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Abstract. In the paper we prove a formula for the limit of the difference between the power of

the asymptotically optimal test and the power of the asymptotically most powerful test for the

case of Laplace distribution.

1. Introduction. The Laplace distribution was introduced by P. S. Laplace in 1774 as
the first law of error which states that the frequency of an error could be expressed as
an exponential function of the numerical magnitude of the error, disregarding sign, or
equivalently that the logarithm of the frequency of an error (without regard to sign) is
a linear function of the error (see [11], pp. 3–13). The second law of error (proposed four
years later in 1778) states that the logarithm of the frequency of the error is a quadratic
(parabolic) function of the error. The second Laplace law is usually called the normal
distribution or the Gauss law. E. B. Wilson noted that there are excellent mathematical
reasons for the far greater attention that has been paid to the second law, since it involves
the variable x2 (if x is the error) and this is subject to all the laws of elementary mathe-
matical analysis, while the first law involving the absolute value of the error x is not an
analytic function and presents considerable mathematical difficulty in its manipulation
(see [11], pp. 3–13). Due to this non-regularity the first law of error was forgotten for about
150 years, and in 1911 the famous economist and probabilist J. M. Keynes obtained the
first law error again from the assumption that the most probable value of the measured
quantity is equal to the median of measurements. Later in 1923 E. B. Wilson suggested
that the frequency we actually meet in everyday work in economics, biometrics, or vital
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statistics often fails to conform closely to the normal distribution, and that Laplace’s first
law should be considered as a candidate for fitting data in economics and health sciences
(see [11], pp. 3–13). Nowadays there are many applications of the Laplace distribution to
communications, economics, engineering, and finance (see [11]).

In our paper we employ the theory of testing statistical hypotheses for the case of
Laplace distribution using an asymptotic approach. The asymptotic approach is applied
when use of the uniformly most powerful test is difficult, or the latter does not exist. In
practice the main aim of this approach is to calculate the power loss of the asymptotically
optimal test which is closely related to the deficiency of the corresponding test (see [1]).
The power loss is obtained as the difference between the power of the asymptotically
optimal test and the power of the asymptotically most powerful test.

We consider a problem of testing a simple hypothesis

H0 : θ = 0 (1)

against a sequence of complex local alternatives

Hn,1 : θ =
t√
n
, 0 < t ≤ C, C > 0, (2)

which is based on independent identically distributed observations Xn = (X1, . . . , Xn)
with Laplace distribution

f(x, θ) =
1
2
e−|x−θ|, x, θ ∈ R1. (3)

For any fixed n and t ∈ (0, C] we denote by β∗n(t) the power of the most powerful test
of a level α ∈ (0, 1). Such test always exists by the Neyman-Pearson fundamental lemma
(see, for instance, [1], p. 183) and is based on the log-likelihood ratio Λn(t)

Λn(t) =
n∑
i=1

(|Xi| − |Xi − tn−1/2|). (4)

Let βn(t) be the power of some asymptotically optimal test with the same level α,
which is based on the statistic

Sn(t) =
t√
n

n∑
i=1

sign(Xi)−
t2

2
. (5)

Denote by

Ψ∗n(Λn(t)) =


0, Λn(t) < cn,t,

γ∗n,t, Λn(t) = cn,t,

1, Λn(t) > cn,t,

Ψn(Sn(t)) =


0, Sn(t) < d̄n,t,

γn,t, Sn(t) = d̄n,t,

1, Sn(t) > d̄n,t,

the tests of level α, respectively, and

En,0Ψ∗n(Λn(t)) = En,0Ψn(Sn(t)) = α+ o(τ2
n),

where τn ≡ n−1/4, En,0 and En,1 are expectations under H0 and Hn,1 (see (1), (2)),
respectively. Then

β∗n(t) = En,1Ψ∗n(Λn(t)), βn(t) = En,1Ψn(Sn(t)).

We obtained the following results (see [9], theorems 2.1 and 3.3).
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Theorem 1.1. For the power βn(t) uniformly in t ∈ [0, C], C ≥ 0, the following asymp-
totic expansion is valid

βn(t) = Φ(t− uα)− t2

2
√
n
ϕ(t− uα)

+
t

2n
ϕ(t− uα)

(
t2

3
− t3

4
(t− uα)− 1

6
(u2
α + uαt− 3t2 + 24δn(1− δn)− 3)

)
+O(n−3/2),

where

δn =
n+ 1

2
+
√
nuα
2
−

[
n+ 1

2
+
√
nuα
2

]
+O(n−1/2),

where [y] is an integer part of y ∈ R1.

Theorem 1.2. For the power β∗n(t) uniformly in t ∈ [0, C], C ≥ 0, the following asymp-
totic expansion is valid

β∗n(t) = Φ(t− uα)− t2

6
√
n
ϕ(t− uα)

− t

12n

( t4
6
− t2

3
− 1− uα

{ t3
6
− uα + t

})
ϕ(t− uα) +O(n−3/2),

where Φ(x), ϕ(x) are the standard normal distribution function and the standard normal
density function, respectively, Φ(uα) = 1− α.

From the theorems it immediately follows that the difference between the powers has
the order n−1/2 and

r(t) ≡ lim
n→∞

√
n(β∗n(t)− βn(t)) =

t2

3
ϕ(uα − t). (6)

2. Formula for the power loss. The proof of the formula (6) is based on asymptotic
expansions for the powers βn(t) and β∗n(t) (see previous section). But there is an interest
in proving the fact in general form as the theorem 3.2.1 in [1] and the theorem 2.1 in [5]
have. The interest is dictated by non-regularity of Laplace distribution and an explicit
form of the formula in the theorem 3.2.1 in [1] and the theorem 2.1 in [5]. For simplicity
we omit the dependence on parameter t when the latter does not influence reasoning.
The explicit form is expressed through a conditional variance of the limit of differences
between statistics Sn (see (5)) and Λn (see (4)) given the statistic Λ as a limit distribution
for the sequence {Λn}

r =
1
2
ebD[∆ | Λ = b]p(b), (7)

where ∆ and Λ are random variables such that under H0 (see (1))

(τ−1
n ∆n,Λn) D−→ (∆,Λ),

∆n = Sn − Λn, b = Φ−1
1 (1− α).

Here Φ1(x) is the limiting distribution function of Λn under H0, p(x) is its density func-
tion and τn = n−1/4 for the case of Laplace distribution. Formula (7) is useful when



30 R. A. KOROLEV AND V. E. BENING

asymptotic expansions just as in [9] are cumbersome to obtain. In their present form
the sufficient conditions of the formula (7) do hold for a variety of statistics of interest,
e.g. for rank statistics (R-statistics), linear combinations of order statistics (L-statistics),
and U-statistics, also in those cases, where ∆n does admit a stochastic expansion in
terms of sums of independent and identically distributed random variables under some
assumptions (see [5]).

All of cases mentioned above have regular properties in contrast to Laplace distribu-
tion. Due to this non-regularity the statistic Sn (see (5)) has a lattice distribution, and
consequently one of regular conditions for the statistic Sn does not hold, the analog of
Cramér’s condition (C) (see [1], theorem 3.2.1, assumption (ii)). Also the difference (6)
has order n−1/2 (see also lemma 3.2 in [10]) in contrast to the order n−1 as theorem 2.1
in [5] says. From our results (see lemmas 2.1, 3.1 in [10])

L(Λn | H0)→ N
(
− t

2

2
, t2
)
, (8)

L(τ−1
n ∆n | H0)→ N

(
0,

2t3

3

)
, (9)

L((τ−1
n ∆n,Λn) | H0)→ N2

(
0,

2t3

3
, 0,− t

2

2
, t2
)
, (10)

whereN andN2 are univariate and bivariate normal distributions, respectively, we obtain
the non-regular stochastic expansion for Λn (see (3.4) in [10])

Λn = Sn − τn
(
τ−1
n ∆n

)
= Sn − τn

(
τ−1
n

n∑
i=1

(
− t

2

2n
− 2
(
Xi −

t√
n

)
1[0,t/

√
n](Xi)

))
,

where τn = n−1/4 in contrast to regular cases when τn = n−1/2.
To prove the validity of the formula (7) for the case of Laplace distribution we consider

some properties of Λn and ∆n (lemmas 2.1–2.3). From lemma 3.2 in [9] (see also [6]) we
have

Lemma 2.1. For τn = n−1/4 and continuously differentiable function Φ1(x) (independent
of n), Φ1(x) having a bounded derivative p(x) = Φ′1(x) > 0, the following relations are
valid

(i)
sup
x

∣∣Pn,0(Λn < x)− Φ1(x)
∣∣ = O(τ2

n);

(ii)
sup
x≤x0

Pn,1
(
x ≤ Λn ≤ x+ τ2+β

n

)
= o(τ2

n)

for some β > 0 and any x0 ∈ R1,

where Pn,0 and Pn,1 are the distributions of Xn under H0 and Hn,1, respectively.

We proved (see lemma 3.4 in [9]) the following lemma.

Lemma 2.2. For any x > 0 the following inequality is valid

Pn,0
(
τ−1
n |∆n| ≥ x

)
≤ Ce−x, C > 0.
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From lemma 2.2 and (8) we have (see lemma 2.2 in [8])

Lemma 2.3. For τn = n−1/4 and ηn = n−1/8 the following relations hold

(i)
η−1
n En,0∆2

n1(ηn,∞)(|∆n|) = o(τ2
n);

(ii)
En,0e

Λn1(ηn,∞)(|∆n|) = o(τ2
n),

where 1A(·) is the indicator of a set A.

Lemma 2.1 immediately implies (see lemma 2.4 in [2])

Lemma 2.4. For β∗n the following relation is valid

β∗n = Pn,1
(
Λn > cn

)
+ o(τ2

n).

We shall consider the following smoothed random variables

Λ̃n = Λn + ξn, ξn ∼ N (0, σ2
n), (11)

where
σ2
n = O(τ4+4β

n ), (12)

β > 0 is a constant as in lemma 2.1, and the random variable ξn does not depend on Xn

under H0. Denote by

β̃∗n = En,0e
Λ̃n1(cn,∞)(Λ̃n), β̃n = En,0e

Λ̃nΨn(Sn)

the smoothed versions of the powers.
Using properties of ξn (see (11), (12)), lemmas 2.1, 2.4, lemma 7.1.2 from [7], and for

X ∼ N (0, σ2) and any a ∈ R1 the relation EeaX = e
a2σ2

2 , we obtained (see lemma 2.6
in [2])

Lemma 2.5. For the powers βn and β∗n the following relations hold

βn = β̃n + o(τ2
n), β∗n = β̃∗n + o(τ2

n).

In lemma 2.5 we also used the fact that f(x, θ) > 0 for all x, θ ∈ R1 (see (3)) and the
relation En,0e

Λn = 1. The same assumptions are needed to obtain (see lemma 2.7 in [2])

Lemma 2.6. The following relation is valid

En,0Ψ∗n(Λ̃n) = En,01(cn,∞)(Λ̃n) = α+ o(τ2
n).

From lemmas 2.5, 2.6, 3.5 (see next section) the difference β∗n − βn can be expressed
as

β∗n − βn = β̃∗n − β̃n + o(τ2
n) = En,0e

Λ̃n(1(cn,∞)(Λ̃n)−Ψn(Sn)) + o(τ2
n)

= En,0(eΛ̃n − ed̄n)(1(cn,∞)(Λ̃n)−Ψn(Sn)) + o(τ2
n) ≡ Ãn + B̃n + o(τ2

n),

where

Ãn = En,0(eΛ̃n − ed̄n)(1(−∞,d̄n)(Λ̃n)− 1(−∞,cn)(Λ̃n)), (13)

B̃n = En,0(eΛ̃n − ed̄n)(1−Ψn(Sn)− 1(−∞,d̄n)(Λ̃n)). (14)
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Let
Dn = cn − d̄n.

Lemmas 3.5–3.7 of the next section imply that

Dn = −τnE
[
∆ | Λ = b

]
+ o(τn), (15)

Ãn = −1
2
D2
ne
bp(b) + o(τ2

n), (16)

B̃n =
1
2
τ2
ne
bE
[
∆2 | Λ = b

]
p(b) + o(τ2

n), (17)

where b = Φ−1
1 (1− α) (see lemma 2.1). From (15)–(17) we have

Theorem 2.7. For the case of Laplace distribution the following formula is valid

lim
n→∞

τ−2
n (β∗n − βn) =

1
2
ebD[∆ | Λ = b]p(b).

3. Additional lemmas. In this section we briefly give the review of the proofs of ad-
ditional lemmas which imply the results of the previous section. The detailed proofs of
the lemmas are in [2].

We shall consider the following functions

Q̄n,l(x) =
∫
|z|≤ηnτ−1

n

zl[Pn,0
(
τ−1
n ∆n < z

∣∣ Λ̃n = x− τnz
)
− 1(0,∞)(z)]pn(x− τnz)dz,

Q̃n,l(x) =
∫ ∞
−∞

zl[Pn,0
(
τ−1
n ∆n < z

∣∣ Λ̃n = x− τnz
)
− 1(0,∞)(z)]pn(x− τnz)dz,

where l = 0, 1, and pn(x) is density function of Λ̃n = Λn + ξn (see (11)).

Lemma 3.1. The following relations hold

sup
x

∣∣Q̄n,l(x)− Q̃n,l(x)
∣∣→ 0, l = 0, 1.

Proof. Here we mainly use the following inequality

P(X > x | Y ) ≤
E
[
|X|l+11(x,∞)(|X|) | Y

]
xl+1

, x > 0,

and lemma 2.3.

Denote by

Q̃∗n,u,t(B) = Pn,0
(
τ−1
n ∆n(t) ∈ B

∣∣ Λ̃n(t) = u
)
pn(u, t),

Q∗u,t(B) = P
(
∆(t) ∈ B

∣∣ Λ(t) = u
)
p(u, t),

measures on (R1,B1) depending on parameters u ∈ R1 and t ∈ (0, C], C > 0. Here we
explicitly use dependence on t. Denote by

q̃∗n,u,t(s) ≡
∫
eisxQ̃∗n,u,t(dx) = En,0[eisτ

−1
n ∆n(t) | Λ̃n(t) = u] pn(u, t),

q∗u,t(s) ≡
∫
eisxQ∗u,t(dx) = E[eis∆(t) | Λ(t) = u] p(u, t),

their characteristic functions, respectively.



ASYMPTOTICALLY OPTIMAL TEST’S POWER 33

Lemma 3.2. For any s ∈ R1 and n→∞ the following relation holds

sup
0<t≤C

sup
u

∣∣q̃∗n,u,t(s)− q∗u,t(s)∣∣→ 0.

Proof. For any s ∈ R1 and some δ > 0 we have∣∣q̃∗n,u,t(s)− q∗u,t(s)∣∣ ≤ ∫ ∣∣q̃n,t(s, y)− qt(s, y)
∣∣dy =

∫
|y|<δ

√
n

+
∫
δ
√
n≤|y|<n

+
∫
|y|>n

,

where

q̃n,t(s, y) ≡
∫
eiyuq̃∗n,u,t(s)du = En,0e

isτ−1
n ∆n(t)+iyΛ̃n(t)

= EeiyξnEn,0e
isτ−1

n ∆n(t)+iyΛn(t),

qt(s, y) ≡
∫
eiyuq∗u,t(s)du = Eeis∆(t)+iyΛ(t).

Let

Λn(t) ≡ 1√
n

n∑
i=1

hn,t(Xi), τ−1
n ∆n(t) ≡ 1√

n

n∑
i=1

gn,t(Xi),

where

hn,t(x) =
√
n

(
|x| −

∣∣∣∣x− t√
n

∣∣∣∣) =


−t, x < 0,
2
√
nx − t, 0 ≤ x ≤ t√

n
,

t, x > t√
n
,

gn,t(x) =

 −τ
−1
n

√
n t

2

2n , x /∈ [0, t/
√
n],

−τ−1
n

√
n t

2

2n − τ
−1
n

√
n2(x− t√

n
), x ∈ [0, t/

√
n].

From uniform integrability of h2
n,t(x) and g2

n,t(x) we obtain the following statement (see
lemma 6.3 in [5]): for any s0 ∈ R1 there exist C0 > 0, y0 ∈ R1, n0 ∈ N and δ > 0 such
that for |y| ≤ δ

√
n, n ≥ n0∣∣En,0eis0τ−1

n ∆n(t)+iyΛn(t)
∣∣ ≤ C0 exp

{
−1

4
t2(y − y0)2

}
. (18)

For the random variable hn,t(X1) we have

Fn,t(x) ≡ P0{hn,t(X1) < x} =


0, x ≤ −t,
1
2 +

∫ x
−t

1
4
√
n
e
− u+t

2
√
n du, −t < x ≤ t,

1, x > t.

The latter can be expressed as a mixture of an absolutely continuous distribution Fn,t,1(x)
and a discrete distribution Fn,t,2(x), (0 < bn,t < 1),

Fn,t(x) = bn,tFn,t,1(x) + (1− bn,t)Fn,t,2(x)

=
1− e−t/

√
n

2

∫ x

−∞
fn,t,1(u)du+

1 + e−t/
√
n

2
Fn,t,2(x),
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where

fn,t,1(x) =

{
2

1−e−t/
√
n

1
4
√
n
e
− x+t

2
√
n , x ∈ [−t, t],

0, x /∈ [−t, t],

Fn,t,2(x) =


0, x ≤ −t,

1
1+e−t/

√
n , −t < x ≤ t,

1, x > t.

While for x ∈ [−t, t] we have fn,t,1 → 1
2t as n → ∞, and supx∈[−t,t] fn,t,1(x) < M/2t <

∞, then from the inequality (1.16) in [6] (see [6], p. 421) and from the property of a
characteristic function for 0 < δ < π/2t there exists q = q(δ) > 0 such that for |y| > δ∣∣∣∣∫ eiyxFn,t,1(dx)

∣∣∣∣ ≤ 1− q.

We consider the following sets

Bn =
{
x ∈ X : |s0gn,t(x)| ≤ q

2
√
n

}
.

We introduce the following conditional distribution

Fn,t(x |Bn) ≡ P0(hn,t(X1) < x |Bn) =
P0({hn,t(X1) < x} ∩Bn)

P0(Bn)
,

where P0(Bn) > 0.
For any s0, t and q there exists n1 such that for all n > n1 the sets Bn coincide with X ,

and the conditional distributions Fn,t(x | Bn) coincide with unconditional distributions
Fn,t(x). Let n > n1, then∣∣∣E0e

i
s0√
n
gn,t(X1)+iyhn,t(X1)

∣∣∣ =
∣∣∣E0E0

(
e
i
s0√
n
gn,t(X1)+iyhn,t(X1) | hn,t(X1) = x

)∣∣∣
=
∣∣∣∫ eiyxE0

(
e
i
s0√
n
gn,t(X1) | hn,t(X1) = x

)
dFn,t(x)

∣∣∣.
From the definition of Bn and the inequality

|ei
s0√
n
gn,t(x) − 1| ≤ |s0gn,t(x)|√

n
we have for all n > n1

|E0

(
e
i
s0√
n
yn,t(X1)|hn,t(X1) = x

)
− 1| ≤ q

2
,

which is valid almost surely.
Then we obtain an estimate∣∣E0e

i
s0√
n
gn,t(X1)+iyhn,t(X1)∣∣

≤ bn,t
∣∣∣∫ eiyxE0

(
e
i
s0√
n
gn,t(X1) | hn,t(X1) = x

)
dFn,t,1(x)

∣∣∣+ (1− bn,t)

≤ bn,t
q

2
+ bn,t

∣∣∣∫ eiyxdFn,t,1(x)
∣∣∣+ (1− bn,t) ≤ bn,t

q

2
+ bn,t(1− q) + (1− bn,t)

≤ 1− e−t/
√
n

2

(
1− q

2

)
+

1 + e−t/
√
n

2
= 1− C1√

n
+O(n−1), (19)

where C1 > 0.
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Then we use (18), (19), lemma 6.3 from [5], lemma 6.3 from [4] and properties of the
random variable ξn (see (11), (12)) to finish the proof.

Let

F̃ ∗n,u,t(z) = Pn,0
(
τ−1
n ∆n(t) < z

∣∣ Λ̃n(t) = u
)
pn(u, t),

F ∗u,t(z) = P
(
∆(t) < z

∣∣ Λ(t) = u
)
p(u, t)

be distribution functions depending on parameters u and t.

Lemma 3.3. For any εn → 0 and n→∞
sup

0<t≤C
sup
u
L
(
F̃ ∗n,u+εn,t, F

∗
u,t

)
→ 0,

where L(F1, F2) is the Levy distance between distributions.

Proof. From lemma 6.1 in [4], lemma 3.2 and boundedness of εn we have

L(Q̃∗n,u+εn,t, Q
∗
u,t)→ 0

uniformly in u and t, because the family {Q∗u,t} is tight and bounded in u and t (see
lemma 6.2 in [5] and lemma 2.1). Then theorem 2.1 in [3] implies the lemma.

For l = 0, 1 we introduce

Ql(x) ≡ p(x)
∫
zl[P

(
∆ < z

∣∣ Λ = x
)
− 1(0,∞)(z)]dz = − 1

l + 1
E(∆l+1 | Λ = x)p(x).

Lemma 3.4. For l = 0, 1 the following relations hold

sup
x

∣∣Q̃n,l(x)−Ql(x)
∣∣→ 0.

Proof. Using lemma 2.2, we obtain the following inequality∣∣Q̃n,l(x)−Ql(x)
∣∣

≤
∣∣∣∫
|z|≤an

zl
(
Pn,0

(
τ−1
n ∆n < z | Λ̃n = x− τnz

)
pn(x− τnz)− P

(
∆ < z | Λ = x

)
p(x)

)
dz
∣∣∣

+
∣∣∣∫ an

0

zl
(
pn(x− τnz)− p(x)

)
dz
∣∣∣+O(e−an),

where an = min(λ−1/3
n , κ

−1/3
n , n1/8), and by lemmas 3.2, 3.3 in [8] and lemma 3.3

κn ≡ sup
0<t≤C

sup
x

∣∣pn(x)− p(x)
∣∣→ 0,

λn ≡ sup
0<t≤C

sup
x
L
(
F̃ ∗n,x−τnz,t, F

∗
x,t

)
→ 0.

Lemma 3.5. For Dn the following relation holds

Dn = −τnE
[
∆ | Λ = b

]
+ o(τn),

and d̄n → b.

Proof. Here we mainly use the following relation

FS̃n(x) = FΛ̃n
(x) + τnQ̄n,0(x) + o(τ2

n),

where FΛ̃n
(x) ≡ Pn,0(Λ̃n < x), FS̃n(x) ≡ Pn,0(Sn + ξn < x), lemmas 2.1, 2.2, 3.4, and

relations (8), (10)–(12).
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Lemma 3.6. For Ãn the following relation holds

Ãn = −1
2
D2
ne
d̄np(d̄n) + o(τ2

n).

Proof. Here we mainly use the following relation (see (13))

Ãn =
∫ d̄n

cn

(ey − ed̄n)dFΛ̃n
(y),

where FΛ̃n
(y) ≡ Pn,0(Λ̃n < y), integration by parts and lemmas 2.1, 3.5.

Lemma 3.7. For B̃n the following relation holds

B̃n =
1
2
τ2
ne
d̄nE[∆2 | Λ = d̄n]p(d̄n) + o(τ2

n).

Proof. Consider

B̃n = En,0(eΛ̃n − ed̄n)(1(−∞,d̄n)(S̃n)− 1(−∞,d̄n)

(
Λ̃n
)
) + ρn1 + ρn2,

where

ρn1 ≡ En,0(eΛ̃n − ed̄n)(1[d̄n,∞)(Sn)−Ψn(Sn)) = (1− γn)En,0(eΛ̃n − ed̄n)1{d̄n}(Sn),

ρn2 ≡ En,0(eΛ̃n − ed̄n)(1(−∞,d̄n)(Sn)− 1(−∞,d̄n)(S̃n)).

From lemma 2.2 we obtain (see lemma 3.7 in [2])

|ρn1| = o(τ2
n), |ρn2| = o(τ2

n).

Now we can express B̃n as

B̃n = En,0(eΛ̃n − ed̄n)(1(−∞,d̄n)(S̃n)− 1(−∞,d̄n)(Λ̃n))1[0,ηn)(|∆n|) + ρn3 + o(τ2
n),

where by lemma 2.2
|ρn3| = o(τ2

n).

Then for ηn = n−1/8

B̃n = τne
d̄n

∫
|z|≤τ−1

n ηn

(
e−τnz − 1

)[
Pn,0{τ−1

n ∆n < z | Λ̃n = d̄n − τnz} − 1(0,∞)(z)
]

× pn(d̄n − τnz)dz + o(τ2
n) + ρn4,

where

|ρn4| ≤ 2τned̄n
∫
|z|≤τ−1

n ηn

|e−τnz − 1|Pn,0{|∆n| > ηn | Λ̃n = d̄n − τnz}pn(d̄n − τnz)dz

≤ 2ηned̄n+ηnPn,0{|∆n| > ηn} = o(τ2
n).

From the inequality

|e−s − 1 + s| ≤ 1
2
γ2eγ , |s| ≤ γ,

where s = τnz, we can express B̃n as

B̃n ≡ − τ2
ne
d̄n

∫
|z|≤τ−1

n ηn

z
[
Pn,0{τ−1

n ∆n < z | Λ̃n = d̄n − τnz} − 1(0,∞)(z)
]

× pn(d̄n − τnz)dz + o(τ2
n) + ρn5,
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where

|ρn5| ≤
1
2
τ2
nηne

d̄n+ηn

∫
|z|≤τ−1

n ηn

|z|
∣∣Pn,0{τ−1

n ∆n < z | Λ̃n = d̄n − τnz} − 1(0,∞)(z)
∣∣

× pn(d̄n − τnz)dz.

The latter integral is equal to −Q̄n,1(d̄n), and as follows from the proof of lemma 3.4.4
in [1]

ρn5 = o(τ2
n).

Then
B̃n = −τ2

ne
d̄nQ̄n,1(d̄n) + o(τ2

n),

and from lemma 3.4 for l = 1 we obtain

Q̄n,1(d̄n)→ Q1(d̄n) ≡ −1
2
E[∆2 | Λ = d̄n]p(d̄n).

4. Conclusions. In this paper we prove theorem 2.7 without an analog of Cramér’s (C)
condition for the statistic Sn. Using the theory developed in [4]–[6], we mainly use prop-
erties of Λn (see lemma 2.1) and introduce a new condition on ∆n (see lemma 2.2). Note
that the assumptions 2 (ii), (iii) of theorem 3.2.1 in [1] (see lemma 2.3) are not sufficient
for theorem 2.7 for the case of Laplace distribution, and we use a more strict condition
(lemma 2.2). Also theorem 2.7 was proved in [8] without using lemma 2.2, when we con-
sider the critical value d̄n of the asymptotically optimal test as one of values of the lattice
statistic Sn, that is

d̄n = min{x : Pn,0{Sn ≤ x} ≥ 1− α+ o(τ2
n)}.

The latter corresponds to the statement of the problem of testing statistical hypotheses.
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