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Abstract. In this paper, we study the nonstationary Stokes equation with Neumann boundary

condition in a bounded or an exterior domain in R
n, which is the linearized model problem of

the free boundary value problem. Mainly, we prove Lp-Lq estimates for the semigroup of the

Stokes operator. Comparing with the non-slip boundary condition case, we have the better decay

estimate for the gradient of the semigroup in the exterior domain case because of the null force

at the boundary.

1. Introduction. Let Ω be a bounded or an exterior domain in Rn (n ≥ 2) with bound-

ary ∂Ω which is a C2,1 hypersurface. We consider the nonstationary Stokes problem with

Neumann boundary condition:

(1.1)















∂tu − Div T(u, π) = 0, div u = 0 in Ω, t > 0,

T(u, π)ν = 0 on ∂Ω, t > 0,

u|t=0 = u0 in Ω,

where u is the unknown velocity vector, π is the unknown pressure, and u0 is a given
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velocity vector. T is the stress tensor whose (j, k) component is given by

Tjk(u, π) = Djk(u) − δjkπ, j, k = 1, . . . , n,

Djk(u) = ∂uj/∂xk + ∂uk/∂xj , δjk = 1 (j = k), = 0 (j 6= k).

For simplicity, we assume that the viscous coefficient µ = 1. Under the condition div u =

0, Div T(u, π) = ∆u −∇π.

(1.1) is a model problem of the free boundary value problem (cf. Solonnikov [16] and

Abels [1]). Let us consider the region Ω(t) ∈ Rn occupied by the fluid which is given only

at the initial time t = 0, while for t > 0 it is to be determined. In this model the effect

of surface tension is neglected.

(1.2)























∂tv + (v · ∇)v − ∆v + ∇q = f(x, t) in Ω(t), t > 0,

∇ · v = 0 in Ω(t), t > 0,

T(v, q)νt + p0(x, t)νt = 0 on ∂Ω(t), t > 0,

v|t=0 = v0 in Ω(0),

where νt is the unit outer normal to ∂Ω(t) at the point x, v0 is a given initial velocity,

Ω(0) is the initial domain filled by the fluid, and f(x, t) and p0(x, t) are the external

mass force vector and the pressure defined on the whole space. Below we assume that

p0(x, t) = 0, since we can arrive at this case by replacing p(x, t) by p + p0.

Following the approach due to Solonnikov [16], we reduce (1.2) to the problem as an

initial boundary value problem in the given region Ω(0) = Ω. A kinematic condition for

∂Ω(t) is satisfied, which gives ∂Ω(t) as a set of points x = x(ξ, t), ξ ∈ ∂Ω, where x(ξ, t)

is the solution of the Cauchy problem

(1.3)
dx

dt
= v(x, t), x|t=0 = ξ.

We can rewrite (1.2) as an initial boundary value problem in Ω, if we go over the Euler

coordinates x ∈ Ω(t) to the Lagrange coordinates ξ ∈ Ω connected with x by (1.3). If a

velocity vector field u(ξ, t) is known as a function of the Lagrange coordinates ξ, then

this connection can be written in the form

x = ξ +

∫ t

0

u(ξ, τ) dτ := Xu(ξ, t).

Passing to the Lagrange coordinates in (1.2) and setting v(Xu(ξ, t), t) = u(ξ, t) and

q̃(Xu(ξ, t), t) = π(ξ, t), we obtain

(1.4)















∂tu − ∆uu + ∇uπ = f(Xu(ξ, t), t), divuu = 0 in Ω, t > 0,

Tu(u, π)νu = 0 on ∂Ω, t > 0,

u|t=0 = u0 in Ω,

where using A(u) = t(DξXu)−1(ξ, t),

∇u = A(u)∇, divuu = ∇u · u = tr(A(u)∇u),

∆u = divu∇u, νu · Tu(u, π) = νu · (∇uu + t(∇uu)) − πνn,

νu(ξ, t) = A(u)νξ/|A(u)νξ|,
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νξ denotes the unit outer normal at ξ ∈ ∂Ω. If t is small, then the operators ∆u, ∇u, divu

and Tu are closed to ∆, ∇, div and T . Therefore we write (1.4) as a fixed point problem:


































∂tu − µ∆u + ∇π = −µ(∆ − ∆u)u

+(∇−∇u)π + f(Xu(ξ, t), t) in Ω, t > 0,

divu = (div − divu)u in Ω, t > 0,

T (u, π)ν = (Tν − Tuνu)(u, π) on ∂Ω, t > 0,

u|t=0 = u0 in Ω.

Our final goal is to prove a globally in time existence of solutions of (1.2) for small initial

data by using the analytic semigroup approach. To do this, we have the following plan

of analysis:

1◦ Analysis of the resolvent problem corresponding to (1.1).

2◦ Analytic semigroup approach to (1.1).

3◦ Lp-Lq estimate of (1.1).

4◦ Maximal regularity of the linearized problem with inhomogeneous right members.

In this paper, we report on the results about 1◦, 2◦ and 3◦.

The free boundary value problem (1.2) was already solved by Solonnikov [16] in the

bounded domain case. The linear problem (1.1) was already studied by using the theory of

pseudo-differential operators with parameter (cf. Grubb and Solonnikov [10] and Grubb

[8] and [9]). Our approach is completely different from [16], [10], [8] and [9].

2. Analysis of the resolvent problem to (1.1). The resolvent problem corresponding

to (1.1) is:

(2.1)

{

λu − ∆u + ∇π = f, div u = 0 in Ω,

T(u, π)ν|∂Ω = 0.

As the space for the pressure, we set

Ŵ 1
p (Ω) = {π ∈ Lp,loc(Ω) | ∇π ∈ Lp(Ω)n},

Xp(Ω) = {π ∈ Ŵ 1
p (Ω) | ‖π‖

Xp(Ω)
< ∞}.

When Ω is a bounded domain, ‖π‖
Xp(Ω)

= ‖π‖
W1

p (Ω)
and W 1

p (Ω) = Xp(Ω). When Ω is an

exterior domain,

‖π‖Xp(Ω) =

{

‖∇π‖Lp(Ω) + ‖π/d‖Lp(Ω), n ≤ p < ∞,

‖∇π‖Lp(Ω) + ‖π/d‖Lp(Ω) + ‖π‖L np
n−p

(Ω)
, 1 < p < n,

d(x) =

{

2 + |x|, p 6= n,

(2 + |x|) log(2 + |x|), p = n.

Concerning (1.1), we have the following theorem proved by Shibata and Shimizu [15],

which is the base of our analytic semigroup approach to (1.1).

Theorem 2.1. Let 1 < p < ∞, 0 < ǫ < π/2 and δ > 0. We set

Σǫ = {λ ∈ C \ {0} | | arg λ| ≤ π − ǫ}.
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For every λ ∈ Σǫ and f ∈ Lp(Ω)n, there exists a unique solution (u, π) ∈ W 2
p (Ω)n×Xp(Ω)

of (1). Moreover, the (u, π) satisfies the estimate:

|λ|‖u ‖
Lp(Ω)

+ ‖u ‖
W2

p (Ω)
+ ‖π‖

Xp(Ω)
≤ Cǫ,δ,p‖f‖Lp(Ω)

for any λ ∈ Σǫ with |λ| ≥ δ.

3. Analytic semigroup approach to (1.1). In order to formulate (1.1) in the analytic

semigroup framework, first of all we have to introduce the 2nd Helmholtz decomposition:

Lp(Ω)n = Jp(Ω) ⊕ Gp(Ω)

where we have set

Jp(Ω) = {u ∈ Lp(Ω)n | ∇ · u = 0 in Ω},

Gp(Ω) = {∇π | π ∈ Ẋp(Ω)},

Ẋp(Ω) = {π ∈ Xp(Ω) | π|
∂Ω

= 0}.

To prove the 2nd Helmholtz decomposition and also the unique solvability of the Laplace

equation with Dirichlet condition, we use the following theorem which is proved by letting

λ → ∞ in (2.1) and using Theorem 2.1.

Lemma 3.1. (A) Given f ∈ Lp(Ω)n, there exist unique g ∈ Jp(Ω) and π ∈ Ẋp(Ω) such

that f = g + ∇π in Ω.

(B) If π ∈ Ŵ 1
p (Ω) satisfies ∆π = 0 in Ω and π|

∂Ω
= 0, then π = 0.

(C) Given h ∈ W
1−1/p
p (∂Ω), there exists a π ∈ Xp(Ω) which solves the equation:

∆π = 0 in Ω, π|∂Ω = h.

Let Pp : Lp(Ω)n → Jp(Ω) be the solenoidal projection, and then there exists a unique

θ ∈ Ẋp(Ω) such that f = Ppf + ∇θ. Inserting this formula into (2.1) and noting that

θ|∂Ω = 0, (2.1) is reduced to the equation:

λu − ∆u + ∇(π − θ) = Ppf, div u = 0 in Ω,

T(u, π − θ)ν|
∂Ω

= 0.

Therefore we consider (2.1) for f ∈ Jp(Ω), below.

Now, we shall introduce the reduced Stokes equation corresponding to (2.1). Given

f ∈ Jp(Ω), let (u, π) ∈ W 2
p (Ω)n × Xp(Ω) be a solution of the equation:

λu − ∆u + ∇π = f, ∇ · u = 0 in Ω,

(T(u, π)ν)i|∂Ω
=

n
∑

j=1

νj (∂jui + ∂iuj) − νiπ|∂Ω
= 0 (i = 1, . . . , n),

where (T(u, π)ν)i denotes the i-th component of the n-vector T(u, π)ν. Applying the

divergence to the first equation implies that ∆π = 0 in Ω. Multiplying the boundary

condition by νi and using
∑n

i=1 ν2
i = 1 on ∂Ω and div u = 0 in Ω, we have

π|
∂Ω

=

n
∑

i,j=1

νiνjDij(u ) − div u |
∂Ω

.
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In view of Lemma 3.1, there exists a solution operator K : W
1−1/p
p (∂Ω)n → Xp(Ω)

associated with the equation:

∆K(u ) = 0 in Ω, K(u )|
∂Ω

=

n
∑

i,j=1

νiνjDij(u ) − div u |
∂Ω

such that there holds the estimate:

‖K(u)‖
Xp(Ω)

≤ Cp‖u‖
W

1−1/p
p (∂Ω)

.

Using the operator K, we see that when f ∈ Jp(Ω), the problem:

λu − ∆u + ∇π = f, ∇ · u = 0 in Ω,
n

∑

j=1

νj (∂jui + ∂iuj) − νiπ|∂Ω
= 0 (i = 1, . . . , n)

is equivalent to the reduced Stokes resolvent problem

(3.1)
λu − ∆u + ∇K(u) = f in Ω,

T(u, K(u))ν|
∂Ω

= 0.

The reason why we insert div u into the boundary condition is to prove that the solution u

of (3.1) satisfies the condition: div u = 0 in Ω. Theorem 2.1 implies the following theorem

immediately.

Theorem 3.2. Let 1 < p < ∞, 0 < ǫ < π/2 and δ > 0. Given λ ∈ Σǫ and f ∈ Lp(Ω)n,

(3.1) admits a unique solution u ∈ W 2
p (Ω)n satisfying the estimate:

|λ|‖u ‖
Lp(Ω)

+ ‖u ‖
W2

p (Ω)
≤ Cǫ,δ,p‖ f ‖

Lp(Ω)

for any λ ∈ Σǫ with |λ| ≥ δ.

Let us define the reduced Stokes operator Ap by the relations:

Apu = −∆u + ∇K(u ) for u ∈ D(Ap),

D(Ap) = {u ∈ Jp(Ω) ∩ W 2
p (Ω)n | T(u, K(u))ν|

∂Ω
= 0}.

Then (3.1) is formulated as λu + Apu = f in Ω and u ∈ D(Ap). Letting λ → ∞ in (3.1),

by Theorem 3.2 we obtain the following lemma.

Lemma 3.3. Let 1 < p < ∞. Then, Ap is a densely defined closed operator.

Combining Theorem 3.2 and Lemma 3.3, we obtain the following theorem.

Theorem 3.4. Let 1 < p < ∞. Then, Ap generates an analytic semigroup {T (t)}t≥0 on

Jp(Ω).

Moreover, we can also prove the following theorem concerning the dual space and the

adjoint operator.

Theorem 3.5. Let 1 < p < ∞ and p′ = p/(p−1). Then, Jp(Ω)∗ = Jp′(Ω) and A∗
p = Ap′ .
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4. Lp-Lq estimate of (1.1)

4.1. The bounded domain case. Let Ω be a C2,1-class bounded domain in Rn (n ≥ 2).

Let us set

R = {Ax + b | A is an anti-symmetric matrix and b ∈ R
n}.

Let p1, . . . , pM (M = n(n − 1)/2 + n) be an orthogonal basis of R in Ω such that

(pj , pk)Ω = δjk. Let us set

L̇p(Ω) = {u ∈ Lp(Ω)n | (u, pk)Ω = 0, k = 1, . . . , M}.

Then, we have the following exponential stability of the semigroup {T (t)}t≥0 in the

bounded domain case.

Theorem 4.1. Given any f ∈ Jp(Ω) ∩ L̇p(Ω), we have

‖∇jT (t)f‖
Lq(Ω)

≤ Cp,qe
−ctt−

n
2 ( 1

p− 1
q )− j

2 ‖f‖
Lp(Ω)

for 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1), t > 0 and j = 0, 1, where c = cp,q is a positive

constant.

To prove this theorem, the key is the solvability of the following problem:

(4.1)
−Div T(u, π) = f, div u = 0 in Ω,

T(u, π)ν|
∂Ω

= g.

In fact, we have the following theorem concerning this equation.

Theorem 4.2. Let 1 < p < ∞. Given f ∈ Lp(Ω)n and g ∈ W
1−1/p
p (∂Ω)n satisfying the

condition:

(f, pj)Ω + (g, pj)∂Ω = 0, j = 1, . . . , M,

(4.1) admits a unique solution

(u, π) ∈ (W 2
p (Ω)n ∩ L̇p(Ω)) × W 1

p (Ω).

Combining this theorem with Theorem 3.2, we have the following theorem.

Theorem 4.3. Let 1 < p < ∞ and 0 < ǫ < π/2. Then, there exists a σ > 0 such that

given f ∈ Jp(Ω) ∩ L̇p(Ω) and λ ∈ Σǫ ∪ {λ ∈ C | |λ| ≤ σ}, we have

|λ|‖(λ + Ap)
−1f‖

Lp(Ω)
+ ‖(λ + Ap)

−1f‖
W2

p (Ω)
≤ Cp‖f‖Lp(Ω)

.

By Theorem 4.3, we have immediately

(4.2) ‖T (t)f‖
W

j
p (Ω)

≤ Cpe
−ctt−

j
2 ‖f‖

Lp(Ω)
, j = 0, 2.

By using the complex interpolation:

(Lp(Ω), W 2
p (Ω))θ = W s

p (Ω), θ = s/2,

the real interpolation:

[Lp(Ω), W 2
p (Ω)]θ,1 = B

n/p
p,1 (Ω), θ = n/2p,
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the embedding theorems:

W s
p (Ω) ⊂ Lq(Ω), s = n

(

1

p
−

1

q

)

(q 6= ∞),

B
n/p
p,1 (Ω) ⊂ L∞(Ω),

the semigroup property: T (t)f = T (t/2)T (t/2)f and the dual argument, we can show

Theorem 4.1 from (4.2).

4.2. The exterior domain case. Let Ω be an exterior domain in R
n (n ≥ 3), whose

boundary ∂Ω is a C2,1 hypersurface. Then, we have the following theorem.

Theorem 4.4.

‖T (t)f‖
Lq(Ω)

≤ Cp,qt
−n

2 ( 1
p− 1

q )‖f‖
Lp(Ω)

(4.3)

for 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1), t > 0 and f ∈ Jp(Ω), and

‖∇T (t)f‖
Lq(Ω)

≤ Cp,qt
−n

2 ( 1
p− 1

q )− 1
2 ‖f‖

Lp(Ω)
(4.4)

for 1 ≤ p ≤ q ≤ ∞ (p 6= ∞, q 6= 1), t > 0 and f ∈ Jp(Ω).

Remark 4.5. If we consider the non-slip boundary condition u|
∂Ω

= 0 instead of the

Neumann boundary condition, to obtain (4.4) we have to assume that 1 ≤ p ≤ q ≤ n

(q 6= 1) (cf. [11], [12], [14], [4], [5] and [6]).

5. A sketch of proof of Theorem 4.4

5.1. 1st step. Construction of a solution operator R(λ). The following theorem is con-

cerned with the solution operator to (2.1).

Theorem 5.1. Let 1 < p ≤ q ≤ ∞ and set

Lp,R(Ω) = {f ∈ Lp(Ω)n | f(x) = 0 x 6∈ BR}.

Then, there exists an ǫ > 0 and an operator R(λ) = (R0(λ), R1(λ)) for λ ∈ U̇ǫ = {λ ∈

C \ (−∞, 0] | |λ| < ǫ} having the following properties:

(1) If we set u = R0(λ)f and π = R1(λ)f , then (u, π) solves the problem:

λu − Div T(u, π) = f, div u = 0 in Ω, T(u, π)ν|
∂Ω

= 0.

(2) There holds the relation: R0(λ)f = (λ + A)−1Ppf for any λ ∈ U̇ǫ and f ∈ Lp,R(Ω).

(3) There holds the estimate:

‖R0(λ)f‖Lq(Ω) ≤ Cp,q|λ|
n
2 ( 1

p− 1
q )−1‖f‖

Lp(Ω)

for 1 < p ≤ q ≤ ∞, λ ∈ U̇ǫ and f ∈ Lp,R(Ω).

(4) There holds the estimate:

‖∇R0(λ)f‖
Lp(Ω)

≤ Cp|λ|
−min( 1

2 , n
2p )‖f‖

Lp(Ω)

for λ ∈ U̇ǫ and f ∈ Lp,R(Ω).
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(5) There holds the expansion formula:

R(λ) = λ
n
2 −1(log λ)σ(n)H0 + λ

n
2 −1H1(λ) + H2(λ)

for λ ∈ U̇ǫ on ΩR = Ω ∩ BR,

where

σ(n) = 1 (n ≥ 4, even), σ(n) = 0 (n ≥ 3, odd);

H0 ∈ L(Lp,R(Ω), W 2
p (ΩR)n × W 1

p (ΩR));

H1(λ) ∈ BA(U̇ǫ,L(Lp,R(Ω), W 2
p (ΩR)n × W 1

p (ΩR)));

H2(λ) ∈ BA(Uǫ,L(Lp,R(Ω), W 2
p (ΩR)n × W 1

p (ΩR)));

Uǫ = {λ ∈ C | |λ| < ǫ},

and BA(U, W ) is the set of all bounded analytic functions on U with their values in W .

Using Theorem 5.1, we can show (4.3) and also (4.4) under the assumption: 1 ≤ p ≤

q ≤ n (q 6= 1) in Theorem 4.4. To prove Theorem 5.1, we use the solution operator

(Eλ, Π) of the Stokes resolvent equation in R
n, which gives the solutions u = Eλf and

π = Πf of the equation:

(λ − ∆)u + ∇π = f, div u = 0 in R
n.

Since Eλf is given by the modified Bessel function of order (n−2)/2, applying the Young

inequality we have

(5.1) ‖∇jEλf‖
Lq(Rn)

≤ Cp,q|λ|
n
2 ( 1

p− 1
q )−1+ j

2 ‖f‖
Lp(Rn)

j = 0, 1

for 1 < p ≤ q ≤ ∞ (p 6= ∞, q 6= 1), λ ∈ Σǫ = {λ ∈ C \ {0} | |λ| ≤ π − ǫ} and f ∈ Lp(R
n).

By using the expansion formula of the modified Bessel function near the origin, we have

(5.2) Eλf = λ
n
2 −1(log λ)σ(n)G1(λ)f + G2(λ)f in BR

for f ∈ Lp,R(Rn) = {f ∈ Lp(R
n)n | f(x) = 0 for x 6∈ BR} and λ ∈ U̇ 1

2
, where

Gj(λ) ∈ BA(U 1
2
,L(Lp,R(Rn), W 2

p (BR))).

And also, we use the solution operator (A, B) which gives solutions u = Af and π = Bf

of the interior problem:

−Div T(u, π) = f, div u = 0 in ΩR,

T(u, π)ν|∂Ω = 0,

T(u, π)ν0|SR
= T(E0f0, Πf0)ν0|SR

,

where ν0 = x/|x|, SR = {|x| = R}, ΩR = Ω ∩ BR, ∂ΩR = ∂Ω ∪ SR, f0 = f (x ∈ Ω) and

f0 = 0 (x 6∈ Ω). Since there holds the compatibility condition:

(f, pj)ΩR
+ (T(E0f0, Πf0)ν0, pj)SR

= 0

for j = 1, . . . , M , we can find A and B. Moreover, since D(pj) = 0 and div pj = 0, we

may assume that

(Af − E0f0, pj)ΩR
= 0, j = 1, . . . , M.



NEUMANN BOUNDARY CONDITION 247

To define our parametrix for (2.1), we choose a cut-off function ϕ in such a way that

0 ≤ ϕ ≤ 1, ϕ(x) = 1 (|x| ≤ R − 2), ϕ(x) = 0 (|x| ≥ R − 1)

where R is a number such that BR ⊃ Ωc. As the parametrix for (2.1), we set

Φλf = (1 − ϕ)Eλf0 + ϕAf + B[(∇ϕ)(Eλf − Af)],

Ψf = (1 − ϕ)Πf0 + ϕBf,

where B is the usual Bogovskĭı operator (cf. [2], [3], [13], [7]). Then, there exists a compact

operator Tλ of Lp,R(Ω) such that

λΦλf − Div T(Φλf0, Ψf) = (I + Tλ)f, div Φλf = 0 in Ω,

T (Φλf, Ψf)ν|
∂Ω

= 0.

The uniqueness of the solution to the homogeneous equation:

−Div T(u, π) = 0, div u = 0 in Ω, T(u, π)ν|
∂Ω

= 0

in the class of functions satisfying the radiation condition:

u(x) = O(|x|−(n−2)), ∇u(x) = O(|x|−(n−1)),

π(x) = O(|x|−(n−1)) as |x| → ∞,

and Fredholm’s alternative theorem imply the existence of the inverse operator:

(I + Tλ)−1 ∈ BA(U̇ǫ,L(Lp,R(Ω))).

Therefore, we can define R(λ) by the relations:

R0(λ) = Φλ(I + Tλ)−1, R1(λ) = Ψ(I + Tλ)−1.

By this, (5.1) and (5.2), we can show Theorem 5.1.

5.2. 2nd step. Modification of R(λ). By using the special structure of Neumann bound-

ary condition, we modify R(λ) to prove Theorem 4.4, especially (4.4). In order to do

this, we use the following reduction: Given f ∈ Lp(Ω)n, let u and π be solutions to the

resolvent problem:

λu − Div T(u, π) = f, div u = 0 in Ω,

T(u, π)ν|
∂Ω

= 0.

We set

u = Eλf0 + v and π = Πf0 + θ.

Then, v and θ enjoy the equation:

λv − Div T(v, θ) = 0, div v = 0 in Ω,

T(v, θ)ν|
∂Ω

= −T(Eλf0, Πf0)ν|∂Ω
.

Since

(T(Eλf0, Πf0)ν, pj)∂Ω
= −(Div T(Eλf0, Πf0), pj)Ωc = −(λEλf0, pj)Ωc
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for j = 1, . . . , M , there exists (w, τ ) which solves the equation:

λw − Div T(w, τ ) = gλ, div w = 0 in ΩR,

T(w, τ )ν|
∂Ω

= −T(Eλf0, Πf0)ν|∂Ω
,

T(w, τ )ν0|SR
= 0,

where

gλ =
M
∑

j=1

(λEλf0, pj)Ωc pj .

We set

v = ϕw + z − B[(∇ · ϕ)w] and θ = ϕτ + ω,

and then z and ω enjoy the equation:

λz − Div T(z, ω) = hλ, div z = 0 in Ω, T(z, ω)ν|
∂Ω

= 0,

where

hλ = −ϕgλ + 2(∇ϕ) : ∇w + (∆ϕ)w

− λB[(∇ϕ) · w] + DivD(B[(∇ϕ) · w]) − (∇ϕ)τ.

We can divide hλ into two parts : hλ = h1
λ + λh2

λ, where

supphj
λ ⊂ DR−2,R−1 = {x ∈ R

n | R − 2 ≤ |x| ≤ R − 1},

(h1
λ, pj)Rn = 0, j = 1, . . . , M.

Finally, we set

z = z1 + λR0(λ)h2
λ and ω = ω1 + λR1(λ)h2

λ,

and then z1 and ω1 enjoy the equation:

λz1 − Div T(z1, ω1) = h1
λ, div z1 = 0 in Ω, T(z1, ω1)ν|

∂Ω
= 0.

Now, let us set

I = {f ∈ Lp(R
n)n | supp f ⊂ DR−2,R−1, (f, pj)Rn = 0 (j = 1, . . . , M)}.

Since h1
λ ∈ I, we consider the problem :

λu − Div T(u, π) = f, div u = 0 in Ω,

T(u, π)ν|
∂Ω

= 0

with f ∈ I. Recall that

λΦλf − Div T(Φλf0, Ψf) = (I + Tλ)f, div Φλf = 0 in Ω,

T (Φλf, Ψf)ν|
∂Ω

= 0.

The point is that we can divide Tλ into two parts: Tλ = Aλ + λBλ, where

Aλ is a compact operator on I;

‖Aλf − A0f‖Lp
≤ C|λ|1/2‖f‖

Lp
;

Bλ is a bounded operator from I into Lp,R(Ω).
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Therefore, if we set

Uλf = Φλf − λR0(λ)Bλf,

Θλf = Ψf − λR1(λ)Bλf,

then we see that

λUλf − Div T(Uλf, Θλf) = f + Aλf, div Uλf = 0 in Ω,

T(Uλf, Θλf)ν|
∂Ω

= 0.

By using the uniqueness of the solution to the Stokes equation with Neumann boundary

condition and the Fredholm alternative theorem, we can show that there exists an ǫ > 0

such that

(I + Aλ)−1 ∈ BA(U̇ǫ,L(I)).

From these consideration, by using not only (5.1) and Theorem 5.1 but also the relation:

Eλf = λ
n
2 (log λ)σ(n)G′

1(λ)f + G2(λ)f, f ∈ I,

on BR with some G′
1(λ) ∈ BA(U1/2,L(I, W 2

p (BR)n × W 1
p (BR))), we can show the fol-

lowing proposition.

Proposition 5.2. There exist operators Y (λ) and Z(λ) such that for any f ∈ Lp(Ω)n

(λ + A)−1Ppf = Y (λ)f + Z(λ)f, λ ∈ Σǫ ∩ Uǫ,

‖Y (λ)f‖
Lq(Ω)

≤ Cp,q|λ|
n
2 ( 1

p− 1
q )−1‖f‖

Lp(Ω)
,

‖∇Y (λ)f‖
Lq(Ω)

≤ Cp,q|λ|
n
2 ( 1

p− 1
q )− 1

2 ‖f‖
Lp(Ω)

,

for any 1 < p ≤ q ≤ ∞ (p 6= ∞), λ ∈ U̇ǫ and

Z(λ)f ∈ BA(Uǫ,L(Lp(Ω), W 2
∞(Ω))), supp Z(λ)f ⊂ BR.

If we write

T (t)f =
1

2π

∫

Γ1

eλt(λI + A)−1f dλ +
1

2π

∫

Γ2

eλt(Y (λ) + Z(λ))f dλ

where

Γ1 = {se±iθ0 | ǫ ≤ s < ∞},
π

2
< θ0 < π, Γ2 = {ǫeiθ | −θ0 ≤ θ ≤ θ0},

then by Proposition 5.2 and Theorem 3.2 we can show Theorem 4.4.

References

[1] H. Abels, Stokes equations in asymptotically flat domains and the motion of a free surface,

Darmstadt, Techn. Univ. Diss., 2003.
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