χj 6= 1. Each of the summands here is one-dimensional, and each gj acts on such a

summand as a multiplication by χj . If g̃′ = gr1g
s
2g
t
3 where r, s, t ∈ Z, so that χ = χr1χ

s
2χ

t
3

then Hχ1,χ2,χ3
∈ Hχ (see Section 8 for an example of this splitting). We describe the

setting as a multi-character one.

This type of setup is due to Pham. His paper [9] contains the self-intersection indices of

the multi-character cycles of a Brieskorn singularity xa1
1 + . . .+xann . For such a singularity

one would have a set of the gj where j = 1, . . . , n. More notably from [9], the self-

intersection number of a multi-character cycle is a non-zero multiple of 1 − Πχj . The

values (χ1, . . . χn) for which this expression is zero correspond to the kernel elements

in the homology. For our g-invariant cases of type (I) and (III), this happens precisely

when (χ1, χ2, χ3) = (e2πi/3, e2πi/6,−1) and (e−2πi/3, e−2πi/6,−1). To satisfy the second

condition of Definition 3, we just need these two triples to give distinct χ = χr1χ
s
2χ

t
3.
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Methods similar to Pham’s can be applied to Case 8, too. This is the only case of

type (II) satisfying the first condition of Definition 3. However, we do not give the details

of the modifications involved here.

With regards to the strict equivariant cases, these can also be treated with appropriate

adjustments of Pham’s methods. Again the details are a bit too technical for our short

exposition.

Using the setups described above one can write out the homology, locate the splitting

of the J10 kernel and thus decide which cases are interesting.

Theorem 2. Cases that are interesting arise only from Tables 2 and 3. Moreover,

only symmetries 8, 10, 12–17 are interesting.

So, none of the moduli cases is interesting.

Remark 2. A more careful analysis shows that, for our singularities, condition 1

from Definition 3 follows from condition 2.

6. Dynkin diagrams. Securing the degenerate intersection forms on the Hχ sub-

spaces of all invariant interesting cases, that is, all with the exception of Case 10, give

rise a table of Dynkin diagrams (Fig. 1). The third column lists the values of χ that are

associated to the Dynkin diagrams in the second column. It is for these values of χ that

the corresponding intersection forms are degenerate.

Case Dynkin diagram χ Discriminant

type

2j
−8

4j
−4

4j
−4

4 4/(χ−1)

8 i,−i C3

3j
−3

3j
−3

3/(χ−1)
3j
−3

3/(χ−1)
3j
−3

3/(χ−1)
3j
−3

3/(χ−1)

12 ε3 A5

6j
−3

2j
−12

6

13 ε6 G2

2j
−6

2j
−6

3j
−3

3j
−3

3 3 3/(χ−1)

14 ε3 F4

3j

−6

3j 3j

−6 −3

6/(χ2
−1) 6/(1−χ2)

15 ε6 B3

2j
−6

3j
−3

2j
−6

3 3

16 ε3 −

6j
−6

6j
−6

6/(χ−1)

17 ε6 A2

. .

..

Figure 1. Dynkin diagrams for interesting invariant cases
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The conventions for the table are

1. Each node represents a generator of Hχ, or rather, a Picard-Lefschetz operator,

corresponding to a vanishing χ-cycle (constructed similar to those in [6]–[8]).

2. The order of each Picard-Lefschetz operator is written inside the node.

3. The self-intersection number of the cycle is written below each node.

4. The intersection index of two cycles is written above the edge connecting the

corresponding nodes. This number is zero for nodes with no connecting edge.

5. An inequality sign is open towards nodes corresponding to longer cycles.

6. Primitive k-th roots of unity are denoted by εk.

7. A simple edge is of weight 3, a double edge is of weight 4 and a triple edge is of

weight 6. These weights, r say, correspond to the length of a braiding relation as follows:

for r = 4, 6 the braid relation (ab)r/2 = (ba)r/2 applies where a, b are the monodromy

operators corresponding to a pair of nodes connected by an edge. Simple edges, r = 3,

have the associated braid relation aba = bab. Lastly, no edge between nodes indicates

commutativity: ab = ba.

Remark 3. The ambiguity of the convention for reading an edge e1
α e2 as either

(e1, e2) = α or (e2, e1) = α is easily fixed by the freedom in the choice of the vanishing

cycles, up to multiplication by powers of χ and reorientation. All the graphs being trees

also help at this point.

7. Weyl groups and discriminants. The study of the discriminants shows that

in all the interesting invariant cases, except for Case 16, the discriminants coincide with

the discriminants of certain Weyl groups. The Dynkin diagrams of these Weyl groups are

obtained from those in the table (Fig. 1) by erasing all the numerical information. The

Weyl groups concerned are listed in the last column of the table. We must remark that in

each of the cases the set of quasihomogeneous weights of the parameters of the g-invariant

miniversal deformation coincide, up to a common factor, with the set of degrees of basic

invariants of the Weyl group.

Returning to Case 16 one finds that for the versal family x3 + y6 + λ2

2 y
3 + λ1

3 xy
2 +λ0

the discriminant is given by λ0((λ0 + (λ3
1 − λ2

2))2 + 4λ3
1λ

2
2) = 0. The two components are

the strata D4 : {λ0 = 0} and 3A1 : {(λ0 + (λ3
1 − λ2

2))2 + 4λ3
1λ

2
2 = 0}.

D4

3A
1

λ 2

λ 0

λ 1

Figure 2. Discriminant for Case 16
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The folded Whitney umbrella 3A1 is tangent to the plane D4 along λ3
1 + λ2

2 = 0

which in the notation of Goryunov [7] corresponds to the singularity D7/Z3; squaring

the transformation of the penultimate singularity as listed in Table 1 of [7] (D7/Z6, so

with m = 3 and k = 2) gives the inverse of the transformation g̃′ for Case 16. One should

notice that a discriminant similar to the one in this case, but with an additional smooth

component λ1 = 0, has already occurred in singularity theory (see [3], p. 62).

8. An example. For illustration purposes, in ascertaining the Dynkin diagrams etc.,

we consider in some detail Case 13. All the other invariant cases are similar.

Splitting of the homology. Here f = x3+y6, F̃ = f+λ1xy
2+λ0+z2 and g̃′ is of order 6.

In terms of the Pham basis outlined in Section 5 we have g̃′ = g2
1g2 and so χ = χ2

1χ2.

Setting u = e2πi/3 and v = e2πi/6 (recall g1, g2, g3 multiply x, y and z respectively by u, v

and −1) we have representations for χ that, because g̃ is of order 6, must be a sixth root

of unity:

χ = 1 : (u)2v2, (u2)2v4

χ = v : (u)2v3, (u2)2v5

χ = v2 : (u)2v4

χ = v3 : (u)2v5, (u2)2v

χ = v4 : (u2)2v2

χ = v5 : (u)2v, (u2)2v3.

Hence we have the splitting

H2(Ṽ ,C) =
⊕

χ

Hχ, χ6 = 1,

that one can write in full as

Hχ=1 = sp{Hu,v2,−1, Hu2,v4,−1}
Hχ=v = sp{Hu,v3,−1, Hu2,v5,−1}
Hχ=v2 = sp{Hu,v4,−1}
Hχ=v3 = sp{Hu,v5,−1, Hu2,v,−1}
Hχ=v4 = sp{Hu2,v2,−1}
Hχ=v5 = sp{Hu,v,−1, Hu2,v3,−1}

where Huj ,vk,−1 is the multi-character subspace of the triple g1, g2, g3.

This case is interesting because the kernel lines, underlined above, lie one in each of

the Hχ=v and Hχ=v5 subspaces that are both of dimension 2. This is somewhat confirmed

from the derivation of the intersection matrix below.

Discriminant. Consider the miniversal family

F = x3 + y6 + λ1xy
2 + λ0.

Elementary calculations lead us to the discriminant λ0(λ3
1 + 27λ0) = 0 consisting of two

strata: {λ0 = 0} corresponding to the critical point of the D4 type at the origin, and the

cubic {λ3
1 + 27λ0 = 0} which is the 6A1 stratum, see Fig. 3.
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Vanishing cycles. So we have a D4 singularity at the origin and 6 standard Morse

singularities on a Z6 orbit out of the origin. The D4 singularity provides us with a short

cycle and the cluster of six A1 points makes up a long cycle. Such cycles are formally

defined in [6].

w

g

w

principal part

(a)

λ0

λ1

(b)

Figure 3. Case 13: (a) principal part for the critical point at the origin if λ0 = 0,

(b) discriminant.

Intersection matrix. From Goryunov’s paper [7] the self-intersection index of the short

cycle is 3(−2 +χ+χ) and by [6] the self-intersection index of the long cycle is −12. The

intersection form on Hχ for χ = e±2πi/6 is found to be
(

3(−2 + χ+ χ) 6

6 −12

)
=

( −3 6

6 −12

)

since it must be degenerate for these characters. For the remainder of the section we shall

only use these particular values of χ.

Picard-Lefschetz operators. These are complex linear reflections that generate the

monodromy group. Again from [6] and [7] respectively, we have for the short cycle,

hc1 : a 7→ a+
〈a, c1〉

3(1− χ)
c1

and for the long cycle,

hc2 : a 7→ a+
〈a, c2〉

6
c2.

In matrix form these are

hc1 :

(
χ 2

1−χ
0 1

)
, hc2 :

(
1 0

1 −1

)
.

Dynkin diagram. The Picard-Lefschetz operators h1 and h2 are of order 6 and 2

respectively and from the discriminant we see that the braid relation for these generators

(hc1hc2)3 = (hc2hc1)3 applies. Thus our Dynkin diagram is

6j
−3

2j
−12

6
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9. Last words. A sequel to this paper devoted to the remaining strict equivariant

interesting case, Case 10 (that shall be called J10/Z2 following similar notation to [8]),

and the realizations of complex affine reflection groups is in preparation. Popov groups

that arise are [G(6, 2, 2)]∗, [K3(6)] (twice), [K5], [K8], [K26]1, [K31] and [K32]. The first of

these makes its debut here, having been accidentically omitted from the tables of [10].
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