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Abstract. We create a new family of Banach spaces, the James–Schreier spaces, by amalgamat-
ing two important classical Banach spaces: James’ quasi-reflexive Banach space on the one hand
and Schreier’s Banach space giving a counterexample to the Banach–Saks property on the other.
We then investigate the properties of these James–Schreier spaces, paying particular attention
to how key properties of their ‘ancestors’ (that is, the James space and the Schreier space) are
expressed in them. Our main results include that each James–Schreier space is c0-saturated and
that no James–Schreier space embeds in a Banach space with an unconditional basis.

1. Introduction. The purpose of this paper is to introduce a new family of Banach
spaces which we call the James–Schreier spaces because they arise by amalgamating
the definitions of the quasi-reflexive James spaces with the Schreier space. The original
motivation behind these spaces was to produce a new example of a Banach sequence
algebra with a bounded approximate identity, in analogy with Andrew and Green’s study
of the James space as a Banach algebra [3]. This idea turned out to be successful, as
essentially all results about the James space as a Banach algebra carry over to our new
spaces; see [9] for details.

Having thus reached our initial goal, we soon realized that a serious problem was
lurking in the background, namely: how can we distinguish the James–Schreier spaces
from the James spaces? Obviously, if they were isomorphic, our findings would be of no
interest. In order to resolve this problem, we turned to Banach-space properties and, as
we shall see, at that level differences abound; this is the main theme of the present paper.
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We begin with surveys of the James spaces (Section 2) and the Schreier space (Sec-
tion 3), where we introduce notation and explain ideas and properties which we shall
subsequently pursue in the case of the James–Schreier spaces. In fact, as a spin-off of our
investigation, we generalize the concept of a Schreier space from just one Schreier space
(corresponding to the `1-norm) to a whole family, one for each p ∈ [1,∞) (corresponding
to the `p-norms). The basic theory of these spaces is developed in Section 3; our most
important findings are: (i) the standard unit vector basis is a shrinking, 1-unconditional
basis for each Schreier space; (ii) those right-shifts which define bounded operators on
the Schreier spaces can be characterized (see Corollary 3.17(ii) for details). The former
of these results leads to an explicit description of the biduals of the Schreier spaces, while
the latter implies that each Schreier space is isomorphic to its Cartesian square.

Section 4 contains the definition of the James–Schreier spaces, one for each p ∈ [1,∞),
together with an exposition of their basic theory. Results include: (i) the standard basis
is a monotone basis, shrinking for p > 1, but not unconditional (it will follow from results
in Section 6 that no basis is); (ii) each James–Schreier space contains a complemented
copy of the corresponding Schreier space; (iii) the standard right shift defines a bounded
operator on the James–Schreier spaces only in the trivial cases, but a suitably modified
version of it turns out to be bounded under conditions similar to those found for the
Schreier spaces (see Propositions 4.18(ii) and 4.20).

Sections 5 and 6 contain our two main results: the James–Schreier spaces are c0-satur-
ated (which means that each of their closed, infinite-dimensional subspaces contains a
copy of c0), and they do not have Pełczyński’s property (u), so in particular they do not
embed in a Banach space with an unconditional basis.

As a consequence of these results, we can complete the ‘comparison theory’ of our
spaces: firstly, the James spaces are totally incomparable with both the Schreier and the
James–Schreier spaces (which means that they have no closed, infinite-dimensional sub-
spaces in common), and secondly, no James–Schreier space embeds in a Schreier space,
whereas each Schreier space embeds complementedly in a James–Schreier space, as al-
ready mentioned in (ii) above.

We conclude this introduction with some general conventions on notation and termi-
nology. Throughout, K denotes the scalar field; either K = R or K = C.

By an operator we understand a linear mapping between vector spaces. We write IX
for the identity operator on a vector space X. A functional is a linear mapping from a
vector space to its scalar field. For a functional f on a vector space X and a vector x ∈ X,
we usually write 〈x, f〉 instead of f(x).

Let X be a normed space. For a subset M of X, spanM denotes the linear span
of M in X, while spanM is its closure. We write X ′ for the (continuous) dual of X,
that is, X ′ consists of the bounded functionals on X. The canonical embedding of X
into its bidual X ′′ is denoted by κX , or just κ if reference to X is unnecessary. We say
that two normed spaces X and Y are isomorphic, written X ∼= Y , if there is a linear
homeomorphism from X onto Y .

By a basis for a Banach space X, we shall always understand a Schauder basis, that
is, a sequence (bn)n∈N in X such that, for each x ∈ X, there is a unique sequence (αn)n∈N
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of scalars such that the series
∑∞
n=1 αnbn is norm-convergent with sum x. If this series

converges unconditionally for each x ∈ X, then the basis (bn)n∈N is unconditional. A
sequence (bn)n∈N in a Banach space is a basic sequence if (bn)n∈N is a basis for its closed
linear span, span {bn : n ∈ N}.

For m ∈ N, the mth biorthogonal functional b′m associated with a basis (bn)n∈N for
a Banach space X is given by 〈x, b′m〉 := αm for each x =

∑∞
n=1 αnbn ∈ X. This is a

bounded functional on X, and (b′m)m∈N is a basic sequence in X ′. If (b′m)m∈N is a basis
for X ′ (that is, if span {b′m : m ∈ N} = X ′), then the basis (bn)n∈N is shrinking.

We denote by KN the vector space of all sequences over K; c00 is the subspace of KN

of finitely supported sequences. The vectors

en := (0, 0, . . . , 0, 1
pos. n

, 0, 0, . . .) (n ∈ N) (1.1)

form a Hamel basis for c00, called the standard unit vector basis. For m ∈ N, the mth

coordinate functional is given by

fm : (αn)n∈N 7→ αm, KN → K, (1.2)

and for a set A (usually a subset of N), the natural projection associated with A is the
operator PA : KN → KN whose coordinates are given by

〈PAx, fm〉 :=

{
〈x, fm〉 if m ∈ A
0 otherwise

(m ∈ N, x ∈ KN). (1.3)

This is clearly an idempotent operator. In the special case where A = {1, 2, . . . ,m} for
some m ∈ N, we write Pm instead of PA, that is,

Pm : (αn)n∈N 7→ (α1, . . . , αm, 0, 0, . . .), KN → c00; (1.4)

we call Pm the mth natural projection.
For a set A, we define χA ∈ KN by

〈χA, fm〉 =

{
1 if m ∈ A
0 otherwise

(m ∈ N);

the most important cases are

χ[n,n+k] =
n+k∑
j=n

ej ∈ c00 (n, k ∈ N) and χN = (1, 1, . . . , 1, 1, . . .). (1.5)

Given a set B, we write A b B to indicate that A is a finite subset of B. In the case
where B is totally ordered (typically B = N), we write A = {n1 < n2 < · · · < nk} to
signify that {n1, n2, . . . , nk} is the increasing ordering of A.

We denote by cardA the cardinality of a set A. We shall not be concerned with the
subtleties of infinite cardinalities because we shall only consider cardinalities of subsets
of N; hence we think of cardA as belonging to {0, 1, 2, . . . ,∞}.

2. James’ quasi-reflexive Banach spaces. This section contains a brief survey of
the James spaces and their most important properties, with special emphasis on the
Banach-algebraic aspects; no proofs will be given. However, at the end we shall outline
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James’ original construction because our subsequent work will involve key components
of it. An elementary introduction to the James spaces is given in [30], while a much more
comprehensive account can be found in [18]; both of these references contain full proofs.

The original James space J2 was introduced by James in [22]. His main result states
that this Banach space is isomorphic to its bidual and quasi-reflexive (meaning that the
canonical image of J2 in its bidual has codimension 1). This resolved two major open
problems at the time:

(i) A Banach space with separable bidual need not be reflexive.
(ii) A separable Banach space which is isomorphic to its bidual need not be reflexive.

In a sequel [23], James defined an equivalent norm on J2 with respect to which the space
even becomes isometrically isomorphic to its bidual.

Subsequently, many other interesting properties of the James space have been added
to James’ list; we mention some of the most important here:

(iii) Bessaga and Pełczyński [8] observed that the quasi-reflexivity of J2 implies that
J2 6∼= J2⊕J2, making J2 the first known example of an infinite-dimensional Banach
space which is not isomorphic to its Cartesian square.

(iv) Herman and Whitley [21] proved that J2 is `2-saturated, that is, every closed,
infinite-dimensional subspace of J2 contains a subspace X which is isomorphic to `2;
Casazza, Lin, and Lohman [14] subsequently showed that it is always possible to
choose such an X with the additional property that X is complemented in J2.

(v) Edelstein and Mityagin [17] calculated the homotopy type of the group of in-
vertible operators on J2. As part of this calculation, they noted that the quasi-
reflexivity of J2 has the easy, but algebraically very important, consequence that
the ideal W (J2) of weakly compact operators has codimension 1 in the Banach al-
gebra B(J2) of bounded operators on J2, so that there is a character on B(J2).
No such examples were previously known. Laustsen [25, 26] has subsequently shown
that W (J2) is the unique maximal ideal in B(J2), while the scalar multiples of the
character are the only traces on B(J2).

(vi) Giesy and James [20] have shown that c0 is finitely representable in J2, that is, for
each ε > 0 and each n ∈ N, there is an operator T : `n∞ → J2 such that

(1− ε)‖x‖`n∞ 6 ‖Tx‖J2 6 (1 + ε)‖x‖`n∞ (x ∈ `n∞).

Consequently, J2 does not have finite coptype. In contrast, Pisier [33] has proved
that the dual J ′2 has cotype 2 and, moreover, that J2 has the Gordon–Lewis property
(which means that every 1-summing operator from J2 to an arbitrary Banach space
factors through L1).

(vii) Casazza [13] has shown that J2 is primary, that is, X ∼= J2 or Y ∼= J2 whenever X
and Y are closed, complementary subspaces of J2.

(viii) Andrew and Green [3] have shown that J2 is a Banach algebra with respect to the
pointwise product. Further, this Banach algebra is Arens regular, and its multiplier
algebra can be identified with J ′′2 with the Arens product.

(ix) Loy and Willis [29] have constructed a bounded right approximate identity in the
ideal W (J2) of weakly compact operators on J2. This allowed them to deduce that
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derivations from B(J2) are automatically continuous. Willis [35] has subsequently
generalized this result by showing that homomorphisms from B(J2) are automati-
cally continuous.

(x) Odell and Tylli [31] completed Loy and Willis’ work on bounded approximate iden-
tities in W (J2) by showing that W (J2) also has a bounded left approximate identity
and hence a bounded two-sided approximate identity.

(xi) Laustsen [24] has calculated the K-groups of the Banach algebra B(J2).
(xii) Blanco [11] has proved that the ideal K (J2) of compact operators on J2 is weakly

amenable. It is an open problem if K (J2) is amenable; Blanco and Grønbæk [12]
have recently shown that K (J2 ⊕ J ′2) fails to be amenable.

We shall now take a closer look at the formal definition of the James space and the
strategy which James followed when he proved that it is quasi-reflexive.

2.1. The James spaces. Let 1 6 p <∞. For x = (αn)n∈N ∈ KN and A b N, define

νp(x,A) :=


0 when cardA 6 1;( k∑
j=1

|αnj − αnj+1 |p
) 1
p

when A = {n1 < · · · < nk+1} for some k ∈ N.

Using Minkowski’s inequality, one can easily check that νp( · , A) is a seminorm on KN for
each A b N, and

‖x‖Jp := sup
{
νp(x,A) : A b N

}
= sup

{( k∑
j=1

|αnj − αnj+1 |p
) 1
p

: k, n1, . . . , nk+1 ∈ N, n1 < n2 < · · · < nk+1

}
defines a complete norm on the subspace Jp :=

{
x ∈ c0 : ‖x‖Jp <∞

}
of KN. The Banach

space (Jp, ‖ · ‖Jp) is called the pth James space.

Remark 2.2. James’ original definition corresponds to the case p = 2 above. Edelstein
and Mityagin [17] appear to have been the first to observe that it can be generalized to
arbitrary p > 1 and, moreover, that James’ proof of the quasi-reflexivity of J2 carries over
directly to Jp for each p > 1. The proof does not, however, work for p = 1 because J1 is
isometrically isomorphic to `1 via the mapping (αn)n∈N 7→ (αn − αn+1)n∈N, J1 → `1.

Most of the results (iii)–(xii) listed above have generalizations to Jp for p > 1. We
state the following generalization of (iv) explicitly for later reference.

Proposition 2.3. Let p > 1. Then every closed, infinite-dimensional subspace of Jp
contains a subspace which is isomorphic to `p and complemented in Jp.

The key element in James’ proof [22] that J2 is quasi-reflexive is the following explicit
description of the bidual of a Banach space with a shrinking basis. We follow Megginson’s
presentation [30, Section 4.5].
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2.4. The James representation of the bidual of a Banach space with a shrinking basis.
For a Banach space X with a fixed basis (bn)n∈N, define

‖x‖bip(X) := sup
{∥∥∥ m∑

n=1

αnbn

∥∥∥
X

: m ∈ N
}

(x = (αn)n∈N ∈ KN). (2.1)

Then
bip(X) :=

{
x ∈ KN : ‖x‖bip(X) <∞

}
is a subspace of KN, and ‖ · ‖bip(X) is a complete norm on it.

Now suppose that the basis (bn)n∈N is shrinking. Then the operator Υ: X ′′ → bip(X)
given by Υ(F ) :=

(
〈b′n, F 〉

)
n∈N for each F ∈ X ′′ is an isomorphism which makes the

diagram

X n�

ι
��<<<<<<<<<

� � κ // X ′′

Υ
∼=

�����������

bip(X)

commutative, where ι is the operator x 7→
(
〈x, b′n〉

)
n∈N, while κ is the canonical embed-

ding. The isomorphism Υ is isometric if the basis (bn)n∈N is monotone.

Remark 2.5. There is no standard notation for the Banach space bip(X) considered
in §2.4; we have chosen the letters bip for ‘bounded initial projections’.

2.6. The quasi-reflexivity of the James spaces. The starting point of the proof that Jp
is quasi-reflexive for each p > 1 is the observation that (en)n∈N is a monotone, shrinking
basis for Jp, so that the results of §2.4 apply. One then checks that Jp and KχN are closed,
complementary subspaces of bip(Jp), and we therefore have a commutative diagram

Jp
_�

ι

��

� � κ // J ′′p

Υ∼=
��

Jp ⊕KχN bip(Jp),

where ι is the natural inclusion, κ is the canonical embedding, and Υ is the isometric
isomorphism from §2.4. This shows immediately that κ(Jp) has codimension 1 in J ′′p
and, moreover, if we identify J ′′p with bip(Jp) via Υ, then κ = ι, that is, the canonical
embedding of Jp into its bidual becomes the natural inclusion of Jp into Jp ⊕KχN.

3. The Schreier spaces. Having proved that, for 1 < p <∞, each weakly convergent
sequence (xn)n∈N in Lp[0, 1] has a subsequence (xnj )j∈N whose associated sequence of
arithmetic means,

(
1
m

∑m
j=1 xnj

)
m∈N, is norm-convergent, Banach and Saks [5] went on

to ask if a similar result would be true in C[0, 1]. Schreier [34] answered this question in
the negative; his counterexample was based on the following notion.

Definition 3.1. A subset A of N is admissible if 1 6 cardA 6 minA.
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Thus, an admissible set is non-empty and finite, and for A = {n1 < · · · < nk} b N,
we have

A is admissible ⇔ k 6 n1.

Each non-empty subset of an admissible set is itself admissible; we shall use this simple
observation frequently.

3.2. The unrestricted Schreier spaces. Let 1 6 p < ∞. For x = (αn)n∈N ∈ KN and
A ⊆ N, define µp(x,A) :=

(∑
n∈A |αn|p

) 1
p . (Note: the sum over an empty index set is

zero by convention.) Minkowski’s inequality implies that µp( · , A) is a seminorm on KN

for each A b N, and

‖x‖Zp := sup
{
µp(x,A) : A ⊆ N is admissible

}
= sup

{( k∑
j=1

|αnj |p
) 1
p

: k, n1, . . . , nk ∈ N, k 6 n1 < n2 < · · · < nk

}
then defines a norm on the subspace Zp :=

{
x ∈ KN : ‖x‖Zp <∞

}
of KN. We call ‖ · ‖Zp

the pth Schreier norm and Zp the pth unrestricted Schreier space.

The following lemma records some basic facts about this space; we omit its easy proof.

Lemma 3.3. Let p > 1. Then:

(i) for each m ∈ N, the restriction to Zp of the mth coordinate functional fm given
by (1.2) is bounded with norm 1;

(ii) 〈x, fm〉 → 0 as m→∞ for each x ∈ Zp;
(iii) for each A ⊆ N, Zp is an invariant subspace for the projection PA given by (1.3),

and the restriction to Zp of PA is bounded with norm 1 (except for A = ∅, in which
case PA = 0);

(iv) Zp is a Banach space with respect to the coordinatewise defined operations inherited
from KN and the norm ‖ · ‖Zp .

3.4. The unconditional multiplier constant. Suppose that (bn)n∈N is an unconditional
basic sequence in a Banach space, and let (αn)n∈N be a scalar sequence such that the
series

∑∞
n=1 αnbn converges. Then, for each scalar sequence (βn)n∈N with |βn| 6 |αn| for

each n ∈ N, the series
∑∞
n=1 βnbn converges, and there is a constant K > 1 (independent

of (αn)n∈N and (βn)n∈N) such that
∥∥∑∞

n=1 βnbn
∥∥ 6 K

∥∥∑∞
n=1 αnbn

∥∥. The smallest such
constant K is the unconditional multiplier constant of (bn)n∈N. If K = 1 (the smallest
possible), then (bn)n∈N is 1-unconditional (or monotone unconditional).

Proposition 3.5. For each p > 1, the sequence (en)n∈N given by (1.1) is a normalized,
1-unconditional basic sequence in Zp.

Proof. Clearly we have ‖en‖Zp = 1 for each n ∈ N. Suppose that x =
∑∞
n=1 αnen and

y =
∑∞
n=1 βnen are vectors in c00 with |βn| 6 |αn| for each n ∈ N. This implies that

µp(y,A)p 6 µp(x,A)p for each subset A of N, and consequently ‖y‖Zp 6 ‖x‖Zp . The
conclusion now follows from the 1-unconditional counterpart of Banach’s fundamental
characterization of basic sequences (analogous to [30, Corollary 4.2.33], for instance).
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3.6. The restricted Schreier spaces. Lemma 3.3(iv) and Proposition 3.5 imply that

Sp := span {en : n ∈ N} ⊆ Zp
is a Banach space with a normalized, 1-unconditional basis (en)n∈N for each p > 1. We
call Sp the pth (restricted) Schreier space and refer to (en)n∈N as its standard unit vector
basis. More precisely, we usually call Sp just the pth Schreier space, inserting the adjective
‘restricted’ only if confusion with the unrestricted counterpart Zp seems likely. We write
‖ · ‖Sp for the restriction to Sp of the norm ‖ · ‖Zp .

Note that the mth biorthogonal functional associated with the standard unit vector
basis (en)n∈N for Sp is the restriction to Sp of the mth coordinate functional on KN, that
is, e′m = fm|Sp ; Lemma 3.3(i) implies that this functional has norm 1.

Remark 3.7. The Banach space denoted by S1 in §3.6 is the one which is usually called
the Schreier space in the literature. Beauzamy and Lapresté formally introduced it in [6],
building on ideas from Baernstein’s thesis [4]; an introduction to this work, its context,
and many further developments is given in [15, Chapter 0].

We are not aware of any previous studies of the Banach spaces Zp and Sp for p > 1.

Example 3.8. Let p > 1. As we shall see in Corollary 5.6, Zp contains a subspace iso-
morphic to `∞. Hence Zp is non-separable and cannot, therefore, have a basis, so in
particular Zp is not isomorphic to Sp. The purpose of this example is much simpler,
namely to prove that Sp is a proper subspace of Zp. More precisely, we shall show that
z := (n−

1
p )n∈N ∈ Zp \ Sp.

Suppose that A = {n1 < n2 < · · · < nk} ⊆ N is admissible. Since z is decreasing and
positive, we have

µp(z,A)p =
k∑
j=1

1
nj

6
n1+k−1∑
j=n1

1
j

6
2n1−1∑
j=n1

1
j

6 n1 ·
1
n1

= 1,

so z ∈ Zp with ‖z‖Zp 6 1; in fact, z is a unit vector because 〈z, f1〉 = 1. On the other
hand, z /∈ Sp because, for any y =

∑m
n=1 αnen ∈ c00, the set B := N ∩ (m, 2m + 1] is

admissible, and therefore

‖z − y‖pZp > µp(z − y,B)p =
2m+1∑
n=m+1

1
n

>
∫ 2m+2

m+1

dt
t

= log
2m+ 2
m+ 1

= log 2 > 0.

We shall next prove that the standard unit vector basis for Sp is shrinking for each
p > 1. As a consequence, we obtain a description of the bidual of Sp in terms of Zp.
Our approach relies on the following well-known characterization of shrinking bases (e.g.,
see [1, Proposition 3.2.7]).

Lemma 3.9. A basis (bn)n∈N for a Banach space X is shrinking if and only if every
normalized block basic sequence of (bn)n∈N is a weakly null sequence in X.

The fact that the standard unit vector basis for S1 is shrinking is well-known, although
we have been unable to trace the original source of this result. We shall outline an elegant
proof communicated to us by András Zsák.

Proposition 3.10. The standard unit vector basis (en)n∈N for S1 is shrinking.
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Proof. Each subset A of N induces a functional ωA on c00 via the definition

〈x, ωA〉 :=
∑
n∈A
〈x, fn〉 (x ∈ c00),

and this functional is contractive with respect to the first Schreier norm if and only if the
set A is either empty or admissible. Thus, we may regard

Ω := {ωA : A = ∅ or A ⊆ N admissible}

as a subset of the closed unit ball of S′1, and we have

Ω =
{
f ∈ S′1 : ‖f‖S′1 6 1 and 〈en, f〉 ∈ {0, 1} (n ∈ N)

}
which implies that Ω is weak*-closed and hence weak*-compact by the Banach–Alaoglu
Theorem.

For each x ∈ S1, the mapping Ux : f 7→ 〈x, f〉, Ω → K, is continuous with respect
to the weak*-topology on Ω, so it induces a mapping U : S1 → C(Ω). Straightforward
verifications show that U is linear and contractive. Moreover, U is bounded below by

ε :=


1
2 for K = R
1
4 for K = C

as we shall now prove. It suffices to show that, for each x ∈ c00, there is a subset A of N,
either admissible or empty, such that

∣∣〈x, ωA〉∣∣ > ε‖x‖S1 .
In the case where x has real coordinates, take an admissible subset B of N such that

‖x‖S1 = µ1(x,B). The setsB+ :=
{
n ∈ B : 〈x, fn〉 > 0

}
andB− :=

{
n ∈ B : 〈x, fn〉 < 0

}
are then admissible or empty, and they satisfy

‖x‖S1 = µ1(x,B) =
∑
n∈B+

〈x, fn〉 −
∑
n∈B−

〈x, fn〉 =
∣∣〈x, ωB+〉

∣∣+
∣∣〈x, ωB−〉∣∣,

so we conclude that
∣∣〈x, ωA〉∣∣ > ‖x‖S1/2 holds for either A := B+ or A := B−.

Now suppose that x has complex coordinates and define y :=
∑∞
n=1 Re〈x, fn〉 en and

z :=
∑∞
n=1 Im〈x, fn〉 en. Then x = y + iz, so that ‖x‖S1 6 ‖y‖S1 + ‖z‖S1 and thus

either ‖y‖S1 > ‖x‖S1/2 or ‖z‖S1 > ‖x‖S1/2. We consider the first case only; the second
is similar. As y has real coordinates, the first part of the argument applies, yielding an
admissible (or empty) set A such that

∣∣〈y, ωA〉∣∣ > ‖y‖S1/2, and consequently we have∣∣〈x, ωA〉∣∣ =
∣∣〈y, ωA〉+ i〈z, ωA〉

∣∣ > ∣∣〈y, ωA〉∣∣ > ‖y‖S1

2
>
‖x‖S1

4
,

as required.
In conclusion, U is an isomorphism of S1 onto its image inside C(Ω). Now let (un)n∈N

be a normalized block basic sequence of (en)n∈N in S1. By Lemma 3.9, we must prove that
(un)n∈N is weakly null in S1. This is equivalent to (Uun)n∈N being weakly null in C(Ω)
because the weak topology on the image of U in C(Ω) is just the restriction of the weak
topology on C(Ω). For each ωA ∈ Ω, we have (Uun)(ωA) = 〈un, ωA〉 = 0 eventually be-
cause A ⊆ N is finite, while (un)n∈N is a block basic sequence. Hence (Uun)n∈N converges
pointwise to 0 on Ω. As this sequence is also norm-bounded, [16, Corollary IV.6.4] implies
that it is weakly null in C(Ω), as required.
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The proof above does not work for p > 1, but fortunately an easier route is available
for such p. This relies on the following result.

Lemma 3.11. Let p > 1, and let (un)n∈N be a normalized block basic sequence of the
standard unit vector basis (en)n∈N for Sp. Then the operator

T :
∞∑
n=1

αnen 7→
∞∑
n=1

αnun,
(
c00, ‖ · ‖`p

)
→ Sp,

is contractive, and therefore it extends uniquely to a contractive operator T : `p → Sp.

Proof. Choose integers 0 = M0 < M1 < · · · < Mn−1 < Mn < · · · such that

un ∈ span{ej : Mn−1 < j 6 Mn} (n ∈ N).

Given an admissible subset A of N, define An := A ∩ (Mn−1,Mn] for each n ∈ N. Then
A is the disjoint union of (An)n∈N, and each of the sets An is either empty or admissible.
Hence, for x =

∑∞
n=1 αnen ∈ c00, we have

‖x‖p`p =
∞∑
n=1

|αn|p >
∞∑
n=1

|αn|pµp(un, An)p =
∞∑
n=1

µp(αnun, An)p

=
∞∑
n=1

µp

( ∞∑
j=1

αjuj , An

)p
=
∞∑
n=1

µp(Tx,An)p = µp(Tx,A)p,

and the result follows by taking the supremum over all admissible sets A.

Corollary 3.12. For each p > 1, the standard unit vector basis (en)n∈N for Sp is
shrinking.

Proof. Let (un)n∈N be a normalized block basic sequence of (en)n∈N in Sp, and consider
the contractive operator T : `p → Sp from Lemma 3.11. Since p > 1, the standard unit
vector basis (en)n∈N is a weakly null sequence in `p, so the boundedness of T implies
that the sequence (Ten)n∈N = (un)n∈N is weakly null in Sp. Hence the result follows from
Lemma 3.9.

Lemma 3.13. Let p > 1. Then ‖x‖bip(Sp) = ‖x‖Zp for each x ∈ KN, and so bip(Sp) = Zp.

Proof. Comparing the definitions (2.1) and (1.4), we see that

‖x‖bip(Sp) = sup
{
‖Pmx‖Sp : m ∈ N

}
(x ∈ KN). (3.1)

Hence the inequality ‖x‖bip(Sp) 6 ‖x‖Zp follows from Lemma 3.3(iii) whenever x ∈ Zp;
otherwise (that is, for x ∈ KN \ Zp) it is trivial.

Conversely, let A be an admissible subset of N. Taking m := maxA ∈ N, we obtain

µp(x,A) = µp(Pmx,A) 6 ‖Pmx‖Sp 6 ‖x‖bip(Sp),

and therefore ‖x‖Zp 6 ‖x‖bip(Sp).

3.14. The unrestricted Schreier space and the bidual of Sp. For each p > 1, we can
combine the results of Proposition 3.10, Corollary 3.12, Lemma 3.13, and §2.4 to obtain
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a commutative diagram
Sp

_�

ι

��

� � κ // S′′p

Υ∼=
��

Zp bip(Sp),

where ι is the natural inclusion, κ is the canonical embedding, and Υ is the isometric
isomorphism from §2.4. Thus, if we identify the bidual of Sp with bip(Sp) via Υ, then
κ = ι, that is, the canonical embedding of Sp into its bidual becomes the natural inclusion
of Sp into Zp.

3.15. Shift operators. Let σ : N → N be strictly increasing. We associate with σ two
operators on c00, the left shift Λσ and the right shift Rσ, given by

Λσx :=
∞∑
n=1

ασ(n)en and Rσx :=
∞∑
n=1

αneσ(n)

(
x =

∞∑
n=1

αnen ∈ c00
)
. (3.2)

They are clearly linear, and ΛσRσ = Ic00 , while RσΛσ is the restriction to c00 of the
natural projection Pσ(N) associated with the set σ(N).

Our interest in these operators lies primarily in understanding when they extend to
bounded operators on Sp. In order to treat both cases simultaneously (and for later use,
see the proof of Proposition 4.20 below), we introduce the mixed shift operator Ξτ,ω
associated with a pair of injective mappings τ, ω : N→ N by

Ξτ,ω :
∞∑
n=1

αnen 7→
∞∑
n=1

ατ(n)eω(n), c00 → c00.

Again, Ξτ,ω is clearly linear, and writing ι for the identity mapping n 7→ n, N → N, we
see that Λσ = Ξσ,ι and Rσ = Ξι,σ.

Lemma 3.16. Let p > 1, let τ, ω : N→ N be injective, and suppose that there is a constant
K ∈ N such that ω(n) 6 Kτ(n) for each n ∈ N. Then ‖Ξτ,ωx‖pSp 6 K‖x‖pSp for each

x ∈ c00, and thus Ξτ,ω extends uniquely to a bounded operator on Sp of norm at most K
1
p .

Proof. Let x ∈ c00 and an admissible subset A of N be given. If A ∩ ω(N) = ∅, then
µp(Ξτ,ωx,A) = 0. Otherwise choose B ⊆ N such that A ∩ ω(N) = ω(B), and let
m := min τ(B). Being a non-empty subset of the admissible set A, the set ω(B) is
itself admissible, and this, together with our assumptions on ω and τ , implies that

cardB = cardω(B) 6 minω(B) 6 K min τ(B) = Km,

so we can express B as the union of K disjoint sets B1, . . . , BK , say, each having at
most m elements. Thus each of the sets τ(B1), . . . , τ(BK) is admissible (or empty), and
therefore we have

K‖x‖pSp >
K∑
j=1

µp
(
x, τ(Bj)

)p = µp
(
x, τ(B)

)p =
∑
n∈B

∣∣〈x, fτ(n)〉
∣∣p

=
∑
n∈B

∣∣〈Ξτ,ωx, fω(n)〉
∣∣p = µp

(
Ξτ,ωx, ω(B)

)p = µp(Ξτ,ωx,A)p.

Now the result follows by taking the supremum over all admissible sets A.
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Corollary 3.17. Let p > 1, and let σ : N→ N be strictly increasing. Then:

(i) ‖Λσx‖Sp 6 ‖x‖Sp for each x ∈ c00, so that Λσ extends uniquely to a contractive
operator on Sp, no matter what σ is;

(ii) Rσ is a bounded operator on
(
c00, ‖ · ‖Sp

)
if and only if there is a constant K ∈ N

such that σ(n) 6 Kn for each n ∈ N. In the positive case, Rσ extends uniquely to a
bounded operator of norm at most K

1
p on Sp.

Proof. To prove (i), recall from §3.15 that Λσ = Ξσ,ι. Since σ is strictly increasing, we
have σ(n) > n = ι(n) for each n ∈ N, so that the condition in Lemma 3.16 is satisfied
with K = 1, and therefore Λσ extends to a bounded operator on Sp with norm at most 1.

The implication ‘⇐’ in (ii) and the final clause follow in a similar fashion, so it
only remains to prove ‘⇒’ in (ii). Thus, suppose that Rσ :

(
c00, ‖ · ‖Sp

)
→
(
c00, ‖ · ‖Sp

)
is

bounded, let n ∈ N be given, and consider the unit vector z := (m−
1
p )m∈N ∈ Zp from

Example 3.8. If we define N := n + σ(n) − 1 and A := N ∩ [n,N ], then the set σ(A) is
admissible, and Lemma 3.3(iii) implies that PAz ∈ c00 with norm at most 1, so that

‖Rσ‖p > ‖RσPAz‖pSp > µp
(
RσPAz, σ(A)

)p =
N∑

m=n

∣∣〈RσPAz, fσ(m)〉
∣∣p

=
N∑

m=n

∣∣〈z, fm〉∣∣p =
N∑

m=n

1
m

>
∫ N+1

n

dt
t

= log
N + 1
n

= log
(

1 +
σ(n)
n

)
from which we deduce that

(
e‖Rσ‖

p − 1
)
n > σ(n); hence any integer K > e‖Rσ‖

p − 1 has
the required property.

The following well-known observation will be called upon repeatedly in the sequel.

Remark 3.18. Let X and Y be normed spaces, and let Γ1 : X → Y and Γ2 : Y → X be
bounded operators with Γ1Γ2 = IY . Then P := Γ2Γ1 is a bounded idempotent operator
on X whose image is isomorphic to Y . More precisely, we have imP = im Γ2, and the
‘corestriction’ of Γ2 to imP (that is, the operator y 7→ Γ2y, Y → imP ) is an isomorphism;
its inverse is the restriction of Γ1 to imP .

Corollary 3.19. For each p > 1, the pth Schreier space Sp is isomorphic to its Cartesian
square Sp ⊕ Sp.

Proof. Consider the strictly increasing mappings α, β : N→ N given by

α(n) := 2n− 1 and β(n) := 2n (n ∈ N). (3.3)

Corollary 3.17 shows that the associated shifts Λα, Rα, Λβ , and Rβ extend to bounded
operators on Sp. Consequently, the identities stated in §3.15 immediately after (3.2)
together with Remark 3.18 imply that Qα := RαΛα and Qβ := RβΛβ are bounded
idempotent operators on Sp whose images are isomorphic to Sp, and therefore we have

Sp ⊕ Sp ∼= imQα ⊕ imQβ ∼= Sp,

where the final isomorphism follows from the fact that imQβ = kerQα, so that imQα
and imQβ are closed, complementary subspaces of Sp.
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3.20. Further results. We conclude this section by listing a few results from the literature
on Schreier spaces.

(i) Alspach and Argyros [2] have generalized the notion of admissible subset of N by
introducing the Schreier families of finite subsets of N. The Schreier families are
indexed by the countable ordinals; the first one is exactly the collection of all ad-
missible subsets of N. In analogy with the definition of the pth Schreier space based
on the admissible subsets of N (as presented in this section), one can associate a
pth Schreier space with each Schreier family. There is a substantial body of theory
concerning these spaces in the case p = 1; the case p > 1 appears to be unchartered
territory.

(ii) Gasparis and Leung [19] have studied the complemented subspaces of the first
Schreier space S1 (as well as those of the generalized Schreier spaces of Alspach
and Argyros described above). Their main result is that there are uncountably
many non-isomorphic subspaces among those of the form span {en : n ∈ A}, where
A is an infinite subset of N.

4. Introduction to the James–Schreier spaces. We shall now amalgamate the def-
initions of the pth James space and the pth Schreier space for each p > 1. Recall from §2.1
that, by definition, the pth James norm of x ∈ KN is the supremum of νp(x,A) over
all finite subsets A of N; our idea is to consider only those sets A which satisfy an
admissibility-like condition.

Definition 4.1. A subset A of N is permissible if

2 6 cardA 6 1 + minA.

Thus a permissible set must contain at least two elements and be finite, and for
A = {n1 < n2 < · · · < nk+1} ⊆ N, where k ∈ N, we have

A is permissible ⇔ k 6 n1.

Definition 4.2. Let 1 6 p <∞. For x = (αn)n∈N ∈ KN, we define

‖x‖Wp
:= sup

{
νp(x,A) : A ⊆ N is permissible

}
= sup

{( k∑
j=1

|αnj − αnj+1 |p
) 1
p

: k, n1, . . . , nk+1 ∈ N, k 6 n1 < · · · < nk+1

}
,

and we then let Wp :=
{
x ∈ c0 : ‖x‖Wp

< ∞
}
. We call ‖ · ‖Wp

the pth James–Schreier
norm and Wp the pth unrestricted James–Schreier space.

The following lemma is the James–Schreier counterpart of Lemma 3.3; we omit its
routine proof.

Lemma 4.3. Let p > 1 and m ∈ N. Then:

(i) the restriction to Wp of the mth coordinate functional fm given by (1.2) is bounded
with norm 1;

(ii) Wp is an invariant subspace for the mth natural projection Pm given by (1.4), and
the restriction of Pm to Wp is bounded with norm 1;
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(iii) Wp is a Banach space with respect to the coordinatewise defined operations inherited
from KN and the norm ‖ · ‖Wp

.

We shall next show that, for each p > 1,Wp contains a complemented subspace which
is isomorphic to the unrestricted Schreier space Zp. In the proof we require the following
well-known inequality

|α+ β|p 6 2p−1
(
|α|p + |β|p

)
(p > 1, α, β ∈ K) (4.1)

which is an easy consequence of the convexity of the function t 7→ tp, [0,∞)→ [0,∞).

Definition 4.4. For x = (αn)n∈N ∈ KN, let

Φx := (0, α1, 0, α2, 0, α3, . . .) ∈ KN and Ψx := (α2n − α2n−1)n∈N ∈ KN. (4.2)

Proposition 4.5. Let p > 1. The first equation in (4.2) defines a bounded operator Φ
from Zp to Wp of norm at most 21+ 1

p , while the second defines a bounded operator Ψ
from Wp to Zp of norm 1. These operators satisfy ΨΦ = IZp , and hence ΦΨ is idempotent
with

im(ΦΨ) =
{

(αn)n∈N ∈Wp : α2n−1 = 0 (n ∈ N)
} ∼= Zp.

Proof. Considered as mappings on KN, Φ and Ψ are clearly both linear, so to establish
the first part of the proposition, it suffices to show that

(i) Φx ∈Wp with ‖Φx‖Wp
6 21+ 1

p ‖x‖Zp for each x ∈ Zp; and
(ii) Ψx ∈ Zp with ‖Ψx‖Zp 6 ‖x‖Wp for each x ∈Wp, with equality for some x ∈Wp.

To prove (i), let x ∈ Zp be given. Lemma 3.3(ii) implies that x ∈ c0, and therefore
Φx ∈ c0 by the definition of Φ. Now suppose that A = {n1 < n2 < · · · < nk+1} is
a permissible subset of N. If A ∩ 2N = ∅, then νp(Φx,A) = 0. Otherwise we choose
`,m1, . . . ,m` ∈ N such that A ∩ 2N = {2m1 < 2m2 < · · · < 2m`}. Using the in-
equality (4.1), we obtain

νp(Φx,A)p =
k∑
j=1

∣∣〈Φx, fnj − fnj+1〉
∣∣p 6 2p−1

k∑
j=1

(∣∣〈Φx, fnj 〉∣∣p +
∣∣〈Φx, fnj+1〉

∣∣p)
6 2pµp(Φx,A)p = 2pµp(Φx,A ∩ 2N)p = 2pµp(x,B)p, (4.3)

where we have introduced B := {m1 < m2 < · · · < m`} ⊆ N. Now let h := min{m1, `},
B1 := {m1 < m2 < · · · < mh} ⊆ N, and B2 := B \B1 ⊆ N; we claim that

µp(x,Bj) 6 ‖x‖Zp (j = 1, 2). (4.4)

This is immediate for j = 1 because the definition of h ensures that B1 is admissible.
If h = `, then B2 = ∅, so that (4.4) is satisfied for j = 2 by convention. Otherwise
h = m1 < ` and B2 = {mh+1 < mh+2 < · · · < m`}, so that B2 is admissible because

minB2 = mh+1 > mh + 1 > mh−1 + 2 > · · · > m1 + h

= 2m1 > minA > (cardA)− 1 > `− 1 > `− h = cardB2,

and (4.4) for j = 2 follows. Since B is the disjoint union of B1 and B2, we conclude that

µp(x,B)p = µp(x,B1)p + µp(x,B2)p 6 2‖x‖pZp .
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Substituting this into (4.3) and then taking the supremum over all permissible sets A,
we see that (i) is satisfied.

To prove (ii), let x ∈ Wp, and suppose that A = {n1 < n2 < · · · < nk} ⊆ N is
admissible, so that k 6 n1. Then the set B := {2nj − 1, 2nj : 1 6 j 6 k} ⊆ N is
permissible because cardB = 2k 6 2n1 = 1 + minB, and consequently we have

‖x‖pWp
> νp(x,B)p

=
k−1∑
j=1

(∣∣〈x, f2nj−1 − f2nj 〉
∣∣p +

∣∣〈x, f2nj − f2nj+1−1〉
∣∣p)+

∣∣〈x, f2nk−1 − f2nk〉
∣∣p

>
k∑
j=1

∣∣〈x, f2nj−1 − f2nj 〉
∣∣p =

k∑
j=1

∣∣〈Ψx, fnj 〉∣∣p = µp(Ψx,A)p.

Taking the supremum over all admissible sets A, we conclude that ‖x‖Wp
> ‖Ψx‖Zp ,

as required. Since Ψe1 = −e1 and e1 is a unit vector in both Wp and Zp, equality does
occur. This completes the proof of (ii).

Direct application of the definitions (4.2) shows that ΨΦ = IZp , so Remark 3.18
implies that P := ΦΨ is a bounded idempotent operator with image isomorphic to Zp,
and clearly

imP ⊆
{

(αn)n∈N ∈Wp : α2n−1 = 0 (n ∈ N)
}
.

Conversely, suppose that x = (αn)n∈N ∈Wp satisfies α2n−1 = 0 for each n ∈ N; then we
have

imP 3 Px = ΦΨx = Φ(α2n)n∈N = (0, α2, 0, α4, 0, α6, . . .) = x,

as required.

Remark 4.6. We can now give an easy proof of Lemma 3.3(iv). Indeed, Proposition 4.5
implies that Zp is isomorphic to a complemented subspace ofWp, which is a Banach space
by Lemma 4.3(iii). Complemented subspaces are automatically closed, hence complete,
and therefore Zp is also complete.

Proposition 4.7. For each p > 1, the sequence (en)n∈N given by (1.1) is a monotone
basic sequence in Wp.

Proof. Lemma 4.3(ii) implies that ‖Pmx‖Wp 6 ‖x‖Wp for each x ∈ c00 and m ∈ N, and
hence the result follows from the monotone version of Banach’s fundamental characteriza-
tion of basic sequences (e.g., see [27, Proposition 1.a.3] or [30, Corollary 4.1.25]).

4.8. The restricted James–Schreier spaces. Lemma 4.3(iii) and Proposition 4.7 imply
that

Vp := span {en : n ∈ N} ⊆Wp

is a Banach space with a monotone basis (en)n∈N for each p > 1. We call Vp the pth

(restricted) James–Schreier space and refer to (en)n∈N as its standard basis. As in the
case of the Schreier spaces, we omit the adjective ‘restricted’, unless confusion with Wp

seems likely. We write ‖ · ‖Vp for the restriction to Vp of the norm ‖ · ‖Wp
.
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Note that the mth biorthogonal functional associated with the standard basis (en)n∈N
for Vp is the restriction to Vp of the mth coordinate functional on KN, that is, e′m = fm|Vp ;
this functional has norm 1 by Lemma 4.3(i).

Remark 4.9. (i) Only the first two basis vectors e1 and e2 are normalized in the pth

James–Schreier norm; for n > 3, we have ‖en‖Vp = νp
(
en, {n− 1, n, n+ 1}

)
= 2

1
p .

(ii) The standard basis (en)n∈N for Vp is not unconditional because χ[1,2n] is a unit
vector for each n ∈ N, whereas∥∥∥ 2n∑
j=1

(−1)jej
∥∥∥
Vp

= νp

( 2n∑
j=1

(−1)jej , {n, n+ 1, . . . , 2n}
)

= 2n
1
p →∞ as n→∞.

We shall prove a much stronger result in Section 6.

We observe next that Proposition 4.5 carries over to the restricted spaces.

Proposition 4.10. Let p > 1. The first equation in (4.2) defines a bounded operator Φ
from Sp to Vp of norm at most 21+ 1

p , while the second defines a bounded operator Ψ from
Vp to Sp of norm 1. These operators satisfy ΨΦ = ISp , and hence ΦΨ is idempotent with

im(ΦΨ) = span {e2n : n ∈ N} ∼= Sp.

Proof. The operators Φ and Ψ given by (4.2) clearly leave c00 invariant. Since c00 is dense
in both Sp and Vp, and Φ and Ψ are bounded on the unrestricted spaces Zp and Wp,
we conclude that Φ(Sp) ⊆ Vp and Ψ(Vp) ⊆ Sp. The result is now easy to deduce from
Proposition 4.5.

The following example is the James–Schreier analogue of Example 3.8.

Example 4.11. Let p > 1. Using the vector z := (n−
1
p )n∈N ∈ Zp \Sp from Example 3.8,

we can easily verify that Vp is a proper subspace of Wp. Indeed, Proposition 4.5 implies
that y := Φz ∈ Wp, but y /∈ Vp because if it were, Ψy ∈ Sp by Proposition 4.10,
contradicting that Ψy = z /∈ Sp.

The much stronger conclusion that Wp 6∼= Vp will follow from Section 5.

We shall next show that the standard basis for Vp is shrinking whenever p > 1; this
will enable us to describe the bidual of Vp in terms of Wp.

Proposition 4.12. For each p > 1, the standard basis (en)n∈N for Vp is shrinking.

The proof of this result is identical to that of Corollary 3.12 provided that the operator T
from Lemma 3.11 is replaced with the operator U from the following lemma throughout.

Lemma 4.13. Let p > 1, and let (un)n∈N be a normalized block basic sequence of the
standard basis (en)n∈N for Vp. Then the operator

U :
∞∑
n=1

αnen 7→
∞∑
n=1

αnun,
(
c00, ‖ · ‖`p

)
→ Vp,

is bounded, and therefore it extends uniquely to a bounded operator U : `p → Vp.

Proof. As in the proof of Lemma 3.11, choose integers 0 = M0 < M1 < · · · < Mn < · · ·
such that un ∈ span{ej : Mn−1 < j 6 Mn} for each n ∈ N. Given a permissible subset A
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of N, take natural numbers k and n1 < n2 < · · · < nk such that

A ∩ (Mn−1,Mn] 6= ∅ ⇔ n ∈ {n1, n2, . . . , nk} (n ∈ N),

and define Aj := A ∩ (Mnj−1,Mnj ] for each j ∈ {1, . . . , k}. Then A is the disjoint union
of the sets A1, . . . , Ak, each of which is either a singleton or permissible, and for each
x =

∑∞
n=1 αnen ∈ c00, we have

νp(Ux,A)p =
k∑
j=1

νp(Ux,Aj)p +
k−1∑
j=1

∣∣〈Ux, fmaxAj − fminAj+1〉
∣∣p

6
by (4.1)

k∑
j=1

νp(αnjunj , Aj)
p + 2p−1

k−1∑
j=1

(∣∣〈Ux, fmaxAj 〉
∣∣p +

∣∣〈Ux, fminAj+1〉
∣∣p)

6
k∑
j=1

|αnj |p‖unj‖
p
Vp

+ 2p−1
k−1∑
j=1

(
|αnj |p

∣∣〈unj , fmaxAj 〉
∣∣p + |αnj+1 |p

∣∣〈unj+1 , fminAj+1〉
∣∣p)

6 (2p + 1)
k∑
j=1

|αnj |p 6 (2p + 1)‖x‖p`p .

The result now follows by taking the supremum over all permissible sets A.

We have not been able to decide whether or not Proposition 4.12 is true for p = 1.

Question 4.14. Is the standard basis (en)n∈N for V1 shrinking?

Note added in proof. Question 4.14 has been answered in the positive; see [10].

Lemma 4.15. Let p > 1. Then Wp and KχN are closed, complementary subspaces of
bip(Vp), and ‖w‖Wp

= ‖w‖bip(Vp) for each w ∈Wp.

Proof. We have Wp ∩KχN = {0} because Wp ⊆ c0 by definition.
Lemma 4.3(ii) implies that

‖w‖bip(Vp) 6 ‖w‖Wp
(w ∈Wp), (4.5)

so that in particular Wp ⊆ bip(Vp). Moreover, χN ∈ bip(Vp) because PmχN = χ[1,m] is a
unit vector in Vp for each m ∈ N, and consequently Wp + KχN ⊆ bip(Vp).

Conversely, suppose that x ∈ bip(Vp). We claim that the sequence x =
(
〈x, fn〉

)
n∈N

is convergent in K. If not, x fails to be a Cauchy sequence, so we can find ε > 0 and
integers 1 = N1 < N2 < · · · < Nj < Nj+1 < · · · such that

∣∣〈x, fNj − fNj+1〉
∣∣ > ε for each

j ∈ N. Take k ∈ N such that kεp > ‖x‖pbip(Vp)
, and choose m ∈ N such that Nm > k. The

set A := {Nm < Nm+1 < · · · < Nm+k} is then permissible, and therefore we have

‖x‖pbip(Vp)
> νp(PNm+kx,A)p =

m+k−1∑
j=m

∣∣〈x, fNj − fNj+1〉
∣∣p > kεp > ‖x‖pbip(Vp)

which is clearly absurd. Thus x is convergent with limit α ∈ K, say.
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We now claim that w := x−αχN belongs toWp; indeed, w ∈ c0 by the choice of α, and

‖w‖Wp 6 ‖x‖bip(Vp) (4.6)

because, for each permissible subset A = {n1 < n2 < · · · < nk+1} of N, we have

νp(w,A)p =
k∑
j=1

∣∣∣(〈x, fnj 〉 − α)− (〈x, fnj+1〉 − α
)∣∣∣p = νp(Pnk+1x,A)p 6 ‖x‖pbip(Vp)

.

Hence we conclude that x = w + αχN ∈Wp + KχN, and therefore bip(Vp) = Wp + KχN.
To complete the proof, we note that if x ∈ Wp in the argument given above, then

α = 0, so that w = x, and therefore (4.5)–(4.6) combine to show that ‖w‖Wp = ‖w‖bip(Vp)

for each w ∈ Wp. In particular, this implies that the subspace Wp is closed in bip(Vp)
because it is complete with respect to the norm ‖ · ‖Wp and thus also with respect
to ‖ · ‖bip(Vp). The subspace KχN is closed because it is finite-dimensional.

Remark 4.16. Lemma 4.15 can be rephrased as follows:
(
bip(Vp), ‖ · ‖bip(Vp)

)
contains(

Wp, ‖ · ‖Wp

)
isometrically, and λ : (αn)n∈N 7→ limn→∞ αn defines a bounded functional

on bip(Vp) whose kernel is Wp.

4.17. The unrestricted James–Schreier space and the bidual of Vp. For p > 1, we can
summarize our findings in the commutative diagram

Vp
_�

ι

��

� � κ // V ′′p

Υ∼=
��

Wp
� � ι // Wp ⊕KχN bip(Vp),

where both ι’s are the natural inclusions, κ is the canonical embedding, and Υ is the iso-
metric isomorphism from §2.4. Thus, if we identify the bidual of Vp with bip(Vp) via Υ,
then κ = ι, that is, the canonical embedding of Vp into its bidual becomes the natural
inclusion of Vp into Wp ⊕KχN.

Finally in this section we take a look at shift operators on the James–Schreier spaces.
We begin with an easy result that characterizes the increasing mappings σ : N → N for
which the associated left and right shifts Λσ and Rσ (as defined in (3.2)) are bounded as
operators on

(
c00, ‖ · ‖Vp

)
.

Proposition 4.18. Let p > 1, and let σ : N→ N be strictly increasing. Then:

(i) ‖Λσx‖Vp 6 ‖x‖Vp for each x ∈ c00, so that Λσ extends uniquely to a contractive
operator on Vp, no matter what σ is;

(ii) the operator Rσ is bounded on
(
c00, ‖ · ‖Vp

)
if and only if σ(N) is cofinite in N.

Proof. (i). Given x ∈ c00 and a permissible subset A = {n1 < · · · < nk+1} of N, we have

νp(Λσx,A)p =
k∑
j=1

∣∣〈Λσx, fnj − fnj+1〉
∣∣p =

k∑
j=1

∣∣〈x, fσ(nj) − fσ(nj+1)〉
∣∣p

= νp
(
x, σ(A)

)p
6 ‖x‖pVp ,
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where the final inequality follows from the fact that the set σ(A) is permissible (because
σ is strictly increasing).

(ii). It is easy to see that Rσ is bounded if σ(N) is cofinite in N.
Conversely, suppose that the set N \ σ(N) is infinite, and take a strictly increasing

sequence (mj)j∈N of natural numbers such that σ(mj) + 1 /∈ σ(N) for each j ∈ N. Then,
for given k ∈ N, we can find n ∈ N such that σ(mn) > 2k + 1. This implies that the set
A :=

{
σ(mj), σ(mj) + 1 : n 6 j 6 n+ k

}
is permissible, and therefore we have

‖Rσχ[1,mn+k]‖
p
Vp

> νp(Rσχ[1,mn+k], A)p = 2k + 1.

Since ‖χ[1,m]‖Vp = 1, no matter what m ∈ N is, while (2k + 1)
1
p → ∞ as k → ∞, we

conclude that the operator Rσ is unbounded on
(
c00, ‖ · ‖Vp

)
.

Thus, if we want to right-shift elements of Vp in a non-trivial way, a different approach
which does not introduce ‘gaps’ between coordinates is required. This is the motivation
behind the following definition.

Definition 4.19. Let σ : N → N be strictly increasing. We associate with σ the block
right shift

Θσ :
∞∑
n=1

αnen 7→
∞∑
n=1

αnχ(σ(n−1),σ(n)], c00 → c00, (4.7)

with the standing convention that σ(0) := 0.

This block right shift is bounded on
(
c00, ‖·‖Vp

)
under exactly the same condition that

the usual right shift is bounded on
(
c00, ‖ · ‖Sp

)
(see Corollary 3.17(ii)), as the following

proposition shows; this result will be important in the study [9] of Vp as a Banach algebra.

Proposition 4.20. Let p > 1, and let σ : N → N be strictly increasing. The block right
shift Θσ is bounded on

(
c00, ‖ · ‖Vp

)
if and only if there is a constant K ∈ N such that

σ(n) 6 Kn for each n ∈ N. In the positive case, Θσ extends uniquely to a bounded
operator of norm at most K

1
p on Vp.

Proof. ⇐. Suppose that there is a constant K ∈ N such that σ(n) 6 Kn for each n ∈ N,
and let x ∈ c00 and a permissible subset A of N be given. Take natural numbers k and
m1 < m2 < · · · < mk and non-empty sets A1, . . . , Ak with Aj ⊆

(
σ(mj − 1), σ(mj)

]
for

each j ∈ {1, . . . , k} (with the convention that σ(0) = 0) such that A =
⋃k
j=1Aj . If k = 1,

then νp(Θσx,A) = 0, whereas for k > 2, we have

νp(Θσx,A)p =
k−1∑
j=1

(
νp(Θσx,Aj)p +

∣∣〈Θσx, fmaxAj − fminAj+1〉
∣∣p)+ νp(Θσx,Ak)p

=
k−1∑
j=1

∣∣〈Θσx, fmaxAj − fminAj+1〉
∣∣p =

k−1∑
j=1

∣∣〈x, fmj − fmj+1〉
∣∣p. (4.8)

The permissibility of A and our assumption on σ imply that

k 6 cardA 6 1 + minA 6 1 + σ(m1) 6 1 +Km1. (4.9)

If this inequality is strict, choose integers m1+Km1 > mKm1 > · · · > mk+1, all greater
than mk. We can then define Bj := {mh : (j − 1)m1 + 1 6 h 6 jm1 + 1} ⊆ N for each
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j = {1, . . . ,K}, and this set is permissible because cardBj = 1+m1 6 1+minBj . Hence
we conclude that

K‖x‖pVp >
K∑
j=1

νp
(
x,Bj)p =

Km1∑
j=1

∣∣〈x, fmj − fmj+1〉
∣∣p > νp(Θσx,A)p,

where the final inequality follows from (4.8)–(4.9). Taking the supremum over all permis-
sible sets A, we obtainK‖x‖pVp > ‖Θσx‖pVp , so that Θσ is bounded with norm at mostK

1
p .

⇒. Conversely, suppose that Θσ is bounded on
(
c00, ‖ · ‖Vp

)
, and consider the strictly

increasing mappings γ, τ : N→ N given by γ(n) := 2n+ 1 and τ(n) := σ(2n− 1) + 1 for
each n ∈ N. We then see that the diagram(

c00, ‖ · ‖Sp
)

Φ
��

Rσ //
(
c00, ‖ · ‖Sp

)

(
c00, ‖ · ‖Vp

)
Θσ

��

(
c00, ‖ · ‖Sp

)Ξτ,σ

OO

(
c00, ‖ · ‖Vp

) Θγ //
(
c00, ‖ · ‖Vp

)Ψ

OO

is commutative because

Ξτ,σΨΘγΘσΦen = Ξτ,σΨΘγΘσe2n = Ξτ,σΨΘγχ(σ(2n−1),σ(2n)]

= Ξτ,σΨχ(2σ(2n−1)+1,2σ(2n)+1] = Ξτ,σ(eσ(2n−1)+1 − eσ(2n)+1)

= Ξτ,σeτ(n) − Ξτ,σeσ(2n)+1 = eσ(n) − 0 = Rσen (n ∈ N).

Moreover, the operators Φ, Θσ, Θγ , Ψ, and Ξτ,σ are all bounded with respect to the
norms on their domains and codomains specified in the diagram; this follows from Propo-
sition 4.10 for Φ and Ψ, from our assumption for Θσ, from the implication ‘⇐’ proved
above for Θγ (because γ(n) = 2n+1 6 3n for each n ∈ N), and from Lemma 3.16 for Ξτ,σ
(because σ(n) 6 σ(2n− 1) + 1 = τ(n) for each n ∈ N). Hence the commutativity of the
diagram implies that Rσ is bounded, and therefore we have σ(n) 6 Kn for each n ∈ N
by Corollary 3.17(ii).

Recall that the pth James space Jp is not isomorphic to its Cartesian square for any
p > 1, whereas we saw in Corollary 3.19 that the pth Schreier space Sp is isomorphic to
its Cartesian square for each p > 1. We have not been able to answer the corresponding
question for the James–Schreier spaces.

Question 4.21. Let p > 1. Is the pth James–Schreier space Vp isomorphic to its Cartesian
square Vp ⊕ Vp?

5. The James–Schreier spaces are c0-saturated

Definition 5.1. Let X and Y be infinite-dimensional Banach spaces. We say that X is
Y -saturated if each closed, infinite-dimensional subspace of X contains a subspace which
is isomorphic to Y .
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The aim of this section is to prove the following result.

Theorem 5.2. For each p > 1, the pth James–Schreier space Vp is c0-saturated.

We isolate the key step in the proof of Theorem 5.2 in the following lemma.

Lemma 5.3. Let p > 1. Every block basic sequence of the standard basis for Vp has a
block basic sequence which is equivalent to the standard unit vector basis for c0.

Proof. Suppose that (un)n∈N is a block basic sequence of (en)n∈N, and choose integers
0 = L0 < L1 < L2 < · · · such that un ∈ span{ej : Ln−1 < j 6 Ln} for each n ∈ N. By
induction, we shall construct sequences (Mn)n∈N and (Nn)n∈N of natural numbers with
M1 6 N1 < M2 6 N2 < · · · and a sequence (vn)n∈N of unit vectors in Vp such that

vn ∈ span{uj : Mn 6 j 6 Nn} and
∣∣〈vn+1, fk〉

∣∣ 6 L
− 1
p

Nn
(n, k ∈ N). (5.1)

To start the induction, take M1 := N1 := 1 and v1 := u1/‖u1‖Vp ∈ Vp. Then v1 is a
unit vector which satisfies the first part of (5.1) by definition; the second part is void in
this case.

Now let n ∈ N, and assume that natural numbers M1 6 N1 < · · · < Mn 6 Nn and
unit vectors v1, . . . , vn in Vp have been chosen in accordance with (5.1).

If there is an integer m > Nn such that
∣∣〈um, fk〉∣∣ 6 L

− 1
p

Nn
‖um‖Vp for each k ∈ N,

then we can simply take Mn+1 := Nn+1 := m and vn+1 := um/‖um‖Vp ∈ Vp.
Otherwise, for each m > Nn, we can find km ∈ N such that∣∣〈um, fkm〉∣∣ > L

− 1
p

Nn
‖um‖Vp . (5.2)

In particular, 〈um, fkm〉 6= 0, so that

Lm−1 < km 6 Lm, (5.3)

and therefore the sequence (km)∞m=Nn+1 is strictly increasing. We now choose an integer
K > 2−p(L2

Nn
− 1) + 1, we then pick an integer Mn+1 > Nn such that kMn+1 > K, and

finally we define Nn+1 := Mn+1 + K − 1 > Mn+1. These choices ensure that the set
A := {km : Mn+1 6 m 6 Nn+1 + 1} is permissible, and consequently we can estimate
the James–Schreier norm of the vector

w :=
Nn+1∑

j=Mn+1

αjuj ∈ Vp, where αj :=
(−1)j 〈uj , fkj 〉∣∣〈uj , fkj 〉∣∣ · ‖uj‖Vp ∈ K, (5.4)

as follows:

‖w‖pVp > νp(w,A)p =
Nn+1∑

m=Mn+1

∣∣∣ Nn+1∑
j=Mn+1

αj
(
〈uj , fkm〉 − 〈uj , fkm+1〉

)∣∣∣p

=
by (5.3)

Nn+1−1∑
m=Mn+1

∣∣αm〈um, fkm〉 − αm+1〈um+1, fkm+1〉
∣∣p +

∣∣αNn+1〈uNn+1 , fkNn+1
〉
∣∣p
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=
by (5.4)

Nn+1−1∑
m=Mn+1

(∣∣〈um, fkm〉∣∣
‖um‖Vp

+

∣∣〈um+1, fkm+1〉
∣∣

‖um+1‖Vp

)p
+
(∣∣〈uNn+1 , fkNn+1

〉
∣∣

‖uNn+1‖Vp

)p

>
by (5.2)

Nn+1−1∑
m=Mn+1

(
2L
− 1
p

Nn

)p +
(
L
− 1
p

Nn

)p =
2p(K − 1) + 1

LNn
> LNn (5.5)

by the choice of K. In particular we have w 6= 0, so vn+1 := w/‖w‖Vp defines a unit
vector in Vp, and (5.4) implies that this vector satisfies the first part of (5.1). To verify
the second part, we use the fact that (uj)j∈N is a block basic sequence to obtain∣∣〈vn+1, fk〉

∣∣ =
1

‖w‖Vp
max{|αj 〈uj , fk〉| : Mn+1 6 j 6 Nn+1}

=
1

‖w‖Vp
max

{∣∣〈uj , fk〉∣∣
‖uj‖Vp

: Mn+1 6 j 6 Nn+1

}
6

1
‖w‖Vp

6 L
− 1
p

Nn
(k ∈ N),

where the final inequality follows from (5.5). Hence the induction continues.
We shall next show that the block basic sequence (vn)n∈N constructed above is equiv-

alent to the standard unit vector basis of c0; this will clearly complete the proof. To this
end, we consider the linear mapping

U :
∞∑
n=1

βnen 7→
∞∑
n=1

βnvn,
(
c00, ‖ · ‖c0

)
→ Vp.

Our aim is to show that U is an isomorphism onto its image, that is, we want to prove
that there are constants C1, C2 > 0 such that

C1‖x‖c0 6 ‖Ux‖Vp 6 C2‖x‖c0 (x ∈ c00). (5.6)

Given x =
∑∞
n=1 βnen ∈ c00, take ` ∈ N such that ‖x‖c0 = |β`|. Then we have

‖x‖c0 = ‖β`v`‖Vp

=

{
‖PLN1

(Ux)‖Vp 6 ‖PLN1
‖ ‖Ux‖Vp for ` = 1∥∥(PLN` − PLN`−1

)Ux
∥∥
Vp

6 ‖PLN` − PLN`−1
‖ ‖Ux‖Vp for ` > 2

}
6 2‖Ux‖Vp

by Lemma 4.3(ii). Hence the first inequality in (5.6) holds with C1 := 1/2.
To prove the second, let a permissible subset A = {n1 < n2 < · · · < nk+1} of N be

given. Choose h ∈ N minimal such that n1 6 LNh , and then take g ∈ {1, . . . , k + 1}
maximal such that ng 6 LNh . If g = k + 1, then A ⊆ (LNh−1 , LNh ] (with N0 := 0 if
h = 1), and we have

νp(Ux,A)p = νp(βhvh, A)p 6 ‖βhvh‖pVp = |βh|p 6 ‖x‖pc0 . (5.7)

Otherwise (that is, when g 6 k) we write

νp(Ux,A)p =
g−1∑
j=1

∣∣〈Ux, fnj − fnj+1〉
∣∣p +

∣∣〈Ux, fng − fng+1〉
∣∣p +

k∑
j=g+1

∣∣〈Ux, fnj − fnj+1〉
∣∣p,

where we ignore the left-hand sum if g = 1 and the right-hand sum if g = k. Application
of the inequality (4.1) to the middle term and the right-hand sum (but not the left-hand
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sum) yields

νp(Ux,A)p 6
g−1∑
j=1

∣∣〈Ux, fnj − fnj+1〉
∣∣p + 2p−1

(∣∣〈Ux, fng 〉∣∣p +
∣∣〈Ux, fng+1〉

∣∣p)

+ 2p−1
( k∑
j=g+1

∣∣〈Ux, fnj 〉∣∣p +
∣∣〈Ux, fnj+1〉

∣∣p)

6 2p−1
(g−1∑
j=1

∣∣〈Ux, fnj − fnj+1〉
∣∣p +

∣∣〈Ux, fng 〉∣∣p)+ 2p
k+1∑
j=g+1

∣∣〈Ux, fnj 〉∣∣p.
We estimate the two terms on the right-hand side of this inequality separately. Firstly,
the set B := {n1 < n2 < · · · < ng < LNh + 1} is permissible because g 6 k 6 n1, and
therefore we have

g−1∑
j=1

∣∣〈Ux, fnj − fnj+1〉
∣∣p +

∣∣〈Ux, fng 〉∣∣p = νp(βhvh, B)p 6 ‖βhvh‖pVp = |βh|p 6 ‖x‖pc0 .

Secondly, we observe that

k+1∑
j=g+1

|〈Ux, fnj 〉|p 6 (k − g + 1) sup{|〈Ux, fn〉|p : n > ng+1}

6 k sup{|〈Ux, fn〉|p : n > LNh}

= k sup{|βj |p |〈vj , fn〉|p : n > LNh , j > h} 6 k ‖x‖pc0(L
− 1
p

Nh
)p 6 ‖x‖pc0

because k 6 n1 6 LNh . Hence we conclude that

νp(Ux,A)p 6 2p−1‖x‖pc0 + 2p ‖x‖pc0 = 3 · 2p−1‖x‖pc0 ,

and this, together with (5.7), shows that the second inequality in (5.6) is satisfied with
C2 := (3 · 2p−1)

1
p = 3

1
p · 21− 1

p .

Proof of Theorem 5.2. Let X be a closed, infinite-dimensional subspace of Vp. By a the-
orem of Bessaga and Pełczyński (see [7], or [27, Proposition 1.a.11] for an exposition),
X contains a sequence (xn)n∈N which is equivalent to a block basic sequence (un)n∈N
of the standard basis for Vp. Lemma 5.3 implies that (un)n∈N has a block basic se-
quence (vn)n∈N which is equivalent to the standard unit vector basis for c0. Since (un)n∈N
is equivalent to (xn)n∈N, (vn)n∈N is equivalent to a block basic sequence of (xn)n∈N,
say (yn)n∈N, and consequently we have

X ⊇ span {xn : n ∈ N} ⊇ span {yn : n ∈ N} ∼= span {vn : n ∈ N} ∼= c0,

as desired.

Corollary 5.4. For each p > 1, the pth Schreier space Sp is c0-saturated.

Proof. This is immediate from the fact that Vp contains a subspace isomorphic to Sp (see
Proposition 4.10).
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Remark 5.5. (i) Corollary 5.4 is known in the case p = 1 (e.g., see [15]).
(ii) Proposition 2.3, which is the counterpart of Theorem 5.2 and Corollary 5.4 for

James spaces, appears to be formally stronger as it states that every closed, infinite-
dimensional subspace of Jp contains a complemented subspace which is isomorphic
to `p; however, Sobczyk’s Theorem (e.g., see [27, Theorem 2.f.5]) implies that every
subspace of Vp or Sp (or any other separable Banach space) which is isomorphic
to c0 is complemented.

(iii) Corollary 5.4 implies that `1 does not embed in Sp for each p > 1. Since (en)n∈N is an
unconditional basis for Sp, a well-known theorem of James [22] shows that (en)n∈N
is shrinking, thus giving an alternative proof of Proposition 3.10 and Corollary 3.12.

Corollary 5.6. For each p > 1, the pth unrestricted Schreier space Zp contains a
subspace which is isomorphic to `∞; the same is true for the pth unrestricted James–
Schreier space Wp.

Proof. Since Sp contains a subspace which is isomorphic to c0, its bidual S′′p contains a
subspace which is isomorphic to c′′0 ∼= `∞; this proves the first clause because Zp ∼= S′′p
by §3.14. The second follows immediately from this because Proposition 4.5 implies
that Wp contains a subspace which is isomorphic to Zp.

Definition 5.7. Two infinite-dimensional Banach spaces X and Y are totally incompa-
rable if no closed, infinite-dimensional subspace of X is isomorphic to a subspace of Y .

Any two distinct spaces from the family {`p : 1 6 p <∞} ∪ {c0} are totally incompa-
rable, as is well-known (e.g., see [27, p. 54]).

Lemma 5.8. Let X1, X2, Y1, and Y2 be infinite-dimensional Banach spaces, and suppose
that Xj is Yj-saturated for j = 1, 2 and that Y1 and Y2 are totally incomparable. Then
X1 and X2 are totally incomparable.

Proof. Assume towards a contradiction that E is a closed, infinite-dimensional subspace
of X1 which is isomorphic to a subspace of X2. Then E contains a subspace F which is
isomorphic to Y1. Since F is isomorphic to a subspace of X2, it contains a subspace which
is isomorphic to Y2, contradicting that Y1 and Y2 are totally incomparable.

Corollary 5.9. Let p, q > 1. Then:

(i) `p and Sq are totally incomparable;
(ii) `p and Vq are totally incomparable;
(iii) Jp and Sq are totally incomparable;
(iv) Jp and Vq are totally incomparable.

Proof. We apply Lemma 5.8 with X1 := `p or X1 := Jp, X2 := Sq or X2 := Vq,
and Y1 := `p and Y2 := c0. As mentioned above, Y1 and Y2 are totally incomparable,
while [27, Proposition 2.a.2], Proposition 2.3, Corollary 5.4, and Theorem 5.2 imply that
Xj is Yj-saturated for j = 1, 2.

Evidence from other sequence spaces suggests that no two Schreier spaces with distinct
indices should be isomorphic and, likewise, no two James–Schreier spaces with distinct
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indices should be isomorphic. We have, unfortunately, been unable to verify any of these
conjectures.

Question 5.10. Is it true that Sp 6∼= Sq and Vp 6∼= Vq whenever 1 6 p < q <∞?

Note added in proof. Question 5.10 has been answered in the positive; see [10].

6. The pth James–Schreier space does not embed in a Banach space with an
unconditional basis for p > 1. The aim of this section is to prove the result stated
in the title; in particular, this will imply that, for p > 1, the pth James–Schreier space
does not embed in any of the Schreier spaces.

Our proof relies on the following technical notion which was originally introduced by
Pełczyński [32] who, motivated by work of Orlicz, was studying the relationship between
weak completeness and weak unconditional convergence of series in Banach spaces.

Definition 6.1. A Banach space X has Pełczyński’s property (u) if, for every weak
Cauchy sequence (xn)n∈N in X, there is a sequence (yn)n∈N in X such that

∞∑
n=1

|〈yn, f〉| <∞ and
〈
xn −

n∑
j=1

yj , f
〉
→ 0 as n→∞ (f ∈ X ′). (6.1)

The reason that this notion is relevant for our purposes is immediately explained by
parts (i) and (ii) of the following result, which was stated in [32].

Theorem 6.2 (Pełczyński).

(i) Every Banach space with an unconditional basis has Pełczyński’s property (u).
(ii) Every closed subspace of a Banach space with Pełczyński’s property (u) has Pełczyń-

ski’s property (u).
(iii) The James space J2 does not have Pełczyński’s property (u).

Detailed proofs of all three parts of Theorem 6.2 are given in [1, Section 3.5]. A more
general statement than Theorem 6.2(i) can be found in [28, Proposition 1.c.2], namely:
every order continuous Banach lattice has Pełczyński’s property (u).

We can now state the main result of this section, which is the counterpart of Theo-
rem 6.2(iii) for James–Schreier spaces.

Theorem 6.3. For each p > 1, the pth James–Schreier space Vp does not have Pełczyń-
ski’s property (u).

The proof of Theorem 6.3 goes via two lemmas. The first is easy, so we omit its proof.

Lemma 6.4. Let X be a Banach space with a shrinking basis (bn)n∈N, and let (b′m)m∈N
be the associated biorthogonal functionals. A sequence (xn)n∈N in X is a weak Cauchy
sequence if and only if (xn)n∈N is bounded and the sequence (〈xn, b′m〉)n∈N converges for
each m ∈ N.

Lemma 6.5. Let p > 1, and suppose that (yn)n∈N is a sequence in Vp such that〈
χ[1,n] −

n∑
j=1

yj , fm

〉
→ 0 as n→∞ (m ∈ N). (6.2)

Then the series
∑∞
n=1

∣∣〈yn, f〉∣∣ diverges for some f ∈ V ′p.
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Before we engage with the proof of Lemma 6.5, let us see how these two lemmas
combine to establish our main result.

Proof of Theorem 6.3. Assume towards a contradiction that Vp has Pełczyński’s prop-
erty (u), and let xn := χ[1,n] for each n ∈ N. Since p > 1, the standard basis for Vp is
shrinking, so Lemma 6.4 implies that (xn)n∈N is a weak Cauchy sequence in Vp. There-
fore, by assumption, we can choose a sequence (yn)n∈N in Vp which satisfies (6.1). This,
however, contradicts Lemma 6.5.

Remark 6.6. Our proof of Theorem 6.3, like that of Theorem 6.2(iii) given in [1], starts
by taking xn := χ[1,n] and then proceeds by arguing that there is no sequence (yn)n∈N
which satisfies (6.1). This follows quite easily for J2 from general structure theorems
because no subspace of J2 is isomorphic to c0. As we saw in Section 5, this is no longer
true for Vp, and so a different and, as it turns out, more delicate argument is required.

The following family of functionals will play a key role in the proof of Lemma 6.5.

Definition 6.7. Given a strictly increasing mapping σ : N→ N, we associate with it the
alternating harmonic functional

ξσ : x 7→
∞∑
n=1

(−1)n

n
〈x, fσ(n)〉, c00 → K. (6.3)

As one might guess, our interest in ξσ stems from the fact that it extends to a bounded
functional on Vp. This can be conveniently proved using the following lemma which,
roughly speaking, states that in order to establish the boundedness of a functional on Vp,
it suffices to consider its action on finite, positive vectors. To make this statement precise,
we introduce the notation c+00 for the positive cone of c00, that is,

c+00 :=
{ n∑
j=1

αjej : n ∈ N, α1, . . . , αn ∈ [0,∞)
}
.

Lemma 6.8. Let p > 1, let f be a functional on c00, and suppose that there is a constant
C > 0 such that

∣∣〈x, f〉∣∣ 6 C‖x‖Vp for each x ∈ c+00. Then f extends uniquely to a bounded
functional on Vp, and the extension has norm at most 4C.

Proof. Given x ∈ c00, let x+ :=
(
max{Re〈x, fn〉, 0}

)
n∈N ∈ c

+
00. Then, for each permissible

subset A = {n1 < n2 < · · · < nk+1} of N, we have

‖x‖pVp >
k∑
j=1

∣∣〈x, fnj − fnj+1〉
∣∣p >

k∑
j=1

∣∣Re〈x, fnj 〉 − Re〈x, fnj+1〉
∣∣p

>
k∑
j=1

∣∣max{Re〈x, fnj 〉, 0} −max{Re〈x, fnj+1〉, 0}
∣∣p = νp(x+, A)p, (6.4)

where the final inequality is an immediate consequence of the elementary estimate

|α− β| >
∣∣max{α, 0} −max{β, 0}

∣∣ (α, β ∈ R).

Taking the supremum over all permissible sets A in (6.4), we obtain ‖x‖Vp > ‖x+‖Vp .
Now define x− := (−x)+, xi+ := (−ix)+, and xi− := (ix)+. (Strictly speaking, the

latter two definitions make sense only if the scalar field is C; if K = R, let xi± := 0, no
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matter what x is.) Then we have x = x+ − x− + i(xi+ − xi−), where x±, xi± ∈ c+00, and
each of them has James–Schreier norm at most ‖x‖Vp by the first part of the proof. Thus
the assumption on f implies that∣∣〈x, f〉∣∣ 6 ∣∣〈x+, f〉

∣∣+
∣∣〈x−, f〉∣∣+

∣∣〈xi+, f〉
∣∣+
∣∣〈xi−, f〉

∣∣ 6 4C‖x‖Vp ,

and the result follows from the density of c00 in Vp.

Lemma 6.9. For each p > 1 and each strictly increasing mapping σ : N → N, the func-
tional ξσ given by (6.3) extends uniquely to a bounded functional on Vp of norm at most
4 · 2

1
p (2

1
p − 1)−1.

Proof. We begin with an elementary observation for later reference:

n∑
j=1

|αj | 6 n1− 1
p

( n∑
j=1

|αj |p
) 1
p

(n ∈ N, α1, . . . , αn ∈ K); (6.5)

indeed, this inequality is trivial for p = 1, whereas for p > 1, application of Hölder’s
inequality to the n-tuples (1, 1, . . . , 1) and (α1, α2, . . . , αn) gives the required estimate.
We note in passing that (4.1) is a special case of (6.5) corresponding to n = 2.

For each m ∈ N, let Am := N ∩ [2m − 1, 2m+1 − 2]; this is a permissible set because
cardAm = 2m = minAm+1, and therefore, as σ is increasing, σ(Am) is also permissible.
Now, for given x ∈ c+00, choose N ∈ N such that 〈x, fσ(n)〉 = 0 whenever n > 2(2N − 1).
Then we have

〈x, ξσ〉 =
2(2N−1)∑
n=1

(−1)n

n
〈x, fσ(n)〉 =

2N−1∑
n=1

(
−
〈x, fσ(2n−1)〉

2n− 1
+
〈x, fσ(2n)〉

2n

)
, (6.6)

which is real because x ∈ c+00; the following estimates yield an upper bound:

〈x, ξσ〉 6
2N−1∑
n=1

〈x, fσ(2n) − fσ(2n−1)〉
2n

6
N∑
m=1

( 2m−1∑
n=2m−1

∣∣〈x, fσ(2n−1) − fσ(2n)〉
∣∣

2m

)

6
N∑
m=1

1
2m

2m+1−3∑
j=2m−1

∣∣〈x, fσ(j) − fσ(j+1)〉
∣∣

6
by (6.5)

N∑
m=1

(2m − 1)1−
1
p

2m
(2m+1−3∑
j=2m−1

∣∣〈x, fσ(j) − fσ(j+1)〉
∣∣p) 1

p

=
N∑
m=1

(2m − 1)1−
1
p

2m
νp
(
x, σ(Am)

)
6

N∑
m=1

(2m)−
1
p ‖x‖Vp 6

‖x‖Vp
2

1
p − 1

by summation of the geometric progression.
On the other hand, pairing up neighbouring terms differently in (6.6), we obtain a

lower bound:
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〈x, ξσ〉 = −〈x, fσ(1)〉+
2N−1∑
n=1

( 〈x, fσ(2n)〉
2n

−
〈x, fσ(2n+1)〉

2n+ 1

)

> −‖x‖Vp +
2N−1∑
n=1

〈x, fσ(2n) − fσ(2n+1)〉
2n

> −
2

1
p ‖x‖Vp
2

1
p − 1

,

where the final inequality follows from estimates very similar to those used in the calcu-
lation above.

Combining the upper and lower bound, we see that
∣∣〈x, ξσ〉∣∣ 6 2

1
p (2

1
p − 1)−1‖x‖Vp for

each x ∈ c+00, and hence Lemma 6.8 gives the result.

Remark 6.10. It would suffice to prove Lemma 6.9 for σ = ι (the identity mapping on N)
because ξσ = Λ′σξι, where Λσ is the left shift defined in (3.2). The proof of the bounded-
ness of ξι is not, however, significantly simpler than the general proof given above.

We are now ready to prove Lemma 6.5.

Proof of Lemma 6.5. We split in two cases. Suppose first that, for some k ∈ N and ε > 0,
we have

∑∞
j=n

∣∣〈yj , fk〉∣∣ > ε for each n ∈ N. Then the series
∑∞
j=1

∣∣〈yj , fk〉∣∣ diverges, so
in this case we can simply take f := fk ∈ V ′p .

Otherwise, for each k ∈ N and ε > 0, we can find n ∈ N such that
∞∑
j=n

∣∣〈yj , fk〉∣∣ 6 ε. (6.7)

In this case our strategy is to construct a strictly increasing mapping σ : N → N such
that the series

∑∞
n=1

∣∣〈yn, ξσ〉∣∣ diverges. Fix a summable, decreasing sequence (εm)m∈N
in (0,∞). By induction, we choose integers 0 6 N0 < σ(0) 6 N1 < σ(1) 6 · · · such that
the following three conditions are satisfied:∣∣∣ n∑

j=1

〈yj , fσ(m−1)〉
∣∣∣ > 1− εm (m ∈ N, n > Nm); (6.8)∥∥∥(IVp − Pk)

∑
j∈A

yj

∥∥∥
Vp

6 εm
(
m ∈ N, k > σ(m)− 1, A ⊆ [1, Nm] ∩ N

)
; (6.9)

∞∑
j=Nm+1

∣∣〈yj , fσ(k)〉
∣∣ 6 kεm

m− 1
(m > 2, 1 6 k < m). (6.10)

To start the induction, we observe that (6.8)–(6.10) are vacuous for m = 0, so we
can simply take N0 := 0 and σ(0) := 1. Now let ` ∈ N, and assume inductively that
integers 0 6 N0 < σ(0) 6 N1 < σ(1) 6 · · · 6 N`−1 < σ(` − 1) have been chosen such
that (6.8)–(6.10) are satisfied for each m 6 `− 1. For n > σ(`− 1), our assumption (6.2)
implies that

1−
n∑
j=1

〈yj , fσ(`−1)〉 =
〈
χ[1,n] −

n∑
j=1

yj , fσ(`−1)

〉
→ 0 as n→∞,

so we can find N ′` > σ(` − 1) such that (6.8) is satisfied for m = ` and each n > N ′`. In
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the case where ` > 2, `− 1 applications of (6.7) yield a number N ′′` ∈ N such that
∞∑

j=N ′′` +1

∣∣〈yj , fσ(k)〉
∣∣ 6 kε`

`− 1
(
k ∈ {1, . . . , `− 1}

)
.

Thus (6.8) and (6.10) will both be satisfied for each m 6 ` provided that we define

N` :=

{
N ′` if ` = 1,

max{N ′`, N ′′` } otherwise.

Since there are only finitely many subsets of [1, N`] ∩ N, and
∥∥(IVp − Pk)x‖Vp → 0 as

k → ∞ for each x ∈ Vp because (en)n∈N is a basis for Vp, we can find σ(`) > N` such
that (6.9) is satisfied for m = `, and hence the induction continues.

Now let zm :=
∑Nm+1
j=Nm+1 yj ∈ Vp for each m ∈ N; we then have

∞∑
m=1

∣∣〈ym, ξσ〉∣∣ > ∞∑
m=1

∣∣∣ Nm+1∑
j=Nm+1

〈yj , ξσ〉
∣∣∣ =

∞∑
m=1

∣∣〈zm, ξσ〉∣∣. (6.11)

Seeking a lower bound for the right-hand side of this inequality, we observe that∣∣〈zm, ξσ〉∣∣ > ∣∣〈Pσ(m+1)−1zm, ξσ〉
∣∣− ∣∣〈(IVp − Pσ(m+1)−1)zm, ξσ〉

∣∣
>

∣∣∣∣ ∞∑
k=1

(−1)k

k
〈Pσ(m+1)−1zm, fσ(k)〉

∣∣∣∣− ‖ξσ‖V ′p ∥∥(IVp − Pσ(m+1)−1)zm
∥∥
Vp

>

∣∣∣∣ m∑
k=1

(−1)k

k
〈zm, fσ(k)〉

∣∣∣∣− ‖ξσ‖V ′p εm+1

>

∣∣〈zm, fσ(m)〉
∣∣

m
−
m−1∑
k=1

∣∣〈zm, fσ(k)〉
∣∣

k
− ‖ξσ‖V ′p εm+1 (6.12)

for each m ∈ N, where the penultimate inequality follows from (6.9) and the fact that

P ′σ(m+1)−1fσ(k) =

{
fσ(k) if k 6 m,

0 otherwise.

If m = 1, we ignore the second term on the right-hand side of (6.12). Otherwise it has
the following upper bound

m−1∑
k=1

∣∣〈zm, fσ(k)〉
∣∣

k
6
m−1∑
k=1

Nm+1∑
j=Nm+1

∣∣〈yj , fσ(k)〉
∣∣

k
6
m−1∑
k=1

kεm
k(m− 1)

= εm (6.13)

by (6.10). We find a lower bound for the first term on the right-hand side of (6.12) by
writing zm =

∑Nm+1
j=1 yj −

∑Nm
j=1 yj and using the fact that P ′σ(m)−1fσ(m) = 0:

∣∣〈zm, fσ(m)〉
∣∣ =

∣∣∣Nm+1∑
j=1

〈yj , fσ(m)〉 −
〈Nm∑
j=1

yj , (IVp − Pσ(m)−1)′fσ(m)

〉∣∣∣
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>
∣∣∣Nm+1∑
j=1

〈yj , fσ(m)〉
∣∣∣− ‖fσ(m)‖V ′p

∥∥∥(IVp − Pσ(m)−1)
Nm∑
j=1

yj

∥∥∥
Vp

> 1− εm+1 − εm (6.14)

by (6.8), (6.9), and Lemma 4.3(i). Substituting (6.13) and (6.14) into (6.12), we obtain∣∣〈zm, ξσ〉∣∣ > 1− εm+1 − εm
m

− εm − ‖ξσ‖V ′p εm+1 >
1
m
−
(
3 + ‖ξσ‖V ′p

)
εm.

Since the harmonic series diverges, whereas the series
∑∞
m=1 εm converges, we conclude

that the series
∑∞
m=1

∣∣〈zm, ξσ〉∣∣ diverges, and therefore, by (6.11), the same is true for the
series

∑∞
m=1

∣∣〈ym, ξσ〉∣∣, as desired.
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