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In this paper we consider a special class of convex hypersurfaces in Euclidean space
which arise as weak solutions to some inverse problems of recovering reflectors from
scattering data. For this class of hypersurfaces we study the notion of the focal function
which, while sharing the important convexity property with the classical support function,
has the advantage of being exactly the “right tool” for such inverse problems. We also
discuss briefly the close analogy between one such inverse problem and the classical
Minkowski problem.

1. Introduction. The notion of support function plays a crucial role in many prob-
lems of convexity theory. For a compact convex subset L in Euclidean space Rn+1, n ≥ 21,
the support function is given by

h(u) = maxx∈L〈x, u〉,

where u is a point on a unit nsphere Sn centered at the origin and 〈, 〉 is the usual
inner product in Rn+1. When the support function is differentiable the closed convex
hypersurface F = ∂L can be represented as an envelope of the family of its tangent
hyperplanes given by the equations

Pu : 〈x, u〉 = h(u), x ∈ Rn+1, u ∈ Sn. (1)

If the origin O of the Cartesian coordinate system in Rn+1 is inside the convex body
bounded by F then h(u) = distance from O to the hyperplane Pu. The hypersurface F
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can be recovered explicitly from h as

r(u) = ∇h(u) + h(u)u, u ∈ Sn. (2)

Here, u is considered as a unit vector in Rn+1 and a point on Sn and ∇h is the gradient
of h in the standard metric e of Sn.

For smooth convex hypersurfaces the expression (2) defines F as the inverse of the
Gauss map F → Sn and (2) is convenient in problems in which the Gauss map is involved.
It also allows to express conveniently in terms of support function and its derivatives many
important geometric quantities, such as width, volume, principal radii of curvature and
others.

In many problems of ray tracing and geometrical optics it is necessary to consider
“reflector maps” that arise from applications of Snell’s law of reflection. The correspond-
ing inverse problems in which a surface must be determined from pre-specified scattering
properties requires solution of a system of PDE’s involving the Jacobian of the reflector
map [1, 2, 3]. For such problems it would be extremely useful to have an analogue of the
support function because then the problem of solving a system of PDE’s would be reduced
to a single PDE for an appropriate scalar function. And though the solutions to these
problems are usually sought among convex surfaces, in contrast to problems involving
the Gauss map, the classical notion of support function is not useful in these problems.

The purpose of this paper is to describe one such problem in which the required scalar
function can be constructed. The main guiding idea behind our geometric constructions
is to determine a suitable family of hypersurfaces which, similar to (1) connected with the
Gauss map, is connected with the reflector map (to be defined below). Because reflecting
properties of quadric surfaces, such as ellipsoids, paraboloids and hyperboloids are well
understood, these surfaces are natural candidates for the desired families and below we
show how families of confocal paraboloids of revolution can be used to construct reflectors
of general shape. The results presented here are based partly on our paper [4] where the
proofs in many cases were omitted. Other related results on the “reflector” problem can
be found in our papers [5, 6, 7, 8] and in papers referenced there. In contrast to these
papers, here, we emphasize the geometric aspects of the reflector map and focal function
(defined below) which plays a role analogous to the support function. Local differential
geometry of reflector surfaces has been studied also in [9, 10, 11].

2. Families of confocal paraboloids. Fix in Rn+1 a Cartesian coordinate system
with origin O and let, as before, Sn be the unit sphere centered at O. Let Ω be an
arbitrary set on Sn containing at least two distinct points; the case when Ω = Sn is not
excluded. Let p(y), y ∈ Ω, be a positive function. For a y ∈ Ω denote by P (y) a paraboloid
of revolution with focus at O and axis y. Everywhere in this paper we assume that the
axes of paraboloids are directed towards their openings. The polar radius of P (y) is given
by

ρ(m) =
p(y)

1− 〈m, y〉 , m ∈ Sn \ {y}. (3)

The number p(y) is called the focal parameter of P (y). The solid closed convex set
bounded by P (y) is denoted by B(y).
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Definition 1. Let

B =
⋂

y∈Ω

B(y), R = ∂B.

We call R a (convex ) reflector (with the light source at O).

The set B is a closed convex body with interior points and, since p > 0 on Ω, the
origin O is strictly inside B. The closed convex hypersurface R is star-shaped relative to
O. The set of closed convex reflectors with the light source at O will be denoted by R.

Let R ∈ R and let Bint be the interior of the convex body bounded by R. Let P (y)
be a paraboloid of revolution with focus at O and axis y for some y ∈ Sn. It may happen
that P (y) ∩R = ∅. However, if

Bint ∩ P (y) = ∅, while P (y) ∩R 6= ∅,

then we call P (y) a supporting paraboloid. It follows from the definition that at each point
of R there exists at least one supporting paraboloid from the family {P (y), y ∈ Ω}.

Also, since B is compact, for every y ∈ Sn there exists a paraboloid of revolution with
focus at O and axis of direction y, supporting for R. In order to see that this property is
true, consider a paraboloid of revolution with focus at O and axis y whose focal parameter
is large enough so that the convex body bounded by this paraboloid contains the body B.
Then, shrink this paraboloid homothetically until it becomes supporting for the reflector
R. Of course, if y 6∈ Ω this paraboloid is not a member of the family defined by the
function p.

For any unit vector m ∈ Sn we consider a ray originating at O in direction m. Let

ρ(m) = max{λ ≥ 0 | λm ∈ B} (4)

be the radial function of the reflector R. Consider the point r(m) = ρ(m)m on reflector
R. Let P (y) be a supporting paraboloid at r(m). It follows from the well known reflection
property of parabolas that the ray of direction m reflects off P (y) at r(m) in direction y.
If u is the exterior unit normal to the paraboloid P (y) at r(m) then, according to Snell’s
law,

y = m− 2〈m,u〉u. (5)

We associate with the reflector R a map γ : Sn → Sn by setting

γ(m) =
⋃
{y}, (6)

where y is the axis of a supporting paraboloid at r(m) and the union is taken over all
such supporting paraboloids. The map γ is, in general, multivalued. Also, it maps Sn

onto itself, since, as it was mentioned earlier, for any y ∈ Sn there exists a supporting
paraboloid with axis y. It is natural to call the map γ the reflector map and this justifies
the name reflector for the hypersurface R.

Let y ∈ Ω and P (y) be the paraboloid supporting for R at r(m) for some m ∈ Sn.
Consider the hyperplane

α(y) = {x ∈ Rn+1 | 〈x,−y〉 = p(y)}.
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Using (3), we find that

dist (r(m), α(y)) =
∣∣∣∣
p(y)〈m,−y〉
1− 〈m, y〉 − p(y)

∣∣∣∣ = ρ(m). (7)

Thus, the hyperplane α(y) is the directrix hyperplane of the paraboloid P (y) and p(y) is
the distance from the focus O to the hyperplane α(y).

A point on a reflector R is singular if at that point there exists more than one
supporting paraboloid. Since each tangent hyperplane for a supporting paraboloid at the
point of contact with R will also be a supporting hyperplane for R, any singular point on
R will also be singular in the sense of convexity theory, that is, at such a point there are
more than one supporting hyperplane for R. Consequently, by a theorem of Reidemeister
[12], section 2.2, the set of singular points on R has n-dimensional Hausdorff measure
equal zero.

Consider a special case when the set Ω consists of a finite number of distinct points,
that is, let Ω = {y1, y2, . . . , yN},N > 1, and let p1, p2, . . . , pN be positive numbers. Denote
by Pi, i = 1, 2, . . . , N, the corresponding paraboloids of revolution with the common focus
O and focal parameters p1, p2, . . . , pN and let R be the reflector defined by this family of
paraboloids. We shall refer to R as a parabolic polytope or, simply, P -polytope. For any
paraboloid P supporting for R the set P ∩ R is called a face. In general, for a reflector
R ∈ R, if P is supporting for R, a face may have any dimension from 0 to n.

We return now to the general case and consider a reflector R ∈ R. The original
function p defining R may be modified in two ways. First of all it may be extended to
the entire sphere Sn. Indeed, by one of the properties stated earlier, for any y ∈ Sn there
exists a paraboloid of revolution P (y) with axis y and focus O, supporting for R. Thus,
for y 6∈ Ω we let p(y) be the focal parameter of P (y). Further, if for some y ∈ Ω the
corresponding paraboloid P (y) is not supporting for R we replace the original value p(y)
by the focal parameter of a paraboloid homothetic to P (y) which is supporting for R.
Thus, we can always associate with R some function p(y) defined on the entire Sn and
such that each of the paraboloids P (y) defined by p(y), y ∈ Sn, is supporting. In this case
such a function p will be called a focal function of the reflector R. Note that p(y) > 0
∀y ∈ Sn, since the origin O is strictly inside the convex body B bounded by R.

An equivalent definition of the focal function of a reflector can be formulated as
follows. Let B be the convex body bounded by a reflector R as in definition 1 and p the
focal function of R. Obviously,

B =
⋂

y∈Sn
B(y), (8)

where
B(y) = {x ∈ Rn+1 | |x| − 〈x, y〉 ≤ p(y)}.

It follows that the focal function of the reflector R is given by

p(y) = maxx∈B(|x| − 〈x, y〉), y ∈ Sn. (9)

Next, we state the following useful property of confocal paraboloids [4].

Proposition 2. The intersection of two confocal paraboloids in Rn+1, n ≥ 2, consists
of at most one connected component. For confocal parabolas in R2 this statement has to
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be modified; in this case, if the parabolas do not coincide, the intersection is either empty
or consists of two points.

Proof. If the intersection has at least two connected components then each of the
paraboloids cuts off the other one a compact “cup”. We rescale one of the paraboloids ho-
mothetically with respect to the focus O so that the corresponding cup on this paraboloid
shrinks to a point. Denote this point by X. At X the paraboloids are tangent to each
other. Let u be their common unit normal at X and let m be the direction of the ray
from O to X. Then by (5) we must have

y1 = m− 2〈m,u〉u = y2,

where y1 and y2 are the unit vectors in directions of the axes of the two paraboloids.
Hence, the paraboloids must coincide. Thus, initially, prior to rescaling, the intersection
of the paraboloids consisted of at most one connected component.

The following are a few examples of simple reflectors and their focal functions.

1. The sphere Sn(c/2), c = const > 0, centered at the origin and of radius c/2 is a
reflector. It is an envelope of the family of confocal paraboloids tangent to Sn(c/2). Its
focal function p(y) = c. For a point source of light at the center O of Sn(c/2) the light
ray of direction m is reflected in direction y = −m. The reflector map in this case is
m→ −m.

2. Consider two unit vectors y1 and y2, y1 6= y2, and two confocal paraboloids of
revolution P1 = P (y1) and P2 = P (y2) with focal parameters p1 > 0 and p2 > 0,
respectively. Let ρ1(m) = p1/(1−〈m, y1〉), m ∈ Sn \ {y1}, and ρ2(m) = p2/(1−〈m, y2〉),
m ∈ Sn \ {y2}, be the polar radii of P1 and P2. Consider the set

U = {m ∈ Sn|ρ1(m) = ρ2(m)}.
By proposition 2, U has only one connected component and we have〈

y2

p2
− y1

p1
,m

〉
=

1
p2
− 1
p1
.

This implies that U is an (n− 1)-sphere in Sn. If we denote by Sn1 and Sn2 the two parts
of Sn determined by U and corresponding to P1 and P2, respectively, then the reflector
R defined by P1 and P2 is given by the polar radius

ρ(m) =
{
ρ1(m) if m ∈ Sn1 ,
ρ2(m) if m ∈ Sn2 .

To describe the focal function p in this case, consider a unit vector y ∈ Sn, y 6= y1, y2.
A paraboloid P (y) with axis y can be supporting for R only for some m̄ ∈ U . Then
p(y) = ρ(m̄)− 〈ρ(m̄)m̄, y〉. It follows from (7) that for all y for which P (y) is supporting
at ρ(m̄)m̄, dist(ρ(m̄)m̄, α(y)) = ρ(m̄).

3. Let p(y) = c + 〈ξ, y〉, y ∈ Sn, where c = const > 1 and ξ a fixed unit vector. The
reflector in this case is an ellipsoid of revolution with axis ξ given by the equation

r(y) = ξ +
c2 − 1

2(c+ 〈ξ, y〉)y.

This expression is obtained with the use of formula (11) to be established below.
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Next, we give some necessary conditions that a focal function of a reflector R ∈ R
must satisfy.

Proposition 3. Let R ∈ R be a reflector and p its focal function. Extend p to arbi-
trary vectors y ∈ Rn+1 by setting

p(y) = maxBR(|x||y| − 〈x, y〉). (10)

Then p has the following properties:

1. p(λy) = λp(y) ∀λ ≥ 0.
2. p(y + y′) ≤ p(y) + p(y′).

Corollary 4. The focal function p is the support function of a compact convex body
with the origin O strictly inside. This convex body is defined by directrix hyperplanes of
the supporting paraboloids of R.

Proof of Proposition 3. Property 1 is obvious. Property 2 follows from the inequality

|x||y + y′| − 〈x, y + y′〉 ≤ |x||y| − 〈x, y〉+ |x||y′| − 〈x, y′〉.
The corollary is the classical theorem of Minkowski [12].
In order to simplify the terminology we will refer to the convex hypersurface bounding

the convex body with the support function p as the directrix of the reflector R. It will
be denoted by D(R). Note that the convexity of p implies that the focal function is
continuous and twice differentiable almost everywhere in Rn+1.

There is some analogy between the directrix and parallel hypersurface in convexity
theory [12], p. 134. Let R ∈ R. By definition, R is star-shaped relative to the common
focus of paraboloids defining R. Therefore, the position vector of R can be represented
as r(m) = ρ(m)m,m ∈ Sn, where ρ is the radial function of the reflector R. Fix some
m ∈ Sn and let r(m) be a point on R. For any supporting paraboloid Pm(y) at r(m)
consider the vector r(m)− ρ(m)y and introduce the set

Dm(R) = r(m)−
⋃

{Pm(y)}
ρ(m)y,

where the union is taken over all paraboloids supporting for R at r(m). Obviously,

D(R) =
⋃

m∈Sn
Dm(R).

The map m→ Dm(R) is, in general, multivalued.
It will be useful to describe the geometric structure of the directrix D(R) of a reflector

when it is a P -polytope. Over an n-dimensional face fn of R (which is a piece of a
supporting paraboloid), the corresponding set on D(R) is a piece of a hyperplane, the
directrix hyperplane of that paraboloid. This hyperplane is given by the equation

〈x,−y〉 = p,

where y and p are, respectively, the axis and focal parameter of the paraboloid containing
the face fn.

A face of R of dimension n−1 is formed by the intersection of exactly two supporting
paraboloids. Let fn−1 be one such n− 1-dimensional face of R and m ∈ Sn be such that
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r(m) = ρ(m)m is in the interior (in the topology of fn−1) of fn−1. It follows from (7)
that the directrix hyperplanes for all supporting paraboloids at r(m) are all at the same
distance ρ(m) from r(m). Consequently, the part of the directrix over the point r(m) is a
portion of a circle with center at r(m) and radius ρ(m). This circle is lying in the 2-plane
containing the axes of the paraboloids forming fn−1 and orthogonal to the n − 1-plane
tangent to fn−1 at r(m). For all points which are interior of fn−1 the part of the directrix
over fn−1 is a union of circular arcs in 2-planes perpendicular to fn−1.

Similarly, for a face fn−2 of R of dimension n − 2 the corresponding part of the
directrix is a union of spherical sectors in 3-planes perpendicular to fn−2. For a face of R
which reduces to a point the corresponding part of the directrix is a sector of an n-sphere
with center at that point.

These arguments obviously apply not only to a P -polytope but to an arbitrary re-
flector from R. Consequently, it follows from preceding observations that at every point
of D(R) there is a unique supporting hyperplane. This fact and the known results on
differentiability of convex functions (see, for example, [12], pp. 30-31) imply the following

Theorem 5. The directrix D(R) of a closed convex reflector R is a convex hypersur-
face of class C1.

It would be interesting to establish sufficient conditions under which a given positive
convex function on Rn+1 is a focal function of a reflector from R. Convexity by itself is
not sufficient, as follows from the preceding theorem. Below, we give such a condition
under the additional assumption of differentiability of the given function.

Let y = y(u1, . . . , un) be a smooth parametrization of Sn and p : Sn → (0,∞),
p ∈ C1(Sn), the focal function of a reflector R ∈ R. The function p is the support
function of the directrix D(R) and the field of reflected directions determined by the
reflector R is the field of oriented inward unit normals on D(R). Then it is known ([12],
p. 40) that the position vector of D(R) is given by

d(y) = −∇p(y)− p(y)y, y ∈ Sn.
By definition of the reflector R, a point r of R with the reflected direction y is character-
ized by the property that |r| = distance from r to the supporting hyperplane on D(R)
with the inward normal y. Therefore,

r(y) = d(y) + |r(y)|y.
This implies

− r(y) = ∇p(y) + p(y)y − s(y)y, (11)

where s(y) = |∇p(y)|2+p2(y)
2p(y) . In a different way this formula was derived in [13]; see also

[9].

Proposition 6. Let R ∈ R and suppose that its focal function p ∈ C1(Sn). Then
each supporting paraboloid to R has only one common point with R.

Proof. Since the directrix D(R) is convex and its support function p ∈ C1(Sn), it
follows from the Corollary 1.7.3 in [12], p. 40, that D(R) for each y ∈ Sn has only one
point in the supporting hyperplane with normal y. On the other hand, if a supporting
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paraboloid P (y) for R is such that the set P (y)∩R contains at least two distinct points,
then such two points will produce two distinct points on D(R) at which the supporting
hyperplanes will have the common normal y, which contradicts the above cited result
in [12].

Assume now that the focal function p ∈ C2(Sn). Then (see [13])

− ∂ir = [∇ijp+ (p− s)eij ]ejk[∂ky − (1/p)∂kp y], i, j, k = 1, 2, . . . , n, (12)

where ∇ij denotes the second covariant derivative in the metric e, [eij ] is the coefficient
matrix of e, and [eij ] = [eij ]−1.

Theorem 7. Let p ∈ C2(Sn) and p > 0. Suppose that everywhere on Sn

pαα + p− s > 0, (13)

where the differentiation is performed along the arc length of any large circle of Sn and
s = |∇p|2+p2

2p . Then the map (11) defines a closed convex reflector in R of class C1.

Proof. The map (11) is an immersion if the rank of the Jacobian of (11) is n, that is,
if

det[〈∂ir, ∂jr〉] 6= 0.

The latter is true, since by (13) the matrix [∇ijp+(p−s)eij ] is positive definite everywhere
on Sn. Thus, the map (11) is an immersion.

Denote by R the hypersurface in Rn+1 defined by (11). This hypersurface is of class
C1 and the unit normal vector field u on R is given by

u = − ∇p+ py√
|∇p|2 + p2

. (14)

Since

〈r, u〉 = (1/2)
√
|∇p|2 + p2, (15)

we conclude that the normal u is in outward direction. Also, differentiating covariantly
(in the metric e) (14), we get

−∂ju = (∇jkp+ pejk)eki[(1/2)(|∇p|2 + p2)∂ip u+
√
|∇p|2 + p2 ∂iy].

The coefficients of the second fundamental form of R are given by

− 〈∂ir, ∂ju〉 = − [∇ilp+ (p− s)eil]elk(∇kjp+ pekj)√
|∇p|2 + p2

. (16)

The matrix [〈∂ir, ∂ju〉] is positive definite and therefore R is locally convex (recall that
u is the outward normal). Since R is also compact, it is convex.

To show that R satisfies the reflecting property (5) consider a ray of direction m =
r/|r| emanating from the origin O. Then,

r/|r| − 2〈r/|r|, u〉u = y.

The proof of the theorem is now complete.
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Remark. It can be seen from the proof of the theorem that for reflectors which are
strictly convex and whose focal function is twice differentiable the condition (13) is also
necessary.

3. The energy function. In this section we define the notion of the energy function
associated with the reflector map (5) and (6). But first, we state several useful properties
of the reflector map.

Let R ∈ R and ω a subset of Sn. Let

τ(ω) = {x ∈ R | ∃y ∈ ω such that P (y) is supporting for R at x}. (17)

Thus, we have a map τ : Sn → R given by y → τ(y). Since R is star-shaped relative to
the origin O, we may also consider the radial projection of τ(ω) by rays from O on Sn.

Definition 8. Let R ∈ R and ω ⊂ Sn. The visibility set V (ω) (for the reflector R)
is the radial projection of τ(ω) on Sn.

The following Theorems 9 and 16 were first stated in [4] without proofs.

Theorem 9. Let B be the σ-algebra of Borel subsets of Sn. Let R ∈ R. For any
set ω ∈ B the sets V (ω) and τ(ω) are measurable relative to the standard Lebesgue
n-dimensional measure σ on Sn and the Lebesgue n-dimensional measure µ on R, re-
spectively. In addition, σ(V (ω)) and µ(τ(ω)) are completely additive measures on B.

Proof. The proof of this theorem is divided into several lemmas. Note that because
the radial projection of R onto Sn is a homeomorphism the measure theories on R and
Sn are equivalent. Therefore, it suffices to consider only one of the cases. We will consider
the case of the map ω → V (ω), ω ∈ B.

Lemma 10. For any closed set ω ⊂ Sn the set V (ω) is closed.

Proof. Let ω ⊂ Sn be a closed set and {mi ∈ V (ω)}, i = 1, 2, . . . , a sequence
converging to some m ∈ Sn. Let r(mi) be the image of mi on R under radial projection
of Sn from O onto R. Let Pi be a supporting paraboloid at r(mi) with axes yi ∈ ω. All
of these paraboloids are confocal and for each of them the convex body Bi defined by Pi
contains the convex body B bounded by R. Consequently, any convergent subsequence of
{Pi}, i = 1, 2, . . . , converges to a paraboloid P (y) supporting at r(m). Since ω is closed,
y ∈ ω. Thus, m ∈ V (ω).

Lemma 11. Let ω1, ω2 ⊂ Sn and ω1 ∩ ω2 = ∅. Then σ(V (ω1) ∩ V (ω2)) = 0.

Proof. If m ∈ V (ω1)∩V (ω2) then at r(m) there exist at least two distinct supporting
paraboloids. That is, r(m) is a singular point on R. But the set of singular points has
measure zero on R and, consequently, the image of this set on Sn under radial projection
is also of measure zero. If, on the other hand, V (ω1) ∩ V (ω2) = ∅ the statement of the
lemma is obviously true. The lemma is proved.

Lemma 12. If

ω =
∞⋃

i=1

ωi then V (ω) =
∞⋃

i=1

V (ωi).

Consequently, if V (ωi) is measurable for each i then V (ω) is also measurable.
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Proof. If m ∈ V (ω) then at r(m) there exists a supporting paraboloid whose axis is
in ωi for some i. Hence, m ∈ ⋃∞i=1 V (ωi). Conversely, if m ∈ V (ωi) for some i then at
r(m) there exists a supporting paraboloid with axis in ωi. Therefore, m ∈ V (ω).

Lemma 13. Let ω be a subset of Sn such that V (ω) is measurable. Then V (Sn \ω) is
also measurable.

Proof. Obviously,

V (Sn \ ω) = (V (Sn) \ V (ω)) ∪ ((V (Sn \ ω) ∩ V (ω)).

But
(Sn \ ω) ∩ ω = ∅

and σ(V (Sn \ ω) ∩ V (ω)) = 0. The set V (Sn) is measurable because Sn is closed and
V (ω) is measurable by assumption. Hence, V (Sn \ω) is also measurable. This implies, in
particular, that for any open ω ⊂ Sn the set V (ω) is measurable.

Lemma 14. Let ω =
⋂∞
i=1 ωi, where V (ωi) is measurable for each i. Then V (ω) is

measurable.

Proof. Since
∞⋂

i=1

ωi = Sn \
∞⋃

i=1

(Sn \ ωi),

it follows from Lemmas 12 and 13 that V (ω) is measurable.

The first part of theorem 9 follows now from Lemmas 10–14. It remains to prove the
complete additivity. Again, we will consider only the case of σ(V (ω)).

Let ω1 and ω2 be two sets from B such that ω1∩ω2 = ∅. By Lemma 11, σ(V (ω1∩ω2)) =
0. Hence, σ(V (ω1∪ω2)) = σ(V (ω1))+σ(V (ω2)). This implies finite additivity of σ(V (ω)).

To prove complete additivity it suffices now to establish the following continuity prop-
erty: if {ωi}∞i=1 is a sequence of sets on Sn such that V (ωi) is measurable for each i,
ωi+1 ⊂ ωi, and

⋂∞
i=1 ωi = ∅, then limi→∞σ(V (ωi)) = 0. If

⋂∞
i=1 V (ωi) = ∅ the statement

is obvious. Suppose there exists m ∈ ⋂∞i=1 V (ωi). At r(m) there must exist at least two
distinct supporting paraboloids; otherwise, the condition

⋂∞
i=1 ωi = ∅ cannot be true. But

then r(m) is a singular point and the measure of such points on R is zero. Consequently,
limi→∞σ(V (ωi)) = 0. The proof of Theorem 9 is now complete.

Note that the measure σ(V (ω)), ω ∈ B, is, in general, not absolutely continuous. This
would be the case, for example, when R is a P -polytope.

Now we can introduce the “energy” function that measures the energy of the source
O transferred by a reflector R in a given set of reflected directions.

Definition 15. Let I be a non-negative integrable function on Sn and R ∈ R. The
energy of the source reflected by R in directions defined by a set ω ∈ B is the function

G(R,ω) =
∫

V (ω)
I(m)dσ(m).

Theorem 16. The function G(R,ω) is a non-negative and completely additive mea-
sure on Borel sets of Sn. Furthermore, if Ri, i = 1, 2, . . . , is a sequence of reflectors in R
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converging to a closed convex hypersurface R in the Hausdorff metric then the hypersur-
face R is also a reflector with the source O and the measures G(Ri, ω) converge weakly
to G(R,ω).

Proof. The non-negativity of G(R,ω) is obvious and the complete additivity follows
from Theorem 9.

Fix some r ∈ R and choose a sequence of points ri ∈ Ri, i = 1, 2, . . . , converging
to r as i → ∞. Let {Pi} be the corresponding sequence of supporting paraboloids at
the points ri. We can select from {Pi} a subsequence of paraboloids converging to some
paraboloid P passing through r. Since all of the paraboloids Pi, i = 1, 2, . . . , are confocal
with focus at O, the paraboloid P has the same focus. Furthermore, since Pi is supporting
for Ri, the convex set B bounded by R is contained in the convex body bounded by P .
Hence, P is supporting to R at r. Since r was an arbitrary point of R, we conclude that
at every point of R there exists a supporting paraboloid with focus at O, that is, R ∈ R.

Let γi and γ be the reflector maps for Ri and R, respectively. Let ηi and η be the sets
on Sn where the maps γi and γ are not single valued and put

β = η ∪
( ∞⋃

i=1

ηi

)
.

The sets of points on Ri and R corresponding (under radial projection) to points in ηi
and η are singular and have measure zero. Then, σ(ηi) = 0 and σ(η) = 0. Thus, σ(β) = 0.

For any function f ∈ C(Sn) we may now consider the integrals
∫

Sn
f(y)dGi(y) =

∫

V (Sn)
f(γi(m))I(m)dσ(m),

∫

Sn
f(y)dG(y) =

∫

V (Sn)
f(γ(m))I(m)dσ(m).

Note that Sn = V (Sn) and the functions f(γi(m)) and f(γ(m)) are defined everywhere on
Sn \β. Let m ∈ Sn \β. The sequence of paraboloids Pr1(m), i = 1, 2, . . . , each of which is
supporting for the corresponding Ri at the point ri(m) converges to the paraboloid Pr(m)

supporting for R at r(m) and the respective sequence of paraboloid axes yi, i = 1, 2, . . . ,
converges to the axis y of Pr(m). Therefore, fi(m)→ f(m) almost everywhere. Then,

∫

Sn
f(y)dGi(y)→

∫

Sn
f(y)dG(y)

for any f ∈ C(Sn). The theorem is proved.

Remark 1. If a reflector Rk ∈ R is a P -polytope formed by k confocal paraboloids
of revolution P1, P2, . . . , Pk, k ≥ 2, and y1, y2, . . . , yk are their respective axes, then it
is clear from the definition that the energy function in this case is zero everywhere on
Sn \ {y1, y2, . . . , yk}. More precisely, for any ω ⊂ Sn

G(Rk, ω) =
∑

yi∈ω
G(Rk, yi).

For each yi G(Rk, yi) is the weighted (with weight I) n-volume of the radial projection
on the sphere Sn of the n-dimensional face of Rk formed by the paraboloid Pi.
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Remark 2. Let R ∈ R and suppose that the reflector map (5) is a diffeomorphism
of Sn onto Sn. Assume further that the focal function of R is of class C2. Using local
formulas at the end of section 2 we obtain

m(y) = γ−1(y) = r(y)/|r(y)| = r(y)/s, (18)

V (ω) = γ−1(ω), ω ∈ B, (19)

and

G(R,ω) =
∫

V (ω)
I(m)dσ(m) =

∫

ω

I(γ−1(y))J(γ−1(y))dσ(y), ω ∈ B, (20)

where J denotes the Jacobian. The latter can be computed as

J(γ−1) =

√
det[〈∂i(r/s), ∂j(r/s)〉]√

det[eij ]
, i, j = 1, 2, . . . , n.

Using equation (12) and noting that

∂is = [∇ijp+ (p− s)eij ]ejk(1/p)∂kp, i, j, k = 1, 2, . . . , n,

we obtain

J(γ−1) =
det[Hess(p) + (p− s)e]

sndet(e)
≡M(p), (21)

where Hess(p) is the matrix of second covariant derivatives computed in the metric e.
It follows from Theorem 7 that M(p) is elliptic on smooth focal functions of reflectors
from R.

4. Generalized Minkowski problem. The classical Minkowski problem consists in
finding a closed convex hypersurface in Rn+1 such that at the point with the unit normal
u the reciprocal of the Gauss curvature is a positive function prescribed in advance on the
unit sphere Sn [14]. In the weak formulation of the problem the n-volume of a measurable
set A on the hypersurface is prescribed as a measure on the gaussian image (defined
appropriately) of A on the sphere Sn. In this section we describe a generalization of the
Minkowski problem based on the constructions in sections 2 and 3. This generalization is
motivated by a problem in geometrical optics [1, 3, 2], which is, of course, a problem in R3.
However, all considerations are valid in Rn+1 and in order not to introduce new notation
we will continue with the exposition for an arbitrary n. The purpose of this section is to
provide a brief outline of an important practical problem in which the methods described
in preceding sections have been applied successfully.

4.1. Creating a prescribed intensity pattern in the far-field. Consider a non-isotropic
point source of light O and denote by I(m) the intensity of this source in direction m,
|m| = 1. Let D be a domain on Sn, - the “input aperture”. Suppose that a light ray
emitted by the source O in direction m ∈ D is incident on some smooth, convex, and
star-shaped with respect to O surface R at some point r(m) and reflects off it in direction
y. The reflector map γ : m→ y maps the input aperture D ⊂ Sn onto some set T ⊂ Sn
called the “output aperture”; see Fig. 1, where for convenience the input aperture D

and the set of reflected directions T are shown on the same unit sphere Sn. If γ is a
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Fig. 1. Formulation of the beam shaping problem

smooth diffeomorphism then the intensity of the light reflected in direction y = γ(m) is
given by

I(m)
J(γ(m))

.

Suppose now that the domain D and a compact set T on Sn are given as well as
positive functions I(m) on D and L(y) on T . Consider the problem of finding a piece
of a closed convex hypersurface R, star-shaped relative to O, and such that the map γ

defined by R maps D̄ onto T̄ and satisfies the equation

L(y) = I(γ−1(y))|J(γ−1(y))|, y ∈ T. (22)

Note that the last equation is formulated on the output aperture T rather than on
the input aperture D. One could also set up this problem on D. For our purposes, the
formulation on T is more convenient because the geometric constructions in such setting
are more transparent and fit into the scheme in sections 2 and 3. We will refer to this
problem as the “reflector problem”; see [9].

For smooth hypersurfaces the considerations at the end of section 2 and in Remark 2
at the end of section 3 are local and we can use the formulas there to obtain an equation
of the reflector problem. Thus, if p is a smooth positive function on the set T and (11)
defines a smooth hypersurface with non-degenerate reflector map γ, then the equation
(22) becomes

L(y) = I(p,∇p)M(p) on T . (23)

If the equation (23) can be solved, then the reflector can be recovered as the map (11).
If it is also a piece of a smooth convex hypersurface then it is the required solution of
the reflector problem. The map (11) plays here the role of a generalized envelope in the
sense defined in [15, 16], and it is analogous to the map (2).

4.2. Weak formulation of the reflector problem. In the weak formulation of the reflec-
tor problem the reflector R and a weak solution are defined by considering closed convex
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reflectors as defined in section 2. That is, R is not assumed smooth and the reflector map
γ is defined by (5) and (6).

It is convenient to assume that the given function I defined on the input aperture D
is extended to the entire sphere Sn by setting it equal to zero on Sn \D. In order not to
introduce more notation we will keep the same notation I.

We also assume that instead of the given function L on T we are given a non-negative
completely additive measure F defined on all Borel subsets of Sn. A closed convex reflector
R ∈ R is a weak solution of the reflector problem (in the weak formulation) if

G(R,ω) = F (ω) for any Borel set ω ⊂ Sn. (24)

Theorem 17. A weak solution to the reflector problem exists if and only if∫

Sn
I(m)dσ(m) = F (Sn). (25)

Two solutions may differ only by a homothetic transformation relative to O.

The existence part was established in [4] in the case where the measure

F (ω) =
∫

ω

L(y)dσ(y)

for some non-negative integrable L on Sn (if L is defined only on a subset T of Sn, it
is extended to the entire Sn by setting it equal to zero on Sn \ T ), but the proof in the
general case is essentially the same.

In [4] it was shown that the weak solution to the reflector problem can be obtained as
a limit of a sequence of “discrete” problems that can be described as follows. We consider
the same source O with intensity I(m) and approximate the measure F by a sequence of
discrete measures

Fk =
k∑

i=1

fiδ(yi), fi > 0,

concentrated at some distinct points y1, . . . , yk ∈ Sn. The “discrete” version of the equa-
tion (24) consists of constructing a P -polytope Rk ∈ R defined by a finite number of
confocal paraboloids which reflect the incident rays in directions y1, · · · , yk in such a way
that for each i = 1, . . . , k G(Rk, yi) = fi. Further details can be found in [4] and [8]

The weak solution to the reflector problem with a given input and output apertures
which are sub-domains of Sn is obtained by finding a closed convex reflector and then
deleting from it the part which projects radially onto Sn \ D̄. Of course, for physical
reasons it is natural to require that D̄ ∩ T̄ = ∅.

Uniqueness of the weak solution was established in [4] for the case when reflectors are
convex P -polytopes. The general case is considered in [17] and by a different method in
[18]. Regularity of solutions was studied in [17] and [19].
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