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Abstract. This paper is a continuation of our study of compact, power compact, Riesz, and
quasicompact endomorphisms of commutative Banach algebras. Previously it has been shown
that if B is a unital commutative semisimple Banach algebra with connected character space,
and T is a unital endomorphism of B, then T is quasicompact if and only if the operators Tn

converge in operator norm to a rank-one unital endomorphism of B.
In this note the discussion is extended in two ways: we discuss endomorphisms of commu-

tative Banach algebras which are semiprime and not necessarily semisimple; we also discuss
commutative Banach algebras with character spaces which are not necessarily connected.

In previous papers we have given examples of commutative semisimple Banach algebras B
and endomorphisms T of B showing that T may be quasicompact but not Riesz, T may be Riesz
but not power compact, and T may be power compact but not compact. In this note we give
examples of commutative, semiprime Banach algebras, some radical and some semisimple, for
which every quasicompact endomorphism is actually compact.

1. Introduction. Let A be a commutative, complex Banach algebra. We denote by ΦA
the character space of A, and, for a ∈ A, we denote by â the Gelfand transform of a.
As in [2], if A has no identity element then we denote by A# the usual Banach algebra
obtained by adjoining an identity to A; otherwise we define A# = A. We denote the
open unit disc by D and the closed unit disc by D. We denote the standard disc algebra
(regarded as a Banach space) by A(D).
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In previous papers the authors [5, 6, 7] and others [8, 9, 14] have studied endomor-
phisms of commutative semisimple Banach algebras and have obtained several general
theorems, and also a variety of results pertaining to specific classes of algebras. In this
note we extend this discussion to endomorphisms of commutative Banach algebras which
are semiprime and not necessarily semisimple.

We recall that a complex algebra B is semiprime if J = {0} is the only ideal in B such
that the product of every pair of elements in J is 0. It is standard that a commutative,
complex algebra B is semiprime if and only if B has no non-zero nilpotent elements (see,
for example, [4] or [2, pp. 77-78]). Certainly semisimple algebras are semiprime.

Examples of commutative semiprime Banach algebras which are not semisimple in-
clude certain Banach algebras of formal power series, as discussed in [10]. In particular,
A(D) and Hp(D) for p ∈ [1,∞) are commutative radical semiprime Banach algebras with
respect to convolution multiplication defined by

(f ∗ g)(z) =
∫
γz

f(z − w)g(w) dw,

where the path γz is a straight line joining 0 to z. Other examples of commutative radical
semiprime Banach algebras include `p(ω) for p ∈ [1,∞) and radical weights ω.1

A linear map T from a commutative Banach algebra A to itself is an endomorphism
if T preserves multiplication. If the algebra A is unital, then an endomorphism T of A is
said to be unital if T maps the identity to itself. In this case, φ := T ∗|ΦA

is a selfmap of
ΦA; we shall call φ the selfmap of ΦA associated with T . Note that then, for all a ∈ A,
we have

T̂ a = â ◦ φ.

In particular, if A is semisimple, then we may recover the endomorphism from the as-
sociated selfmap φ. If A is not semisimple, then φ may give little information about the
endomorphism T . Even in the latter case, however, the existence or otherwise of fixed
points of φ is relevant to our study of endomorphisms.

For commutative semisimple Banach algebras, endomorphisms are automatically con-
tinuous. However, in the case of commutative semiprime algebras, this need not be the
case, at least if we assume the continuum hypothesis (CH). Indeed, let ω be a radical
weight on R+, and set A = L1(R+, ω). Assuming CH, it follows from [2, Theorem 5.7.31]
and the comments following that theorem, that there is then a discontinuous, injective,
unital endomorphism of the integral domain A#. We shall consider only bounded endo-
morphisms in this note.

Let E be an infinite-dimensional Banach space, let L(E) be the Banach algebra of
bounded linear operators on E, and let K(E) be the set of compact linear operators
on E. Then K(E) is a closed ideal in L(E). The quotient algebra L(E)/K(E) is called
the Calkin algebra. Now let T be a bounded linear operator on E. The essential spectral
radius of T , ρe(T ), is the spectral radius of T +K(E) in the Calkin algebra.

1A real valued function ω on Z+ is a weight if ω(n) > 0 for all n ∈ Z+ and, for all m and n in
Z+, we have ω(m+ n) ≤ ω(m)ω(n). The weight is radical if, in addition, limn→∞ ω(n)1/n = 0.
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We shall discuss operators T such that ρe(T ) < 1. (This holds if and only if there
is a natural number n such that the distance from Tn to K(E) is strictly less than 1.)
Following Heuser [11] such an operator T is called quasicompact. If ρe(T ) = 0 the operator
T is a Riesz operator. Quasicompactness is clearly weaker than Riesz, which in turn is
weaker than the condition that an operator be power compact.

In [7], the authors investigated quasicompact endomorphisms of commutative semi-
simple Banach algebras. One of the main results of that paper was the following.

Proposition 1.1. Let B be a unital commutative semisimple Banach algebra with con-
nected character space, let T be a unital endomorphism of B, and let φ be the associated
selfmap of ΦB. Then T is quasicompact if and only if the operators Tn converge in opera-
tor norm to a rank-one unital endomorphism of B; in this case φ has a unique fixed point
x0 ∈ ΦA, and the rank-one endomorphism above must be the endomorphism b 7→ b̂(x0)1.

In Section 2, we indicate that Proposition 1.1 is valid for bounded unital endomor-
phisms of commutative semiprime Banach algebras whose character space is connected.
In Section 3, we consider the case where the character space need not be connected. Using
a fairly standard technique involving orthogonal idempotents, we will prove the following
result, which is a main result of this note.

Theorem 1.2. Let B be a unital commutative semiprime Banach algebra, and let T be
a bounded unital endomorphism of B. Then T is quasicompact if and only if there is
a natural number n such that the operators (T kn)∞k=1 converge in operator norm to a
finite-rank unital endomorphism of B.

This result extends earlier results of the authors [5, 6, 7] for commutative semisimple
Banach algebras, and results for uniform algebras of Klein [14] and Gamelin, Galindo
and Lindström [8, 9].

Section 4 contains some results about commutative radical semiprime Banach alge-
bras, while Section 5 presents two examples of commutative semisimple Banach algebras
where each quasicompact endomorphism is compact.

2. Bounded endomorphisms of semiprime Banach algebras with connected
character space. In order to extend the results from [7], we begin by examining the
properties of semisimplicity which were used in the proof of Lemma 1.1 of [7], and ob-
serving that they are more generally true. Specifically, we note the following.

• Let B be a unital commutative Banach algebra. Then ΦB is connected if and only
if the only idempotent elements in B are 0 and 1. This is an immediate consequence
of the Shilov Idempotent Theorem [2, Theorem 2.4.33].
• Let B be a commutative unital semiprime Banach algebra, and let T be a unital

endomorphism of B. Then, since B has no non-zero nilpotent elements, the set of
eigenvalues of T is closed under taking powers.
• Let A be a finite-dimensional commutative semiprime Banach algebra. Since the

radical of a finite-dimensional algebra is nilpotent [2, Theorem 1.5.6(iv)], it follows
that A is, in fact, semisimple. Thus A is isomorphic to the finite-dimensional com-
mutative C*-algebra Cm (with coordinate-wise multiplication), where m = dimA.
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Using these observations it easily follows that the proof of Lemma 1.1 of [7] holds
when semisimple is replaced by semiprime and we have the following lemma.

Lemma 2.1. Let B be a unital commutative semiprime Banach algebra with connected
character space, and let T be a bounded unital quasicompact endomorphism of B. Then
1 is an eigenvalue of T with multiplicity 1 and eigenspace C · 1, and σ(T ) (the spectrum
of T ) is contained in {λ : |λ| < 1} ∪ {1}.

Armed with this lemma, the proof of the convergence of the operators Tn in Theorem
1.2 of [7] is equally valid for semiprime algebras, and we obtain the corresponding result
for semiprime algebras.

Theorem 2.2. Let B be a unital commutative semiprime Banach algebra with connected
character space, let T be a bounded, unital endomorphism of B, and let φ be the associated
selfmap of ΦB. Then T is quasicompact if and only if the operators Tn converge in
operator norm to a rank-one unital endomorphism of B; in this case φ has a unique
fixed point x0 ∈ ΦA, and the rank-one endomorphism above must be the endomorphism
b 7→ b̂(x0)1.

We immediately obtain the following useful corollary.

Corollary 2.3. Let B be a unital commutative semiprime Banach algebra with con-
nected character space, let T be a bounded unital endomorphism of B, and let φ be the
associated selfmap of ΦB.

(i) If φ has no fixed points in ΦB, then T is not quasicompact.
(ii) Otherwise, let x0 ∈ ΦB be a fixed point of φ. Then T is quasicompact if and only if

the operators Tn converge in operator norm to the rank-one unital endomorphism
of B defined by b 7→ b̂(x0)1.

Note that, once we have found a fixed point x0 of φ, we can apply this corollary
without having to check whether this fixed point is unique. However, if we do know that
φ has more than one fixed point, then Theorem 2.2 tells us immediately that T is not
quasicompact.

Let B be a commutative Banach algebra without identity. Then (by the Shilov Idem-
potent Theorem again) B has no non-zero idempotent elements if and only if ΦB# is
connected. One trivial special case of this is, of course, when B is radical. Note that it is
possible for ΦB# to be connected when ΦB is disconnected, and vice versa.

Corollary 2.4. Let B be a commutative semiprime Banach algebra which has no non-
zero idempotent elements, and let T be a bounded endomorphism of B. Then T is quasi-
compact if and only if Tn → 0 in operator norm.

Proof. Clearly, if Tn → 0 in operator norm, then T is quasicompact.
Conversely, suppose that T is quasicompact. Obviously B has no identity element.

We may extend T to a bounded unital endomorphism T# of the commutative unital
semiprime Banach algebra B#, and then T# is also quasicompact. By Theorem 2.2, the
powers of T# converge in operator norm to a rank-one unital endomorphism of B#. It
follows that Tn → 0 in operator norm.
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In particular, for radical semiprime Banach algebras we have the following corollary,
which will be needed in Section 4.

Corollary 2.5. Let R be a commutative radical semiprime Banach algebra, and let T
be a bounded endomorphism of R. Then T is quasicompact if and only if Tn → 0 in the
operator norm.

3. Extension to more general semiprime Banach algebras. We now wish to gen-
eralize these results to the setting where the algebra is semiprime and the character space
need not be connected. A further examination of the proof of Theorem 1.2 of [7] reveals
immediately that the following more general result holds.

Lemma 3.1. Let B be a unital commutative semiprime Banach algebra, and let T be a
bounded unital quasicompact endomorphism of B. Suppose that

σ(T ) ⊆ {λ ∈ C : |λ| < 1} ∪ {1}

and that the eigenvalue 1 of T has multiplicity 1. Then the operators Tn converge in
operator norm to a rank-one unital endomorphism S of B.

The method we use to obtain results when the character space is disconnected is based
on a standard technique involving orthogonal idempotents.

Theorem 3.2. Let B be a unital commutative semiprime Banach algebra, and let T be a
bounded unital quasicompact endomorphism of B. Then there exists an n ∈ N such that

σ(Tn) ⊆ {λ ∈ C : |λ| < 1} ∪ {1}. (1)

For such n, the unital quasicompact endomorphism Tn of B has the following properties.

(i) The eigenspace of Tn corresponding to eigenvalue 1 is a finite-dimensional, unital
subalgebra of B isomorphic to Cm for some m ∈ N, and hence spanned by m

orthogonal idempotents, say e1, e2, . . . , em.
(ii) Set Bi = eiB (1 ≤ i ≤ m). Then (under an equivalent norm) each Bi is a commu-

tative, unital semiprime Banach algebra, with identity ei, and

B =
m⊕
i=1

Bi.

(iii) For 1 ≤ i ≤ m, Tn|Bi
is a unital quasicompact endomorphism of Bi, and Tn|Bi

sat-
isfies the conditions of Lemma 3.1. The operators (T kn|Bi

)∞k=1 converge in operator
norm to a rank-1 unital endomorphism of Bi, say Si.

(iv) The operators (T kn)∞k=1 converge in operator norm to the rank-m endomorphism S

of B given by

S(b) =
m∑
i=1

Si(bei) (b ∈ B).

Proof. As in the proof of Lemma 1.1 of [7], the existence of an n satisfying (1) is an
easy consequence of the following pair of facts: the set of eigenvalues of T is closed under
taking powers and the spectrum of T has no limit point on the unit circle.
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Now suppose that we have fixed such an n satisfying (1). Then (i) follows immediately
from the fact that ker(I − Tn) is a finite-dimensional, commutative semiprime algebra.
Now (ii) is a standard construction. For (iii), it is clear that Tn|Bi is a unital endo-
morphism of Bi, and the multiplicity of the eigenvalue 1 of this endomorphism is 1 by
construction. The quasicompactness of Tn|Bi is standard. Then, since every eigenvalue
of Tn|Bi

is also in σ(Tn), it follows that σ(Tn|Bi
) ⊆ {λ ∈ C : |λ| < 1}∪ {1} . Thus Tn|Bi

satisfies the conditions of Lemma 3.1. The rest of (iii) now follows by applying Lemma
3.1 to Tn|Bi

. Finally, (iv) follows immediately from (i), (ii) and (iii).

Theorem 1.2 is now an immediate corollary, since one implication is part of the result
above, while the converse is trivial.

4. Radical Banach algebras of power series. In this section we look briefly at radical
Banach algebras of power series.

We recall the following terminology and notation from [10]. The algebra of complex
formal power series in one variable is denoted by C[[z]]. The coordinate projections on
C[[z]] are (πn)∞n=0. Let B be a subalgebra of C[[z]] with z ∈ B and such that B ⊆ kerπ0

(i.e., all elements of B have constant coefficient 0). Then B is a generalized Banach algebra
of power series if it is a Banach algebra under some norm for which all of the functionals
πn|B are continuous.2 In this case, for each n ∈ N, we denote by ‖πn‖ the operator norm
of the continuous linear functional πn|B . If B is a generalized Banach algebra of power
series such that the polynomials are dense in B, then B is a Banach algebra of power
series. Since C[[z]] is an integral domain, these algebras of power series are certainly
semiprime.

The reader should note that there are variations in the terminology and notation used
in the literature. In [2, Section 4.6], for example, the algebras are allowed to be unital,
and generalized Banach algebras of power series are called simply Banach algebras of
power series (with no requirement that the polynomials be dense).

Let B be a generalized Banach algebra of power series. For each non-negative integer j,
S−j(B) is the set of those formal power series f with zero constant term for which fzj

belongs to B. In fact S−j(B) is a Banach space when we define the norm of f ∈ S−j(B)
to be the norm of fzj in B.

Let B be a Banach algebra of power series. Then every non-zero endomorphism of B
has the form f 7→ f ◦ g (formal composition of power series) for some g ∈ B [10, p. 7].
For those g ∈ B which give rise to an endomorphism of B in this way, we denote the
corresponding endomorphism by Tg. In this case, we have g = Tgz.

A result of Loy [2, Theorem 5.2.20] shows that endomorphisms of Banach algebras of
power series are automatically continuous. (See also [3] for some striking recent develop-
ments concerning Fréchet algebras of power series.)

It was previously shown that for a wide class of radical Banach algebras of power
series, every endomorphism is either an automorphism or compact [10, Theorem (2.6)].

2In fact, surprising recent results from [3] show that the continuity of the functionals πn|B
in this setting is automatic, while the corresponding statement for formal power series in two
variables is false.
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In such cases every quasicompact endomorphism is (trivially) compact. In particular, for
many radical weights ω, the Banach algebras `p(ω) are examples of radical semiprime
commutative Banach algebras for which every quasicompact endomorphism is compact.

Lemma 4.1. Let B be a radical Banach algebra of power series, and let T be a quasicom-
pact endomorphism of B. Set g = Tz (so that T = Tg). Then |π1(g)| < 1.

Proof. Since the endomorphism T = Tg is quasicompact, by Corollary 2.5, Tng → 0 in
norm. In particular, Tng z → 0. But π1(Tng z) = π1(g)n, and so we must have |π1(g)| < 1.

The following proposition is [10, Theorem 5.7].

Proposition 4.2. Suppose that B and S−1(B) are both radical generalized Banach al-
gebras of power series, and that R := lim sup(‖πn‖‖zn‖)1/n is finite. Let g ∈ B with
|Rπ1(g)| < 1. Then Tg is a compact endomorphism of B.

Combining the previous two results, we have the following.

Corollary 4.3. Suppose that S−1(B) and B are radical Banach algebras of power series,
and that lim sup(‖πn‖‖zn‖)1/n = 1. Then every quasicompact endomorphism of B is
compact.

Let A be A(D) or Hp(D) for some p ∈ [1,∞). Using the definition of convolution
multiplication on A from Section 1, it was shown in [10, Section 13], that (A, ∗) is a
commutative radical semiprime Banach algebra which can be identified with a radical
Banach algebra of power series B satisfying the hypotheses of Corollary 4.3 (see, in par-
ticular, [10, Theorem (13.10)]). Thus, for B, and hence also for (A, ∗), every quasicompact
endomorphism is compact.

5. Two semisimple examples. We have just seen several examples of commutative
radical semiprime Banach algebras where every quasicompact endomorphism is compact.
In this section we give two examples of commutative semisimple Banach algebras where
this holds. This is in contrast to the commutative semisimple Banach algebra C1[0, 1]
where there exist a quasicompact endomorphism which is not Riesz, a Riesz endomor-
phism which is not power compact and a power compact endomorphism which is not
compact.

Example 5.1. A theorem of Beurling and Helson [13, Theorem 4.5 and exercise 4.12]
tells us that every non-zero endomorphism of the group algebra L1(R) is an automor-
phism. Thus, for this commutative semisimple Banach algebra, there are no non-zero
quasicompact endomorphisms at all.

For the next example, the proof is based on our results concerning the powers of
quasicompact endomorphisms.

Example 5.2. Let A be the Banach algebra Ea[−1, 1] described in [1] and [12], and
defined as follows. Let M(C) denote the set of finite regular Borel measures on C and
Mω(C) the set of measures µ ∈ M(C) for which

∫
C e
|Reλ| d|µ|(λ) < ∞. For each µ in

Mω(C), we may define a continuous function fµ : [−1, 1] → C by fµ(x) =
∫

C e
xλ dµ(λ)
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(x ∈ [−1, 1]). Then
Ea[−1, 1] = {fµ : µ ∈Mω(C)}.

With norm defined by

‖f‖A = inf
{∫

C
e|Reλ| d|µ|(λ) : µ ∈Mω(C) with fµ = f

}
,

A = Ea[−1, 1] is a regular commutative semisimple Banach algebra [1, 15]. Further ΦA
is [−1, 1]. This algebra is called the extremal algebra for [−1, 1], a name derived from a
property it possesses relative to the study of numerical ranges of elements in complex
unital Banach algebras. The Banach algebra A is generated by the Hermitian element u,
where u(x) = x for x ∈ [−1, 1]. Also ‖eitu‖A = 1 for all real t [1, 15].

Let T be an endomorphism of A, and let φ be the associated selfmap of [−1, 1]. In [12]
it was shown that φ must have the form x 7→ αx + β, where α and β are real numbers
with |α| + |β| ≤ 1. If β = 0 and |α| = 1, then T is an automorphism, while if α = 0,
then the endomorphism T has rank one, and so T is compact. Also it was shown in [12]
that the rank-one endomorphisms are the only non-zero compact endomorphisms of A.
We claim that every quasicompact endomorphism of A is compact.

To see this, let T be a quasicompact endomorphism of A, with associated selfmap φ.
For some α and β as above, we have φ(x) = αx + β. Since T is not an automorphism,
we have α 6= 1. Set x0 = β

1−α , so that x0 is the fixed point of φ. Let S be the rank-
one endomorphism f 7→ f(x0)1. Since T is quasicompact, Corollary 2.3 implies that
‖Tn − S‖ → 0. We shall show that α = 0, and hence that x0 = β and T = S.

Suppose, towards a contradiction, that α 6= 0. For each n ∈ N, define fn ∈ A by

fn(x) =
(

1 + exp(i(α−n(x− x0)))
2

)n
.

As mentioned above, for each real number t, the function x 7→ eitx has norm 1 in A. Thus
we have

1 = ‖fn‖∞ ≤ ‖fn‖A ≤ 1,

and so ‖fn‖A = 1.
It is routine to show that for each positive integer n, Tnf(x) = f(αn(x − x0) + x0)

and so

Tnfn(x) =
(

1 + ei(x−x0)

2

)n
.

We also note that Sfn(x) = fn(x0) = 1. Now

‖fn‖A‖Tn − S‖ ≥ ‖(Tn − S)fn‖A ≥ |(Tn − S)fn(x)|

for all x in [−1, 1]. Evaluate at some x1 6= x0. Then

‖Tn − S‖ = ‖fn‖A‖Tn − S‖ ≥ ‖(Tn − S)fn‖ ≥ |(Tn − S)fn(x1)|.

This implies that

‖Tn − S‖ ≥
∣∣∣∣(1 + ei(x1−x0)

2

)n
− 1
∣∣∣∣ ≥ 1/2
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for large n. Therefore ‖Tn − S‖ does not converge to 0, and so T is not quasicompact
according to Corollary 2.3 (or Proposition 1.1). This contradiction shows that α = 0, and
so T = S.

Therefore for this algebra, every quasicompact endomorphism is compact.
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