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Abstract. Convergence of an iteration sequence for some class of nonlocal elliptic problems

appearing in mathematical physics is studied.

1. Introduction. We consider the following nonlocal elliptic problem:

−∆ϕ = M
f(ϕ)

(
∫

Ω
f(ϕ))p

in Ω,(1)

with the homogeneous boundary Dirichlet condition

ϕ|∂Ω = 0.(2)

Here ϕ : Ω → R is an unknown function from a bounded domain Ω of Rn into R,

n ≥ 2, f : R→ R+ is a given C1 function and M > 0, p > 0 are given parameters.

The physical motivations for the study of nonlocal elliptic problems come from sta-

tistical mechanics ([2], [5], [6]), theory of electrolytes ([4]), and theory of thermistors ([7],

[13]).

If the parameter p equals 1 and the nonlinearity f(ϕ) has the exponential form e−ϕ

(eϕ, resp.) then (1) is the well-known Poisson-Boltzmann equation and ϕ can be inter-

preted as the electric (gravitational, resp.) potential of system of particles in thermo-

dynamical equilibrium interacting via Coulomb (gravitational, resp.) potential. In this

interpretation, the parameter M is the total charge (mass, resp.) of the particles of the

system.

The problem (1)–(2) with given f(ϕ) and p = 2 appears in modelling the stationary

temperature ϕ, which results when an electric current flows through a material with

temperature-dependent electrical resistivity f(ϕ), subject to a fixed potential difference√
M ([7], [13]).
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The existence and uniqueness of solutions of (1)–(2) depend on the parameters M , p,

the geometry of the domain Ω, and on some properties of the function f . The existence

results can be proved using either the technique of sub- and supersolutions ([3]), or

variational methods ([6], [8]), or topological methods ([4], [10], [12], [15]), whereas the

nonexistence results are a consequence of the Pohozaev identity ([3]), or construction of

some special subsolutions ([3]).

The existence and uniqueness of solutions for the Poisson-Boltzmann problem with

f(ϕ) = e−ϕ and arbitrary M > 0 have been proved in [8] and [10]. When f has the form

eϕ, the solutions do not exist for large M , and in general, are not unique. Moreover, the

existence and uniqueness depend largely on the geometry of Ω, see [11].

2. Picard iterations for (1)–(2). Our aim is to study the convergence of iteration

schemes for nonlocal elliptic problems (1)–(2).

We start with the local elliptic problem

−∆ϕ = λf(ϕ) in Ω, ϕ|∂Ω = 0,(3)

where λ > 0 is a given constant.

We transform (3) to an integral form

ϕ(x) = λ

∫

Ω

G(x, y)f(ϕ(y))dy,(4)

where G(x, y) is the Green function corresponding to −∆ and the homogeneous boundary

data. The right hand side of (4) defines the operator T (ϕ)(x) = λ
∫

Ω
G(x, y)f(ϕ(y))dy

on the space C0(Ω̄) of continuous functions on Ω̄. It is known that certain assumptions

on the function f guarantee that the sequence of iterations T n(0) is convergent in the

supremum norm to a minimal solution of (3) ([1], [14]).

The integral form of (1)–(2) is

ϕ(x) =
M

(
∫

Ω
f(ϕ))p

∫

Ω

G(x, y)f(ϕ(y))dy,(5)

so we introduce the operator T on the space C0(Ω̄) as

T (ϕ)(x) =
M

(
∫

Ω
f(ϕ))p

∫

Ω

G(x, y)f(ϕ(y))dy.(6)

Any fixed point of T is a solution of (5). We define the Picard iteration scheme for (1)–(2)

ϕn = Tn(ϕ0) by

−∆ϕn = M
f(ϕn−1)

(
∫

Ω
f(ϕn−1))p

in Ω, ϕn|∂Ω = 0, n = 1, 2, . . . ,

and look for a fixed point of T as the limit of the sequence T n(ϕ0).

First, we note that for a contraction g on the Banach space X, i.e. a mapping g :

X → X such that ||g(x) − g(y)|| ≤ α||x − y|| for some constant α ∈ [0, 1) and for all

x, y ∈ X, g maps the ball BR(0) ⊂ X into itself whenever R > ||g(0)||/(1− α).

Indeed, let R > ||g(0)||/(1−α). Then for x ∈ BR(0) we have ||g(x)|| ≤ ||g(x)−g(0)||+
||g(0)|| < α||x||+ ||g(0)|| < αR+ ||g(0)|| < R.

For the operator T we obtain the following
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Lemma 1. Assume that the function f is Lipschitz continuous and 0 < a ≤ f ≤ b. Then

T is a contraction on C0(Ω̄) for all sufficiently small M > 0.

Proof. Let µ = (
∫

Ω
f(ϕ))−p. For ϕ1, ϕ2 ∈ C0(Ω̄) we have

|T (ϕ1)(x)− T (ϕ2)(x)| = M

∣∣∣∣µ1

∫

Ω

G(x, y)f(ϕ1(y))dy − µ2

∫

Ω

G(x, y)f(ϕ2(y))dy

∣∣∣∣

≤ Mµ1

∫

Ω

G(x, y)|f(ϕ1(y))− f(ϕ2(y))|dy

+ Mc(p,Ω, f)µ1µ2

∫

Ω

G(x, y)f(ϕ2(y))dy

∫

Ω

|f(ϕ1(y))− f(ϕ2(y))|dy

≤ MC(p,Ω, f)|ϕ1 − ϕ2|∞.
We used the fact that supx∈Ω

∫
Ω
G(x, y)dy <∞ whenever the boundary ∂Ω is sufficiently

smooth, see [9].

For sufficiently small M we have αM = MC(p,Ω, f) < 1.

Lemma 2. Assume that f ∈ C1(R). For a given R > 0 there exists M̄ such that for

M < M̄ , T : BR(0)→ BR(0) and T is a contraction.

Proof. Let us define the function fR as fR(ϕ) = f(ϕ) for |ϕ| < R and fR(ϕ) = f(R) for

|ϕ| ≥ R. We denote by TR the operator (6) with f = fR.

It follows from Lemma 1 that for sufficiently small M the operator TR is a contraction

with the contraction constant less than 1/2. For such M we have TR : BR(0)→ BR(0).

It remains to note that TR = T on BR(0).

From Lemmas 1 and 2 we get

Theorem 1. If the solutions of (1)–(2) satisfy an a priori estimate |ϕ|∞ < R for M <

M0, then for sufficiently small M and ϕ0 ∈ C0(Ω̄) with |ϕ0|∞ < R the Picard iteration

sequence Tn(ϕ0) converges to the unique solution of (1)–(2).

As we have seen, the key point of the above reasoning is the existence of an a priori

estimate of solutions of (1)–(2). This condition is satisfied for the Poisson-Boltzmann

problem of gravitational type in any bounded domain Ω of R2 and M < 4π.

In [12] such an a priori estimate of solutions of (1)–(2) has been proved under the

assumptions that f is a positive decreasing differentiable function such that sup |f ′/f | <
+∞ and 0 < p ≤ 1.

3. The iteration scheme for (1)–(2). We have for the local elliptic problem (3) the

following fact from the general theory of PDE ([1]).

Theorem 2. If f is a positive decreasing function, then the problem (3) has a unique

solution for each λ > 0.

A modified iteration process for nonlocal elliptic problems has been defined in [15]:

ϕn = S(ϕn−1) = Sn(ϕ0), where S(ϕn−1) is the unique solution of

−∆ϕn = λn−1f(ϕn) in Ω,(7)

λn−1 = M

(∫

Ω

f(ϕn−1)

)−p
,(8)
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ϕn|∂Ω = 0, n = 1, 2, . . . ,(9)

and ϕ0 is an arbitrary element of C0(Ω).

For this new iteration scheme we have, cf. [15]:

Theorem 3. If f is a positive decreasing function,
∫∞

0
f(s)ds = A < ∞ and 0 < p ≤

2, then for every ϕ0 ∈ C0(Ω̄) the sequence of iterations Sn(ϕ0) is convergent in the

supremum norm to a solution of (1)–(2).

Now the question is how this iteration procedure works for (1)-(2) in the case of an

increasing function f .

4. Iterations for (1)–(2) with f(ϕ) = eϕ. Note that for an arbitrary increasing

function f the local elliptic problem (3) may have more than one solution. Therefore, we

should modify slightly our process of construction of the iteration sequence for (1)–(2).

The idea to use minimal solutions of (3) seems to be reasonable. It is known that the

minimal solution of (3) with a positive increasing f ∈ C1(R) exists and is unique, see [14].

Here we apply the iteration procedure (7)–(9) to the particular case of (1)–(2) with

f(ϕ) = eϕ, p = 1 and Ω = K1(0) = {x ∈ R2 : |x| < 1}.
In this case (1)–(2) reads

−∆ϕ = M
eϕ∫
Ω
eϕ

in Ω, ϕ|∂Ω = 0.(10)

It is known that (10) has a unique radially symmetric solution for M < 8π, and has no

solution for M ≥ 8π ([3]).

The local problem

−∆ϕ = λeϕ in Ω, ϕ|∂Ω = 0,(11)

has the minimal solution

ϕ1(r;λ) = ln
8(4− λ− 2

√
4− 2λ)

[λ+ r2(4− λ− 2
√

4− 2λ)]2

and the maximal solution

ϕ2(r;λ) = ln
8(4− λ+ 2

√
4− 2λ)

[λ+ r2(4− λ+ 2
√

4− 2λ)]2
,

where λ ∈ (0, 2], see [1].

We have

λ

∫

Ω

eϕ1 = 2πλ

∫ 1

0

reϕ1(r;λ)dr = 2π(2−
√

4− 2λ) ∈ (0, 4π]

and

λ

∫

Ω

eϕ2 = 2πλ

∫ 1

0

reϕ2(r;λ)dr = 2π(2 +
√

4− 2λ) ∈ [4π, 8π).

Thus for M ∈ (0, 4π], ϕ1(r;λ) is the solution of (10), where λ satisfies

λ = M

(∫

Ω

eϕ1

)−1

=
λM

2π(2−
√

4− 2λ)
.
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For M ∈ [4π, 8π), ϕ2(r;λ) is the solution of (10) with λ satisfying

λ = M

(∫

Ω

eϕ2

)−1

=
λM

2π(2 +
√

4− 2λ)
.

For ϕ̄ ∈ C0(Ω̄) let S1(ϕ̄) (S2(ϕ̄), resp.) denote the minimal (maximal, resp.) solution

of (11) with

λ = M

(∫

Ω

eϕ̄
)−1

,

where M ∈ (0, 4π] (M ∈ [4π, 8π), resp.).

For M ∈ (0, 4π] we define the mapping

F1(λ) = M

(∫

Ω

eϕ1

)−1

=
λM

2π(2−
√

4− 2λ)
.

F1 is continuous and decreasing for λ ∈ (0, 2], has a unique fixed point λ̄ = M(8π −
M)/(8π2), and limλ→0+ F1(λ) = M/π, limλ→2− F1(λ) = M/2π. We have F ′1(λ̄) =

−M/(8π − 2M), hence the fixed point λ̄ is stable for M ∈ (0, 8π/3), i.e. F n1 (λ) → λ̄

for λ from some neighbourhood of λ̄, and unstable for M ∈ (8π/3, 4π].

The well-defined iterations of a decreasing function may converge to a fixed point or

to a periodic orbit of period two.

First, we note that the sequence of iterations F n1 (λ), λ ∈ (0, 2], is defined only for

M ∈ (0, 2π], see Fig. 1.

Fig. 1

After some lengthy calculations we observe that F 2
1 has a unique fixed point, and

thus there exists no periodic point of F1. Hence, taking M ∈ (0, 2π] we get that the

iterations λn = Fn1 (λ) tend to a fixed point of F1 for any λ ∈ (0, 2]. This implies that

for ϕ0 ∈ C0(Ω̄) satisfying M(
∫

Ω
eϕ0)−1 ≤ 2, the sequence ϕλn ≡ ϕ1(r;λn) = Sn+1

1 (ϕ0),

n = 0, 1, 2, . . . , λn = Fn1 (λ0), λ0 = M(
∫

Ω
eϕ0)−1, is convergent in the supremum norm

to a solution of (10).
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In fact, using the integral form of (10) we have

ϕλn(x) =
M∫

Ω
eϕλn−1

∫

Ω

G(x, y)eϕλn (y)dy, n = 1, 2, . . . .

Here, as before, G(x, y) denotes the Green function corresponding to −∆ and the ho-

mogeneous boundary data. Applying the Lebesgue dominated convergence theorem we

get

ϕλ̄(x) =
M∫

Ω
eϕλ̄

∫

Ω

G(x, y)eϕλ̄(y)dy,

which means that ϕλ̄ is a solution of the Poisson-Boltzmann problem (10).

Now for M ∈ (2π, 4π] we observe that for M ∈ (2π, 2π(
√

5 − 1)] (for M ∈ (2π(
√

5−
1), 4π], respectively) F1 maps the interval [λ∗, 2] ((λ∗, λ∗∗)) into itself, see Fig. 2 and Fig.

3. Here λ∗ = 16π(M − 2π)/M2 and λ∗∗ = 128π2(M − 2π)(M3 − 16π2M + 32π3)/M6,

they satisfy F1(λ∗) = 2 and F1(λ∗∗) = λ∗.

Fig. 2

Fig. 3
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When M ∈ (2π, 2π(
√

5 − 1)) we get, due to the stability of a fixed point λ̄ and the

absence of periodic points of F1, that the sequence of iterations λn = Fn1 (λ) tends to λ̄

for λ ∈ [λ∗, 2]. For M = 2π(
√

5− 1) the convergence holds on (λ∗, 2).

In the case M ∈ (2π(
√

5 − 1), 8π/3) and λ ∈ (λ∗, λ∗∗), some periodic orbit occurs.

Moreover, if M ∈ (8π/3, 4π) then λ̄ is an unstable fixed point of F1, and hence ϕλn is

not convergent to a solution of (10).

Thus, choosing an appropriate initial function ϕ0 ∈ C0(Ω̄), so that λ0 = M(
∫

Ω
eϕ0)−1

lies in the domain of attraction of λ, we can obtain the convergence of the sequence

ϕλn ≡ Sn+1
1 (ϕ0) to a solution of (10) for M ∈ (2π, 2π(

√
5− 1)].

Taking M ∈ [4π, 8π) we get that the map

F2(λ) = M

(∫

Ω

eϕ2

)−1

=
λM

2π(2 +
√

4− 2λ)

is a continuous increasing function of λ ∈ (0, 2], has a unique fixed point in (0, 2], and

limλ→0+ F2(λ) = 0, limλ→2− F2(λ) = M/2π, see Fig. 4. Thus the iterations λn = Fn2 (λ)

do not tend to a fixed point of F2 for any λ ∈ (0, 2].

Fig. 4

The conclusion is that for the Poisson-Boltzmann problem of gravitational type we

can expect the convergence of our iteration scheme to the solution of this problem only

in a restricted range of parameter M .

5. Iterations for (1)–(2) with increasing f . In this section we study the iteration

process for a more general class of problems (1)–(2) with an increasing function f .

The construction of the iteration scheme will be based on the theory of minimal

solutions of (3). We require the following assumptions on f :

(f1) f ∈ C1(R);

(f2) f is positive;

(f3) f is increasing.
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The assumptions (f1)-(f3) guarantee the following properties of the minimal solution

of (3):

(P1) There exists Λ ∈ (0,+∞) such that the problem (3) has a unique minimal

solution ϕ̃λ for λ ∈ (0,Λ) ([14]).

(P2) ϕ̃λ is an increasing function of the parameter λ ([14]).

(P3) ϕ̃λ is left continuous in λ, i.e. limλ→µ− ϕ̃λ = ϕ̃µ (see Section IV.2.3 in [1]).

(P4) limλ→0+ ϕ̃λ = 0.

In order to describe the scheme of iterations for (1)–(2), we define S(ϕ̄) for ϕ̄ ∈ C0(Ω̄)

as the minimal solution of (3) with

λ = M

(∫

Ω

f(ϕ̄)

)−p
≡ H(ϕ̄),

i.e. S(ϕ̄) = ϕ̃λ, where λ = H(ϕ̄). We note that H decreases because of (f3).

We put ϕ0 ≡ 0. Let M be sufficiently small such that λ0 = H(0) < Λ. We take

ϕn = Sn(0) as the iteration sequence for (1)–(2) satisfying

−∆ϕn = λn−1f(ϕn) in Ω, λn−1 = H(ϕn−1), ϕn|∂Ω = 0, n = 1, 2, . . . .

The question is whether it converges to a solution of (1)–(2).

We have ϕ1 = ϕ̃λ0
≥ 0 = ϕ0, hence λ1 = H(ϕ1) ≤ H(ϕ0) = λ0 which gives ϕ̃λ1

≤
ϕ̃λ0

, so 0 ≤ ϕ2 ≤ ϕ1. The last inequality leads to λ2 = H(ϕ2) ≥ H(ϕ1) = λ1, and

thus we get ϕ3 = ϕ̃λ2
≥ ϕ̃λ1

= ϕ2. On the other hand from ϕ2 ≥ 0 = ϕ0 it follows

that λ2 = H(ϕ2) ≤ H(ϕ0) = λ0, which implies ϕ3 = ϕ̃λ2
≤ ϕ̃λ0

= ϕ1. So we have

0 ≤ ϕ2 ≤ ϕ3 ≤ ϕ1 and λ1 ≤ λ2 ≤ λ0. In the same way, from ϕ3 ≥ ϕ2 and ϕ3 ≤ ϕ1

we obtain ϕ4 ≤ ϕ3 and ϕ4 ≥ ϕ2, respectively. Hence 0 ≤ ϕ2 ≤ ϕ4 ≤ ϕ3 ≤ ϕ1 and

λ1 ≤ λ3 ≤ λ2 ≤ λ0 hold.

Continuing, we finally have

ϕ0 ≤ ϕ2 ≤ ϕ4 ≤ . . . ≤ ϕ2k ≤ ϕ2k−1 ≤ . . . ≤ ϕ3 ≤ ϕ1 in Ω,(12)

and

λ1 ≤ λ3 ≤ λ5 ≤ . . . ≤ λ2k−1 ≤ λ2k ≤ . . . ≤ λ4 ≤ λ2 ≤ λ0.(13)

Thus the sequences ϕ2k and ϕ2k−1 are convergent uniformly on Ω to some functions

u and v, respectively. We see that u ≤ v ≤ ϕ1 = ϕ̃λ0
, which gives an a priori estimate

of u and v, so |u|∞ < R, |v|∞ < R, where R = |ϕ̃λ0
|∞. Hence u and v are small for

sufficiently small M , because λ0 = M(
∫

Ω
f(0))−p � 1 implies via (P4) that |ϕ̃λ0

|∞ � 1.

It follows from (13) that H(ϕ2k) = λ2k → λ̌ = H(u) and H(ϕ2k−1) = λ2k−1 → λ̂ =

H(v). Obviously we have λ̂ ≤ λ̌ ≤ λ0.

Moreover, the functions u and v are solutions of (3) with the parameters λ̂ and λ̌,

respectively, so u and v satisfy

−∆u = M
f(u)

(
∫

Ω
f(v))p

in Ω,(14)

−∆v = M
f(v)

(
∫

Ω
f(u))p

in Ω,(15)

u|∂Ω = 0, v|∂Ω = 0.(16)
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By (P3) u is a minimal solution, i.e. u = ũλ̂. Hence to prove the convergence of ϕn to

a solution of (1)–(2), it remains to show that u = v, i.e. the problem (14)–(16) does not

have a solution u, v in the ball BR(0) ⊂ C0(Ω̄) such that u 6= v. We show that this

nonexistence result holds for sufficiently small M . First, we note that for M � 1 the

problem (14)–(16) has a unique solution.

Indeed, let us introduce the function space X = C0(Ω̄) × C0(Ω̄) with the norm

||(u, v)|| = |u|∞ + |v|∞.

We define the following operator T on X

T (u, v)(x) =

(
M

(
∫

Ω
f(v))p

∫

Ω

G(x, y)f(u(y))dy,
M

(
∫

Ω
f(u))p

∫

Ω

G(x, y)f(v(y))dy

)
.(17)

Any fixed point of T is a solution of (14)–(16). Proceeding as in the proof of Theorem

1, we get that T defined by (17) is a contraction on the ball BR(0) ⊂ X for sufficiently

small M .

It remains to note that, whenever the nonlocal elliptic problem (1)–(2) has a solution

ϕ satisfying the estimate |ϕ|∞ ≤ CM , the functions u = v = ϕ solve (14)–(16) and for

sufficiently small M it must be a unique solution of this problem.

In this way we have proved the following

Theorem 4. Let f satisfy (f1)-(f3). Assume that for small M the problem (1)–(2) has

a solution ϕ with |ϕ|∞ ≤ CM . Then for sufficiently small M the iteration sequence

ϕn = Sn(0) is convergent in the supremum norm to a solution of (1)–(2).

It is known that if f is a continuous positive increasing function and limz→+∞ z/f(z)

> M |Ω|−p supx∈Ω

∫
Ω
G(x, y)dy, then (1)–(2) has a solution ϕ which satisfies an a priori

estimate |ϕ|∞ ≤ CM , see [12].
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