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Abstract. Global existence of solutions for equations describing a motion of magnetohydrody-
namic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain
we have an electromagnetic field which is generated by some currents located on a fixed bound-
ary. We have proved that the domain occupied by the fluid remains close to the initial domain
for all time.

1. Introduction. In this paper we prove the existence of global solution to equations
describing a motion of magnetohydrodynamic compresible fluid in a domain €, C R3
bounded by a free surface S;. In a domain D, C R3 which is exterior to ; we have a gas
under a constant pressure pg. Moreover in the domain D; we have an electromagnetic
field generated by some currents located on a fixed boundary B of D;.

In the domain €2; the motion is described by the following problem

1
2

. 1 1 H . T
o(vy +v - Vo) —divT(v,p) — 1 H‘VH‘HHVT =f in Q°,

ot +div(gv) =0 in QF,
1 1 - 1.1
u1 Hy = —rot | in QF, (L)
1 1 1 -~
rot H = o1(E +pv X H) in QF,
1 -
div(u1 H) =0 in QF,
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where Q7 = Uo<i<r ¢ x {t}, v = v(x,1) is the velocity of the fluid, p = p(p) the

1
pressure, o = o(x,t) the density, H = H(x,t) is the magnetic field, f = f(x,t) the
external force field per unit mass, 1 the constant magnetic permeability, o the constant

1 1
electric conductivity, F = E(x,t) the electric field,
T(v,p) = D(v) — pI (1.2)
is the stress tensor, where by
ID)(’U) = {,u(é)zivj + ijvi) + (I/ — u)éijdivv}i7j21,2,3 (13)
we denote the dilatation tensor, where v, i1 are the viscosity coefficients of the fluid and
I the unit matrix.
In the domain D; occupied by dielectric (gas) we assume that there is no fluid motion

inside (v = 0). Therefore we have only the electromagnetic field described by the following
system

2 2
ps Hy = —rot E in DT,

2 2 -
rot H =09 F in DT, (1.4)
. 2 . ~T
div(ugo H)=0 in D",
where DT = J,<,<p Di x {t}.
On S; = 9Q; N D, we assume the following transmission and boundary conditions

1

1 1 H? o
T(v, p)n = —pol = HOH+m—-I|n on §

11 1 2 .
S g=— ST
UlH UQH on ’ (1-5)
1 2 -7
ETo=ETa, a=1,2 on S,
o o
n=-——- on S,
Vol

where ST = Uo<i<7 St x {t}, n is the unit outward vector to €; and normal to S;, 7o,
a = 1,2 is the tangent vector to S, ¢(x,t) = 0 describes S; at least locally.
Next we assume the boundary conditions on B
2
H=H, on B,
) (1.6)
E=FE., on B,

where H, and F, are connected by conditions

ooFn = m(aﬁ (H*TQATQ) - a"’z(H*TlAﬁ))’

#28tH*n = (87—2 (E*T1 Aﬁ) - 87'1 (E*Tz ATz ))7

A A,
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_81587'1 (H*‘rl ATQ An) - ata‘l'z (H*‘r2 ATl An) = 87'1 87'2 (E*nAn)
_ﬂ287'1 (ATQ AT3 8tH*7'1 ) - ,u287'2 (Aﬁ A7'3 atH*TQ) - 87'2 87'1 (E*nA )

where (71, 72,n) are curvilinear coordinates and A, , A.,, A,, are the Lamé coefficients of
transformation (71,72, n) — (21, x2, x3).

Finally we assume the initial conditions

Qt‘tZO = Q7 St‘t:() = S7 Dtu? = D7 (17>

Q|t=0 = Qo, V|t=0 = Vo, H [t=0 — H07 in Q7

2 2 .
H 1=0 = Ho, in D.

The aim of this paper is to prove the existence of a global-in-time solution of problem
(1.1)—(1.7) which remains for all time close to a constant state. Consider the equation

p(0) = po, (1.8)

where o € Ry, p € C3(Ry), p'(0) > 0.
Then, we introduce the following definition of the constant state.

DEFINITION 1.1. Let f = 0. Then by a constant (equilibrium) state we mean a solution
(v, 0) of problem (1.1)—(1.7) such that v = 0, ¢ = 9., Q; = Q. for ¢t > 0, where g, is a
solution of (1.8) and |Q.| = %(me\ = volQ.), where M = [, o(x,t)dz = [, 00(£)dS.

The first global existence theorems for equations describing the motion of compress-
ible fluids were proved by V. A. Solonnikov and A. Tani [10] and independently by W.
Zajaczkowski [20, 21]. Both [10] and [20, 21] are concerned with the barotropic case, but
in [20, 21] it is assumed that the pressure of the fluid has the form p = ap?, where a > 0
and =y > 1 are constants. A global existence result for the more general form of pressure,
i.e. p = p(0), has been obtained in [16]. Moreover, global existence theorems for viscous
compressible heat-conducting fluids can be found in [13, 14, 16].

To prove existence of solutions to the above problem we introduce the Lagrangian
coordinates £ € (). The Lagrangian coordinates connected with the velocity v are the
initial data for the Cauchy problem

CZ w(z,t), wp—o =& €. (1.9)
Therefore z,(£,t) = € + fo 7)dT, where

(&, ) = v(wy(&,1),1).
To introduce the Lagrangian coordinates in D; we extend v on D;. Let us denote the
extended function by v’. Then we define £ € D, by the Cauchy data to the problem

‘Z V(x,t),  ap—g=E€D. (1.10)
Therefore x,(&,t) = & + f T)dr, where v'(§,t) = v'(z (§,t),t). Then by (1.5)

Qt:{IERB:x:xU(&t), £ e},
S;={rxeR¥:2=ua,1t), £€85}.
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Since S; is determined at least locally by ¢(z,t) = 0, S is described by ¢(2,(&,1),1)t=0
= 0. Moreover, we have

Ry = nlao(6,1),1) = AT

e [

Introduce the following notation:
[ulliq = llull (@), Qe{Q.8,D1,B}, 0<IleZ,
ullypg.0r = lullL,0rwr@)y, @ €{2 S D,II, B},
p,g € [l,+x], 0<keZ,

where Q' = Q x (0, 1),

= |ullz, @, @Q€{S,D,I,B}, pecll,+oa]

2. Weak solution. Weak solutions to problem (1.1)—(1.7) we formulate in Lagrangian
coordinates.

DEFINITION 2.1. By weak solutions for problem (1.1)—(1.7) we mean functions o, H which
satisfy the integral identities

T 1 1 1
/ /(@E@HDU( @) I dédt — / / VHV,H@ — iy V, H? 9)I,dédt
0 Q
T _ 1 H2
= / / ol dedt + / / ( u1H®H+u1—I> oLy desdtl, de dt
0 Q 0 S
T T
+ / / V., plodedi — / / (P — po)uplodé.dt, (2.1)
0 Q 0 S

T
/ / <,thz/7 — [M_JVUH”(/; + l1"0throtvz/7> I,dédt
o Juo g

T o B 1 T o
7/0 /Q,ul(v x H)rot,¥I,dédt = 0—2/0 /B(nv x E )WL, dEpdt, (2.2)

where ¢, 1 are sufficiently regular, 7, is the unit outward vector normal to S or B.
In (2.1), (2.2) we use the notation A(£,t) = A(wz,(&,1),1),
2

1
Hgo=H,Hp=H, Il = 01, 9D = 92,
I=QuUD, B = M1, WD = P2,
n (2.2) v is the extension on II,
Dy (0) = {1(92,8k Ve, 05 + 02,66 Ve, 03) + (v — p)dizdive 0} j=1.2,3,
rot,v =V, X 7,
Vo, = &LfiV&, div,o =V, 1= axika&c@i, 3&. = Ve,.

Let A be the Jacobi matrix of the transformation x = z,(,t), then

t
det A = exp </ divvvd7'> =1, andif sup sup |Veo| <p
0 £eQ tel0,1)
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then 0 < ¢1(1 — put)® < det{d¢x} < co(1+ ut)?, t € [0,T], where ¢, c2 are constants and
T is sufficiently small. Moreover x;¢, = d;; + fg O, 0;(§,7)dr and &, = mgl. Then we get

t
sup |z | < 1—|—sup/ (0(¢, 1)]dt
£eq £e Jo

t t
<1+ c/ |5]|5.0dr < 1+ Vi / 1913, gdr < 1+ evVi|olls 22,00
0 0

Then sup,cq, |&| < ¢(a), where a = Vt||0]|32,2,0¢ and ¢ is an increasing positive func-
tion.
To prove the existence of a solution to the above problem we introduce Lagrangian

coordinates connected with given divergence-free function u. Moreover we linearize the

1
nonlinear terms with v in (1.1) writing them in the form «Vv and w x H. Then from
(2.1), (2.2) we get

T T 1 1 L
/ / (00+@ 4 Dy (0) D (@) ) L dEdt — / / (1 H'V H'¢ — 1V, H'? )1, dédt
0 Q 0 Q

1

/ /fsaf dfdt+/ /( u1H®H+u1HQI>nu<pI d¢sdtdé  dt
+/0 /Qvuﬁludﬁdt—/o /S(ﬁ—po)mgaludgsdt, (2.3)

T
/ / (—pH — piiV o H + ~roty Hrotyth) Ludédt+
ag
1 _ 1 [T o
/ / g (@ x H)rot, I, dédt = — / / (fig x B )pILdepdt,  (2.4)
02 Jo JB

where u, H " are given functions and moreover g is such that
0 < <0< " <. (2.5)
Similarly as in [6] we prove

THEOREM 2.1. Assume that vy € H%(Q); 9:(0) € HY(Q); 14(0) € La2(Q); fi € L2(0, T,
Iz’l(Q)), ftt S L2(_O7T,L2(Q)>,' f € LQ(O,T,H_Q(Q)) Ho S H2( ), t( ) S Hl( ),‘
H1(0) € Lo(I); Ex € Loo(0, T, HY(B)); Ewt, Heyy € Lo(0,T, Lo(B)); Hy € La(0,T
H?*(B)); H. € Ly(0,T, H*(B)), S,B € H%/?.

Then there exists T* > 0 such that for T < T* there exists a solution to problem
(1.1)-(1.7) such that v € Lo(0,T, H3(Q)) N Lo (0, T, HX()); ¥y € Loo(0,T, HX(Q)) N
Lo(0, T, H?(2)); vyt € Loo(0,T, La(2)) N Lo(0, T, HY(Q)); po € L2(0,T, H*(Q)); Pt €
La(0.T, HY(Q); pu € Lo(0,T, Lo()); H € Lo(0,T, HY(IN)) N Loo (0, T, HY(IL)); H, €

0o (0, T, HY(IT)) N Ly(0,T, H2(I1)); Hyy € Loo(0, T, Lo(I1)) N Ly (0, T, HY(IT)). Similarly
as in [5] we can prove that (T*)7(¢(0) + B8) < b, b > 0 sufficiently small, v > 0 some
constant and

)
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B = ||E*||g,2,2,Bt + ||E*t||g,2,2,3t + ||H*H§,2,2,Bt + ||E*t||§,2,2,3t + || Hete |(2),2,2,Bt
+ [ f2 |g,2,2,9t +IIf |%,2,2,Qta (2.6)
0(0) = > ([10/0(0)[} 0+ I0;HO)IZ n)- (2.7)

i+k<2

Moreover if ©(0), B are sufficiently small then we get

|i2,oo,QT + H5||§,2,2,QT + ||5t||§,2,2,QT + ||5tt||i2,2,QT

+ 5613 0.2.07 + 1Det 15 2,0.00 + 1Pell} 22,07 + 1HeNT 2 00 e + 1HIT 2 00 1

+ ||ﬁ||§,2,2,nT + ||17tt||3,2,oo,m + ||Ht||§,2,2,nT + ||ﬁtt||?,2,2,nT + || Hee |(2),2,00,HT

< ¢(p(0) + B). (2.8)

First, in Section 3, we derive differential inequality (3.62) which makes possible an

192113 2,00,00 + 1

extension of the local solution of (1.1)—(1.7) step by step from interval [0, T] to [0, 00). In
Section 4 we show the Main Theorem.

MAIN THEOREM. Assume that f = fQ vodxr = fQ 00vg - widx = 0, 1 = 1,2,3, where
i, i = 1,2,3 are defined in Lemma 5.1, H, € H*(B), H,; € H*(B), H.;y € H'(B),
Si, B e H3, (v(0), 0(0), H(0)) € N(0), p(0) < &, where £, is sufficiently small. Assume
also that a(t) < e M, where p is sufficiently large and o(t) is defined in Lemma 4.2.
Then there ezists a global solution of (1.1)-(1.7) such that (v(t), 0,(t), H(t)) € M(t),
t € Ry, where N(0) and M(t) are defined in Section 4.

3. Differential inequality. In this section we obtain a special differential inequality
which enables us to prove the global existence. In order to show the differential inequality
we consider the motion near the constant state. Let

2
Po=P—DPo, 0o=0—0 Hp=0 [f=0,

(3.1)
/ o(0)vodar = 0, / o(O)vo - pudz =0, i=1,2,3,
Q Q

where g, is introduced in Definition 1.1 and ¢;, i = 1,2, 3 are defined in Lemma 5.1.

REMARK 3.1. Integrating (1.1); over §; we get

1
2

101 H
i ovdr — / divT (v, ps)dz + p1 / ( —div(H® H) + V—)dm = fde.
dt Jq, Q Q, 2 Q

Then from (3.1) we get

1

d 1 H?
Bl gvdx+/s u1H®H7u17I ndetJrul/

1
11 H?
(div(H®H)+V )da: =0.
dt Qt Qt

2

Integrating the last equality by parts we get

/ ovdx = / 0(0)vodx = 0.
Q Q
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REMARK 3.2. Let ¢;, i = 1,2,3 are defined in Lemma 4.1. Multiplying (1.1); by ¢,
1 =1,2,3 and integrating over ); we get
1

d 1o H?
G | evede = [ an@paeode o [ (- dire fe)+ 97 ds
Qq Q

Q¢

fdx.
Then from (3.1) we get e

1 H2

d
ad - ud
7 th} ® x+/st (,ulH@H —M1— 5

1

11 H?
+,u1/ —d1v(H®H)-tpi—|—V7-<pi dx = 0.
Q
Integrating last equality by parts we get

/ ov - pidr = / 0(0)vg - pidx =0, =1,23.
Q Q

Then we get the problem

><pi -ndzxsg,

1
2

1 1 H
olve + (v- V)v] — divT(v,p,) — u1H - VH + mVT =0 in Q, te€]0,T],
0ot + div(gv) =0 in Q, tel0,7T],

1 (3.2)

11 H?
T(v,po)nt = <u1H®H+u17I>n on Sy, te€l0,T],

90|, = 000 = 00 — 0, V|, = v0, in Q.

In the sequel we shall use the following Taylor formula for p,

1
Po = (0— 0c) / P'(0e + s(0 — 0c))ds = p10o, (3.3)
0
where the function p; is positive.

LEMMA 3.1. Let v, o, be a sufficiently smooth solution of (3.2). Then
1d
57 | (e + 22 )do + ool g, < eXP(1+X0), (3.4)
2dt Jo, 0
2
+ 1210, -

Proof. Multiplying (3.2); by v, integrating over {2; and using continuity equation (3.2)s,
boundary condition (3.2)5 and (3.3) we obtain

where X, = ||v||§)Qt + 053

1d
—— | ovidr+ HEQt (v) + (v — p)||divol2 o — / p1osdivedr
2dt Jg, 2 2 fo
1 1
1 1 H2 11 H?
Qy Q Sy

2
where Egq, (v th i i1 Wiy + Vj0,) 2 da.
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In [21] it is proved that

. 1 1
LB (o) + 0= wldvolRo, > (v - gu)Ba o) for v g (+)
Next, by the continuity equation (3.2)2 we have
1d p192
— prosdivude = = — Zdx + J, 3.6
/Qt 2dt 0 (3.6)
where
7] < ellleotllf o, + I0)1%.q,) +eXT (1 + X1). (3.7)

By continuity equation (3.2)y

leatlld o, < cllvllf o, +clvllf o, lleal3 0, (3.8)

and taking into account (3.5)—(3.8) we get estimate (3.4). m
Next, we have

LEMMA 3.2. Let v, g, be a sufficiently smooth solution of (3.2). Then

1d Doo
5 . (002 + 22 ) b colluli o, + lealBo,) < clblia, + Y21+ Xa), (39)
t

where

) . t 1 1
Xo= Y (Ilaivlli,nt+||3290||i,9t)+/0 0113 0, dr+IHellF o, +IHIF o, +10]7 g, (3.10)
i+k<2

t
Y =X, 7/ [v]|3.¢, dr. (3.11)
0

Proof. Differentiating (3.2); with respect to ¢, multiplying by v; and integrating over €,
yields
1d

55 Q’Ut 2dx +

b o (v + (v = wldivedlB o, — [ proomdiveds

Qy

< YE(1+ X)),  (3.12)

where we have used boundary condition (3.2)s.
By Lemma 5.2 and (x),

el o, < c[Ea, (ve) + Y (1+Y3)). (3.13)
Finally, using continuity equation (3.2)s we get
—/Qt Doolotdivopde = 5%/ Poe 02 2edx + J, (3.14)
where
1] < elloellf o, + ool o,) + €Y (1 + Y1) (3.15)

In view of inequalities (3.12)—(3.15) and (3.8) we obtain (3.9). =
Lemmas 3.1 and 3.2 yield



EQUATIONS OF MAGNETOHYDRODYNAMIC COMPRESSIBLE FLUID 113

LEMMA 3.3. Let v, g, be a sufficiently smooth solution of (3.2). Then

1d
2dt

D1 D
/Q [Q(U2 +07) + ?Qi + %Qit dr + CO(HU”%,Qt + ||Ut||%,szt + ||Qat||(2),m)
t

< VP14 X),  (3.16)
where Xo and Y7 are given by (3.10) and (3.11), respectively.
Next, we obtain

LEMMA 3.4. Let v, g, be a sufficiently smooth solution of (3.2). Then

1d D
5 ov + =202y |dz + collveel|T q, + lloowlld0,)
2 dt Q o

< c(llvlf o, + lvellf o,) + cXoYa(1+ X3),  (3.17)
where Xo is given by (3.10) and

. 1 1
Yy = Z H@Z”Hi,m + ||Qo||§,szt + || 00+ |%,Qt + [loott |%,Qt + ||Htt||§,szt + ||H||§,Qt
L 2
+ 1He1 0, (3.18)

The above lemma can be proved in the same way as Lemmas 3.1 and 3.2. To estimate
Eq, (v41) we use here Lemma 5.3. m

In order to obtain estimates for derivatives with respect to x we rewrite problem (3.2)
in the Lagrangian coordinates. We have

1

1 1 H
00 — Vo Ty (0, pg) — p1 H -V, H + ulvv7 =0 in Q' =Qx(0,7),

0+ 0V, - 0=0 in QF,
1 (3.19)
11 2
T (5, po)y = (—M1H®H+u12>m on 57 =§x (0,T),
Z_J}t:O = Vo, é’t:O = 000 in Q.

Now, introduce a partition of unity ({€;},{¢}), @ = U, Q:. Let Q be one of the Q;, s
and ((§) = (;(§) be the corresponding function. If {2 is an interior subdomain then let ©
be a set such that w C Q and ¢(§) =1 for £ € &. Otherwise, we assume that QNS +#0,
&NS #0, o C Q. Take any 3 € ®NS = S and introduce local coordinates {y} associated
with {¢} by

Y = akl(fl - /81)7 Qg = nk(/@)a k= 17273a (32())
where {ay;} is a constant orthogonal matrix such that S is determined by the equation
ys = F(y1,y2), F € H? and

Q={y:lyl<d i=12 F)<ys<F)+d, ¥ = (y1.y2)}
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Next, we introduce v’, o', o, by

Ui(y) = @ij5(E)]e_g(yy 1=1,2:3,
2'(y) = 0(&)|e—e () 2, (y) = &'(y) — ce.

where £ = £(y) is the inverse transformation to (3.20).

Next, we introduce new variables by
s=yn =12, m=y-Fy), yed
which will be denoted by z = ®(y) (where F' € H? is an extension of F). Let
Q=0(Q)={z:]z|<d, i=1,2, 0<23<d} and S=&(S). (3.21)
Define
82) =T W) g ry 82) = BW)], gy 80(2) = 8(2) — e

Set Vi, = E1ay 2ie, Vs, )» Where x(&) = ®((€)) and y = (&) is described by (3.20).
We also introduce the following notation:

0(&) = v(§)C(&),  a(§) = a(€)C(§),  8s(&) = 25(£)C(8),
for £ € Q, QNS =0 and

9(2) = 0(2)¢(2),  8(2) = 8(2)C(2), 80 (2) = 00 (2)¢(2),
for z € 0 = ®(), QﬂS;é(Z) where ((z) = (€)|£:X*1(2)'

Using the above notation we rewrite problem (3.19) in the following form in an interior
subdomain

L1 11
éﬁit - v'uij'L'j (ﬁvﬁa) = _vva'uij(aa C) - TU’L'j(T})pO')vUjC + ﬂl(Hv H (vle)H)
=k, i=1,23,
§Ut+§vv'5:§@'vv<zk2a

where p, = ps(, Bv(ﬁag) = { Z;( )}z] 1,2,3 — { (@Vv( + T}jvvg) +
(V - N)dijﬁvvg}i,jzlﬂ,& Tﬂ(’[}apcr) ]D) (7) -1 Po = {TMJ (’U pa)}i,j:1,2,3 and ij =
gka:ja@C-

In boundary subdomains we have

11 11
0Vt — \ TZJ(’U pg) V;B;;(0,¢) — Tyij (0,p5)V,;C + 1 (HVH; — (V,;H)H)
= Zc;;i, L 1,2,3,, (3.22)
@at + @v ‘U= 77 VC = k

T(, po )t = ks,

1
1 1 72

N N N N H ~ ~ N R
where ks = B;;(0,()a+ (—M1H®H+M1 71) 1, V.= (V;);=1,2,3 and T and B indicate

that the operator V, is replaced by V.
In Lemmas 3.5-3.7 below we denote 21, 25 by 7, i.e. 7= (21, 22) and 23 by n.
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LEMMA 3.5. Let v, g, be a sufficiently smooth solution of (3.2). Then

1d P,
5, (o222 Yoo ool
< e(olfg,

o 3 3
where Xy is given by (3.10), v =377 vizl.j, 02, =D 102, -

i +lostld o, +llpolldo,) +eX3(1+ Xa), (3.23)

Proof. First, we consider the following elliptic problem

1 1 72
uV20+ vV, Vy - 0 — pyoVyd = 00 + p1 H -V, H — mv”T in Q,

div,? = div,v in €, (3.24)
1

11 H?
Ty (0, po )iy = ( 41 H®H+u12I>ﬁv on S.

Since the complementary condition to (3.24) is satisfied we can apply to problem (3.24)
the Agmon-Douglis-Nirenberg theory (see [1]). Thus, we get

1
19130 + 2wl o < clllovelld o + Idiveall; o + 177 o)
< c(lloellf o + 1divollf o + e X3 Q)1 + Xa(2)) + [17]3 0, (3.25)

where we have used that ||div, 7 — divz‘;HiQ < 5”"7“%,9, (e > 0 is sufficiently small) and

, , t 1
X2(2) = ) (Ilaﬁ\li,wrIIQ?@alli,Q)Jr/O 19113 odr + [ HII3 o- (3.26)

i+k<2

In view of (3.25) we see that in order to obtain inequality (3.23) it remains to get
appropriate estimates for ||divo||}  and for 54 o a (ov2 + Pee ng)dx. To do this we first
consider boundary subdomains. Differentiate (3. 24)1 with respect to 7, multiply the result
by @,J (J is the Jacobian of the transformation = z(z)) and integrate over 2. Hence
using the Korn inequality and equation (3.22)2 we obtain

1d

5 Q’u 2Jdz + col|o- |13 4 [é(T(ﬁ,ﬁg)ﬁ)Tﬁdez
- /Q PorV - 0, Jdz < (1|20 ]2 o + 5,17 o)

T el0l2 o+ a2 ) + eX3(Q)(1 + Xa()), (3.27)

where

t
Xa(@®) = 3 (1000l + 10k )+ [ 161 ol +IA

i+k<2

2
ZZZJ
1j5=1

(3.28)

=
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Using boundary condition (3.24)3 we have

_ / (B (5, o)) s Jdr = — / (Biy (5, )iy, 5, T
S S
= [ O3B0, 1) 0151, i
S
< el 612 o + eXE(Q), (3.29)

where to use derivative (‘9&/ % we have to apply the Fourier transform.
Next,

—/ PorVey - UrJdz = —/ PopborV - 0pJdz + J1, (3.30)
O O
where |J1| < €||177Hf ot c||pg||(2) g and
- / PosborV - Uy Jdz = Ld [ pos 02 _Jdz + Jy (3.31)
a ¢ 2dt Jo 0 "7 ’
where
ol < ellaar g + clBl2 o + eX3(). (3.32)

Taking into account (3.27), (3.29)—(3.32) and assuming that ¢ is sufficiently small we
obtain

1d ~m DPop ~2 ~ 12
3 ), (Q”T 75 for ) Jdzwaollorlg
< elloorl2 g+ cltl o + P2 ) + eXE@)(1 + Xa(@).  (333)

Now, applying the operator (i + )V, to (3.22)2, dividing the result by g, adding to
(3.22); and multiplying both sides of the result by p,; gives

(n+v) . . O Ny
5 poévzi Oc, + pfz,@Vzi O = pi@@ovzic - plpU@QovziC

+ Doghsi + 1pos(V20i — ViV - 0)

(et poa(Vi = V)T 54 & ; Y o8 )

— Poo00it — (“—;V)poévzi oV b, i=1,2,3. (3.34)
Multiplying the normal component of (3.34) by ,,.J, integrating over Q) we obtain
%% A pg@ Fpnddz + collGanll} ¢ < (€ + cd)[Tanll} o

+ellonlly o+ cllvarlly o + 1817 o + 1505 o + 1o ll5 o) + eXF(Q)(L + Xa(E), (3:35)

where d is from formula (3.21).

Now, we write (3.22); in the form

0Vt — pAY; — vV, V-0 = VP, + k3; — kei, (3.36)
where ke; = (uAD; + V.,V - 9) — (uV20; + vV, V - 0).
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Multiplying the third component of (3.36) by @sn,.J and integrating over  yields

1d

335 [, 2o Tdz + ol < (&4 i3+ cllar o+ 191

1Tl o + ”@ml”gﬁ +llpoll3 o)
+eX2(Q)(1 + Xo(Q)). (3.37)

For an interior subdomain the following estimate is obtained in the same way as (3.33)

1d 9 Dog ~
5 - (22 + P22 ) Adet callol o < lwel o + el )

+c(0lF 4 + Ipsll5.0,) + X5 () (1 + X5(9)), (3.38)
where
- ) ) 1
X(Q) = > (100l + 1025117 ) / 19113 qdr + |1 H|3 (3.39)
i+k<2

and A is the Jacobian of the transformation x = z(§).

Finally, we have

1d
2dt
where we have used (3.19);.
Going back to the old variables ¢ in estimates (3.33), (3.35), (3.37) and summing them
and (3.38) over all neighbourhoods of the partition of unity, using (3.25) and (3.40),
assuming that ¢ and d are sufficiently small and passing to the variables x we obtain
(3.23).
This completes the proof. m

(3.40)

QU€Ad§ <¢(||v

LEMMA 3.6. Let v, o, be a sufficiently smooth solution of (3.2). Then

1d P
S ovgy + ﬂ@it dz + co(||ve]3.0, + llooeli 0,)
2dt Jq,

< c(Jlvl? +veelf 0, +Ipollg.,) + cX2Ya(1+ X3),

where Xo is given by (3.10) and Yz is given by (3.18).

Proof. Differentiating problem (3.24) with respect to ¢ we get the following elliptic prob-
lem

/.LV?,’Ut + Vvvvv “ U — po’gvvéot = 0Vt + 0Vt — V(vvv’u)t v
L L e
+ <va H _v'u?) - [L(V )tv +poggQatvao +pog(vv)tgo =K; in Q,
div, vy = div, v, in €,
TU(@t;po’t)ﬁv = _(Tv)t(67po>ﬁv - Tv(ﬁ;pa)(ﬁv)t
1

1 E[Z
—1—{( M1H®H+M17I>nv} =Ky on S.
t
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By the Agmon-Douglis-Nirenberg theory (see [1]) we have the estimate
[0 < c(lELlIE o + 1521 2,5 + Idivee]lF o),

where
1K1 5 .0 + 1Kl 2,5 < cll@nells.o + [10alld .0 + IPalls o) + X2(2)Y2(2) (1 + X3(9)),
X2(£2) is given by (3.26) and

Ya(Q) = Y 110070, + 2030 + ll2ot3.0 + 1 20u - (3.41)
i+k<3
i<2
By the arguments similar to considerations from the proof of Lemma 3.5 we conclude the
proof. m
LEMMA 3.7. Let v, g, be a sufficiently smooth solution of (3.2). Then

1d P,
53 ) (et ﬂgim)dx +eollolB g, + leosl,)

< c(|lv]3 + ooz 3.0, + IPll5.q,)
+elluell3q, + cXaYa(1 + X3), (3.42)
where Xo and Yy are given by (8.10) and (3.18), respectively and

3 3
2 _ 2 2 _ 2
Vpz = Z Uizjrkﬂ Oozz = Z Qa‘zjxk'
i,5,k=1 k=1

Proof. First, we consider problem (3.24). By the Agmon-Douglis-Nirenberg theory (see
[1]) we have

0130 < c(llTeli o + 1divol o) + eXa(Q)Y2(Q)(1 + X3(Q)), (3.43)

where X5(Q2) and Y5(2) are given by (3.26) and (3.41), respectively. Thus, to obtain (3.42)
we have to estimate ||div17\|§’Q and 14 th(gUQ%m + pgg )dz. To do this consider first

1913

boundary subdomains. Differentiate (3.22); twice w1th respect to 7, multiply the result
by @.,J and integrate over (). Using the Korn inequality, continuity equation (3.22)s,
and boundary condition (3.22)3 we get

li <A~2 pa@ ~2

L4 (a2, )Jmconw < e(ldorrl? o + 52112 o)

+ (813 6 + 1002113 ) + cXa()Ya(Q)(1+ X5(2)), (3.44)
where X, () is given by (3.28) and
Yal@) = 37 19312 g + 18012 o+ 1doel2 o + loouel o

i+k<3
i<2

In the same way way we obtain the following estimate in an interior subdomain

1d . on -
5 - (28 + P2 e ) Ade + ol g < ol + el o)

+e(oll3 o + 180ell} 6 + Ipolly o) + eXa()Ya(Q)(L + X3(E),  (3.45)



EQUATIONS OF MAGNETOHYDRODYNAMIC COMPRESSIBLE FLUID 119

where X5(Q) is given by (3.39) and

Yo(@ = 37 105002 o + 2o 12 o + 2ot o + 2ol o

i+k<3
i<2

Now, we differentiate the third component of (3.34) by 7, multiply the result by gy, J
and integrate over 2. We get

1d P _ - . .
57 |, BTzt [ 0250 T < el + i1+ 0]

+ IIQUZH +pellf ) + cdllol; o + cllvzrrIIf
+cX2(Q)Y2(Q)( +X2(Q))7 (3.46)

where d is from formula (3.21).
In the same way we obtain

1d P 8 - .
37 | BTt [ s < gl + (1R

—waﬁﬁ+Mmﬁg+wmmﬂ+wwﬁﬁ+¢@mﬁﬁ
+ X (QY3(Q)(1 + X3(Q)). (3.47)

Next, differentiating the third component of (3.36) by 7, multiplying by ¥3,,,J and
integrating over €2 we have

1d e - N -
23 0Tz colmnrl g < elliomar 2 + el + 13l

IR + o +Mﬂmﬁ+WA@g+mmﬁﬁ+ﬂmﬁﬁ
+ cXg(Q)Y2(Q)(1 + X2 (Q)). (3.48)
In order to estimate ||(dlvv)m|| rewrite equation (3.22); in the form
(0 1)V divs = —(AF, — Vi) + o — b
11 11
+ (uAG; + vV, dive — pN2; — vV, V - 8) + puy (~HVH; + (V,H)H)
+ P10 Vi€ + (PogVibo, i=1,2,3. (3.49
Differentiating the third component of (3.49) with respect to n gives
1(divD)nnll} ¢ < cdllBnnnlly o + c(llorll; ¢ + 10115 o + 1717
+ ||Qozllm +lpollg ) + eXa(2)Y2(C). (3.50)

To obtain an estimate for H@THg o consider the following elliptic problem

,u@zf) + Vﬁﬁ SV — paééa = @f)t + (pl - paé)éff@é

1A 1 1A11 AAlA . ~
o (<HSH + 9UH) = (O] +9-B6.0 + Do) - ¥
v
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where V- B(0,¢) = {V;By; (8, O }iz1,28, T(8,05) - VE = {T0i; (0,05)V;CFizr 23
Differentiating (3.51) with respect to 7 and next using the Agmon-Douglis-Nirenberg
theory we get
”177'”;(2 + ||é0’T||iQ < C(Hﬁr‘r”i(l + H’OSnnT”aQ + H’OH;Q + H@t“iﬁ

+ 100215 o + Ipollf ) + X2 (D)Y2(Q)(1+ Xa()).  (3.52)

Finally, we have

1d [ ) _
——/ 0Tz AdE < c||9]|5 o + cllv]|] o- (3.53)
24dt g

Going back to the old variables ¢ in estimates (3.44), (3.46), (3.49), (3.50), (3.52) and

summing them and (3.45) over all neighbourhoods of the partition of unity, using (3.43)
and (3.53), assuming that ¢ and d are sufficiently small and passing to the variables z we
obtain (3.44). This concludes the proof. m

In [7] we proved the following lemmas for problem (1.1)—(1.7):
LEMMA 3.8. For a sufficiently smooth solution (v, 0,, H) of (1.1)-(1.7), we have
d
A, + IH 1T, < el HIT 0l - (3.54)

LEMMA 3.9. For a sufficiently smooth solution (v, 0,, H) of (1.1)-(1.7), we have

d
G, + 1He < eCH I, 101 0, + ol 1 ,)- (3.55)

LEMMA 3.10. For a sufficiently smooth solution (v, 0., H) of (1.1)-(1.7), we have

d
EHHtt o, + 1 el xm, < el Heel ., 0113 1, + Noeell o, 1 H I,
+ Jloel|F p, 1 HellE 1, )- (3.56)

LEMMA 3.11. For a sufficiently smooth solution (v, 0., H) of (1.1)-(1.7), we have

d
w1, < ep(@)1HelT i, + 1Hl3m, [0lTw, + 17 5m, (ol

Hllvell3, + lolizm,) + I3, (HT , + TE S, 030, + ol3n, + vl n,)
+ [0l m, + @® H3 m,]- (3.57)
LEMMA 3.12. For a sufficiently smooth solution (v, 0,,H) of (1.1)-(1.7), we have

d
EHHHgHt + ||H||§Ht < cap(a)H|H||§7Ht||v |%,Ht + ||”||§,Ht + HHHS,HtHU”g,H;"
+ 1 He 3 g, + 1H I o, 101131, ]- (3.58)
LEMMA 3.13. For sufficiently smooth solution (v, 0,, H) of (1.1)-(1.7), we have

d
T, < c(lHIEn, + el Hell i, + 1H 5, 016 m,)- (3.59)

2
Now let H = H, on B, then from Lemmas 3.1-3.13 and inequalities

leotellt o, < cllvells q, + c(llootll3 o, V13,0, + llosl3 0, l0:l3.0,),

leotl3.a, < cllvli o, + cXaYa(l + X2),
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(which follow from equations (3.2)2 and (3.19)s, respectively) we get

THEOREM 3.1. Let v > %u > 0 and let Remarks 3.1 and 3.2 be satisfied. Then for a
sufficiently smooth solution v, o,, H of problem (1.1)-(1.7) we have

do t t 2
d_¢+CO(I> < (¢+/ ||’U||§7QTCZT> {1+<¢+/ ||’U||§’Qrd'r> ]CI>+02\IJ for t <T, (3.60)
0 0

t
where
/ \Dga§v|2dx+/ D1 o2ay
2 o<jaltri<2 9, 0
p . .
D SR TR ST
2 1<|a|+i<2 i+h<2
o(t) = > (10fvlF o, + IOTH|F 1, + 19017 0,); (3.61)
k<2
O(t) = llooll3.0, + lleotll3.a, + lleotelT o, + D (1000lI7 o, + 0L HI7 1,)
i+k<3

i<2

V() = llps |5 o, wtll3 5L+ [ Hetll3 5) + [ HurellT 5,

¢i (1 = 1,2) are positive constants depending on @., ©*, p, v, fot ||’U||§7QTCZ7', 1S]ls, T
and constants of the imbedding theorems and the Korn inequalities; ¢y < 1 is a positive
constant depending on p and v; o, and p, are given by (3.1).

4. Global existence. Now, let ¢(t), ¢(t) and ®(t) be defined by (3.61). Introduce the
spaces

N(@) =A{(v, 00, H) : 4(t) < oo}

and
M(t) = {(U7QU,H) Do(t) + /th)(T)dT < oo}.

Notice that (v, 0,, H) € N (t) iff ¢(t) < oo and (v, 0,, H) € M(t) iff p(¢ —|—f0 T)dT < 0.
Moreover,
do(t) < o(t) < "P(t), (4.1)
where ¢/, ¢” > 0 are constants depending on ¢, ¢* given by (2.5).
From Theorem 2.1 and (4.1) we get

LEmMA 4.1. Let (v(0), 05(0), H(0)) € N(0) and ¢(0) < e1. Then (v(t), 0-(t), H(t)) €
M(t), t <T where T is the time of local existence and

t t
(1) +/0 O(r)dr < 0(61 +/O (1B 5 + B3 5 + |1 HA3 5 + 1 H

" ||H*tt||8,3>dT) = o(e1 + ).

Proof. From inequality
13 < e(el Hell3

ENH3 2,210 + 1H(O)II3 1)
and Theorem 2.1 we get (4.2). Next we prove
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LEMMA 4.2. Assume that there exists a local solution of (1.1)-(1.7) in M(t), 0 <t <T
with initial data in N'(0) sufficiently small and

a(t) = pelld o, + IH:I5 5 + 1 Hli p + [ Hatll3 (1 + 1 Hatll3 p) + [ Hatell} 5 < 7
0<t<T, where u> % Then there exist constants py > 1, ps > 0 such that

o1) < et (¢‘><0> e EQM), (4.3)

if > po.
Proof. Consider inequality (3.63) and assume that &1 + § from (4.2) (see Lemma 4.1) is

so small that
t t 2 co
a(o+ [ MoBodr)[1+ (o4 [ Wiaar) | <% (1.4
0 0

Then inequality (3.61) implies
d¢ 3
— + —co®
a1

<ex(llpollf o, + 1HE 5 + [Hlllp + [ Hetl3 51+ 1 Hatll3 p) + | Haellf ). (4.5)

Applying the same argument as in the proof of Lemma 6.2 of [19] yields
|(2),Qt + ||Ut||8,9t)- (4.6)

Ip13.0, < elllpozlldo, + lvsalld.,) + ce) (v
Since
IPoalld o, < callooalld o,
inequalities (4.5) and (4.6) imply for sufficiently small e
dp 3
=+ 702 <eslvlga, + llvellie,) + co(lHZ 5 + 1H-1I7 5
FHl3 51+ [ Hatll3 5) + | Heweli ) (47)
Now, multiplying (3.16) by a constant cg so large that cocg — ¢5 > 0 and ¢g > 1,
adding to (4.7) and using Lemma 4.1 we obtain
d, - 3
(@ + ) + 7c0® + (cocs — s)([vllia, + leellia, +llootllGa,) < er(B+ce1)d
+ (L3 g + 115 g + 1 Haell3 5 (14 [ Hatll3 5) + [HuaelT 5), (4:8)

where J = %fﬁt [o(v? + v}) + %Qa + %Qat}d{ﬂ. Since 2 < ¢ < ® and ¢ > J for

c!’

sufficiently small 3+ ce1 (B+ ce; so small that c7(8+ce1) < fco) inequality (4.8) implies

%($+CGJ)+CS(¢3+66J) < cge M, (4.9)

where cg = 75— (¢ > 0 is a constant from (4.1)).
Inequality (4.9) yields (4.3) with p; = ¢g + 1 and ps = cg. This completes the proof

of Lemma 4.2. m

LEMMA 4.3. Let the assumptions of Lemma 4.2 be satisfied and $(0) < e1. Then ¢(T) <
€1, where T > 0 is the time of local existence.
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Proof. If 1 > 0 and T are sufficiently large then from Lemma 4.2

- W) < ¢(0).

Proof of Main Theorem. The theorem is proved step by step using local existence in a
fixed time interval. Under the assumptions that

(v(0), 05(0), H(0)) € N(0). (4.10)
Theorem 2.1 and Lemma 4.1 yield local existence of solutions of (1.1)—(1.7).

By (4.8), Lemma 4.1 implies that the local solution belongs to M(t), ¢ < T. For small
€1 and [ the existence time T is correspondingly large, so we can assume it is a fixed
positive number. The constants in those theorems depend on §2; and shape of S; and
fg [v]|3,, d7, so generally they are functions of ¢.

B(T) < et (so<o> n

But in view of (4.1) with sufficiently small £;, 5 we obtain

t
‘/’UdT
0

x§+/0tv(x(§,7'),7)d7, EeS, t<T, (4.12)

<c¢B  tel0,T). (4.11)

Hence from the relation

for sufficiently small €1, § and fixed T, the shape of €;, ¢ < T does not change too much,
so the constants from the immbeding theorems can be chosen independent of time. Now
we wish to extend the solution to the interval [T, 2T]. Using Lemma 4.3 we can prove the
existence of local solution in M(t), T' < t < 2T. To prove

$(2T) < ey, (4.13)

we need inequality (3.61) where the constans depend on the constants from the imbedding
theorems and Korn inequalities for ¢ € [T, 2T]. Therefore we have to show that the shape
of Sy and fot ||’U||§7QTdT, t < 2T, do not change more than for ¢ < 7T'. Assume that there
exists a local solution in the interval [0, k7]. Then in view of Lemma 4.2, we have for

t € [0,kT]
[

‘/vdm

(i+1)T ity (i+1)T 1
5 2
caX [T Plaodi<art S ([T o)

i=0 ‘T

—1 1

< (Z) ’ > {C—Qei“ + é(m} ’
M2 =0 -

= p2

T 2 1 1 1 - l
= C(E) 1 —ereT/2 {(u — 12)* (1 1o e—uzm) + (¢(0)N1)2] (4.14)
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and

(i+1)T k=1 .G+1)T
JALICE Z/ oo dr<y [ v
i=0

il 2 o—piT T
= 2; ( + ()

C
R —
~ pp(l—emreT)

1 _ 1
(u o)+ s eﬂzT))'

since from (4.9)

A+ 1)T) < —PemmGEDT | g1,
)
where A = ¢ + ¢, then we have
k—1 k— -

_ 0 —p2T —2usT
Z¢ZT§Z T) < M1¢E)T+ C2 67T+ C2 e —
= = 1—eH2 =2l —e H2 pw— ol —e k2

Co e~ nu2T 1 coe 2T
e < =
Tt T et TS Tt (Mﬁ( )+ (1= p2)(1 —erT) )’
also
(i+1)T Cs ] 1
/ At)dt < ————e T 1 — A(T)
iT (b — p2) e 112
and
G+1T o
A((i+1)T) + MQ/ A(t)dt < ZemiT L AGT), i=0,1,... k—1.
iT I

Taking k = 2, 1 sufficiently small and p sufficiently large we see that fot v(xz(&, ), T7)dT is
small for any ¢ € [0, 277, so (4.14) implies that the shape of S; and fot [|v]|3,¢, d change no
more than in [0, 7], and then the differential inequality (3.62) can also be shown for this
interval with the same constants. Hence in view of Lemma 4.1 the solutions of (1.1)—(1.7)
belongs to M(t), t € [T, 2T)]. Next Lemmas 4.1-4.3 imply (4.14).

Repeating the above considerations for the intervals [kT, (k + 1)T], k > 2, we prove
the existence for all t € Ry.

5. Korn inequality

LEMMA 5.1. Let ; C R3 be a bounded domain. Let (v, 0,) be a solution of (1.1)1, (1.1)a,
(1.5)1 and f = [, vodx = [, 00vo - pidx, i =1,2,3 and

Eq, (v) = / (02, 0j + O, 0) dz < 0. (5.1)
Qy

Then there exists a constant ¢ > 0 such that

o170, < e(Eat) + e~ ge>|v|dx>2) (5.2)
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Proof. Introduce a function u by

3
u= sz%(m) + v, (5.3)

where p; = (x — ) X e;, T = IK%A (Jo, #1dw, [, wadz, [o, w3dx), e; = (31,012, 0ig),
i=1,2,3.
Define b = (b1, ba, b3) by

1
b= —— rotvdz. 5.4
209 Jo, (54)

Since rot ¢; = 2¢;, i = 1,2, 3, equations (5.3) and (5.4) imply

/ rotudz = 0. (5.5)
Q

From (5.4) we have th pidr=0,1=1,2,3 so

/ udxr = / vdr and Egq, (¢;) =0, i=1,2,3, (5.7)
Q Q
so
Eo, (1) = Eq, (1), (5.8)
By Theorem 1 of [9] we have
Oz, w; = €i3102, Sj1, 1=1,2,3, w = rotu, (5.9)
Sij = Op,uj + Oz;u4, s0 by (5.6) and Lemma 2.4 of [8] it follows that
3
rotulZg, < ¢ S 155120, = Bo, (u) = cBa, (v). (5.10)
ij=1

Employing the identity
1 1
0wjui = 5((9%.1% + 0301’11,]) + E(a%ul - 6w1u])

and (5.10) we have

IVull3 o, < e(Eq, (u) + [[rotullf o,) < cEa,(u) = cEq, (v). (5.11)
Using 5.3 we obtain
IVol[§ a0, < c(Eq, (v) + [b). (5.12)
From Remark 3.2 using (5.3) we get systems of equations
i 1
Zbi/ ;- pjdr = / upjdr +— [ (0— 0e)v - p;de. (5.13)
i—1 Y Q Qe JQ,

Since det I # 0, where I' = {I";; }, I';; = th @ipjdx we can calculate b from (5.14), so

2
b < c(nunag, 4 < /Q lo— .l |v|dx) ) (5.14)
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Now by Poincaré inequality and (5.7), (5.8), and Remark 3.1, we obtain

2 2
<

0,2

:Q) = C<EQ‘(”)+ </Qt lo— ol |’U|dx>2>.

(5.15)

u udx

1
—|—2H— udx
192:| Ja,

1
lull 0, < 2|ju— 757
|Qt| Qy 0,82

1
< c<||Vu||gVQt + Hm . vdx

From (5.3) and (5.14) we get

2
ﬁms{m@m+(4g—&MM)) (5.16)
t

Then from (5.8), (5.12), (5.15) and (5.16) we get (5.2)

[[o

LEMMA 5.2. Let Q; C R3 be a bounded domain. Let (v, 0,) be a solution of (1.1)1, (1.1)2,
(1.5)1 and f = fQ vodx = fQ 0oV + idr, i =1,2,3 and

Eq, (v) = / (Oz,vjt + 8zjvit)2dx < 00. (5.17)
Q

Then there exists a constant ¢ > 0 such that

2
|mﬁms{&mm+wém+(4g—&wmﬁ). (5.18)

Proof. Introduce a function u by

3
u= Z b (x) + vy, (5.19)
i=1

where ¢; = (z — ) X ¢;, T = m%(fﬂt xldx,fgt Zode, th x;;dx), e; = (0i1,0i2,0:3),
i=1,2,3.
Define b = (bl, bz, bg) by

b= —— rotvydx. 5.20
200 Jo, " (5:20)

Since rot ¢; = 2¢;, i = 1,2, 3, equations (5.19) and (5.20) imply

/ rotudx = 0. (5.21)
Q¢

From (5.20) we have th pidr =0,i=1,2,3 so

/ud;v:/ vdr and Eq,(p;) =0, i=1,2,3, (5.22)
o Q

EQt(U) = Egt (Ut). (5.23)

By Theorem 1 of [9] we have
Op; Wi = €104, 551, 1=1,2,3, w = rotu, (5.24)
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Sij = O, uj + Oy, ui, so by (5.21) and Lemma 2.4 of [8] it follows that
3
rotul.g, < ¢ 3 ISil3 0, = cBo, (u) = cBo, (v0).
ij=1

Employing the identity

1 1

8zjui = 5(895}%1 + 811%) + 5(8371711' — azzu])
and (5.25) we have
IVullg o, < c(Eq, (u) + [rotullf ,) < cEq,(u) = cEq, (ve).
Using (5.19) we obtain
IVeellg 0, < c(Ba, (ve) + [0f).

Integrating (3.2); over €; we get

/ Vi 0edT = —/ ov - Vudr — / (0 — 0e)vidx
Q, Qy Q
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(5.25)

(5.26)

(5.27)

(5.28)

and multiplying (3.2); by ¢;, ¢ = 1,2,3 and integrating over 2; using (5.20) we get

systems of equations

S

Octpi - pjdx = / Oet - pidx + / ov - Vv - p;dx
j=1 Q Q Q

+/ (0 — 0e)vt - pida.
o)

(5.29)

Since det I # 0, where I' = {T';;}, I';; = th pip;dx, we can calculate b from (5.29), so

2
b < c(nunam tlolidq, + ( [ 1e- genvtux) )
t

Now by Poincaré inequality and (5.22), (5.23), (5.28) we obtain
? 1
+ 2|75 [ udr
0,0 62|
2
1 / )
— vedx
‘|Qt| Q 0,92
2
< o(Bn () + ol + ([ lo-allulas) ).
€

lvelld 0, < c(llullg g, + [b*)-

Then from (5.27), (5.30), (5.31) and (5.32) we get (5.18). m

lullg 0, < 2|u

2
0,92,

- — udx
19| Ja,

< (Ivulie, +
From (5.19) we get

Similarly as Lemma 5.2 we prove

(5.30)

(5.31)

(5.32)
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LEMMA 5.3. Let Q; C R3 be a bounded domain. Let (v, 0,) be a solution of (1.1)1, (1.1),
(1.5)1 and f = [,vodx = [, 00vo - pidx, i =1,2,3 and

EQt (Utt) = / (azivjtt + 893]. ’Uitt)zdl' < 0. (533)
Q

Then there exists constant ¢ > 0 such that

louelZ e, < (E (vi) + llewelZ.0, 0] o,

2
ol a, + ol lloelZa, + lerla, lestlZa, + ( [ le-e |vtt|dx) )
t
(5.34)
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