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Abstract. The paper is, for the most part, devoted to a survey of the analytical properties of
generalized convolution algebras and their realizations. This issue appears to be the state of the
art until now because intensive research on the generalized convolution and the related models
still persists.

1. Introduction. The notion of generalized convolutions was introduced by Urbanik in
his fundamental paper [43] as a commutative binary operation on probability measures on
the non-negative half-line satisfying five axioms. One of them, the so-called 5-th axiom,
was, actually, an analogue of the weak law of large numbers or the central limit theorem
for point measures, though the motivating example - the Kingman operation, arising
from the study of random walks with spherical symmetry - in no way suggested such an
approach. The general and flexible “Urbanik system” encouraged many researchers to in-
vestigate this construction and compare it to the known classical analogues. Particularly,
the factorizing properties related to the appropriate limit distributions were considered by
Bingham [4], [5], Kłosowska [21], Smirnov [42], Jurek [16], [17], and Grishechkin [8]. Class
I0 for the Kingman convolution was described by Ostrovsky [38], while quasi-stable mea-
sures in generalized convolution algebras were considered by Jajte [10], [11]. Generalized
Independent Increments Processes indexed by generalized convolutions were studied by
Van Thu [36], etc. A detailed analysis of the basic and analytical properties of generalized
convolutions was also provided by fundamental studies of Urbanik [44]-[59].

A new approach to analytical description of the Urbanik algebras was proposed by
Volkovich [61], [62], [63]. A natural method for constructing realizations of general convo-
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lutions concerning the quasi-stable functions and the related B-stable distributions was
proposed in [22], [23] and further developed in [47] (see also [64]). Generalizations of this
approach make it possible to create and design new probability models, which were intro-
duced by Misiewicz and her colleagues [13], [33], [34]. The V -infinitely divisible measures
introduced by Volkovich [68], [71], [73] were prompted by the general convolutions con-
cept as an attempt to obtain a generalization for the whole real line. Roughly speaking,
most of the probability objects for classical convolutions that have been studied so far
are investigated, in one or another form, in the framework of the generalized convolutions
theory.

The current paper is, for the most part, devoted to a survey of the analytical properties
of generalized convolution algebras and their realizations. This issue appears to be the
state of the art until now because intensive research on the generalized convolution and
related models still persists.

The paper is organized as follows. In Section 2 we present all the notations used in the
paper. Section 3 presents the basic definitions and examples of the general convolutions
theory. Section 4 is devoted to the discussion of the way in which the classical realization is
characterized, namely, to general convolutions stable distributions and to the infinitesimal
attributes, related to them. The Banach algebras produced by the general convolutions
are presented in section 5. The idea of such an approach was proposed by Volkovich [62],
[63]. However, significant development of this idea by Urbanik [51] has led to a major
theoretical achievement, which consists in the fact that each convolution is characterized
by a function with a measurable kernel. In section 6, non-classical realizations of general
convolution are presented, which were obtained by Kucharczak, Urbanik [22], [23], and
Volkovich [64], [73] using, mainly, the B-stable distributions. In section 7, the notion of
stochastic convolutions, introduced by Volkovich [65], [66], [67], [69], [70], is discussed.
This concept has originated from the investigation of various operations on probability
measures. The regular generalized convolution algebras provide a perfect example of
obtaining significant results on the basis of properly chosen axiomatic system. Other
particular cases of this general model are the Levitan convolution, the Lasser polynomial
hypergroup convolutions, and the convolutions of Askey and Gasper. In this section, the
notion of V -infinitely divisible distributions, introduced by Volkovich [68], [71], [73], is
also presented. These measures initially appeared in the problems of stochastic centering
of the sums of real independent random variables and constitute the basis of the super-
stable distributions obtained by Zolotarev. The model under consideration is also based
on distribution characterizations by means of stochastic properties of linear statistics.
New validations of the classical Lévy-Khintchine formula obtained by Volkovich [73],
[75], [76] are also presented in this section. In the last section 8, we discuss two open
problems of the generalized convolutions theory. The first one concerns the construction
of an instructive model of general convolutions on the whole real line, while the second one
deals with convolutions representation. In the latter case, the question is whether there
exists a regular generalized convolution which cannot be reduced by a power variable
exchange to a sub-algebra of symmetric measures on the real line endowed with the
regular convolution.
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2. Notations. The following notations are used in this paper:

• N = {1, 2, . . . };
• R is the real line;
• R+= [0,∞);
• R+ is the compactified half-line [0,∞];
• Rn is the Euclidean space of dimension n.

We consider the above sets as measurable spaces with the natural Borel σ-algebras.
• < ·, · > is the inner product.

• P(E) is the metric space (with weak topology) of all probability measures on a
measurable space E (probability measures are denoted by small Greek letters);
• → denotes weak convergence;
• P+ = P(R+);
• M(E) is the linear space of all σ-finite signed measures (with weak topology);
• F(E) is the set of bounded Borel functions defined on E;
• C(E) is the set of bounded continuous functions defined on E;
• F+ = F(R+);
• C+ = C(R+);
• M+ =M(R+);
• δa is the Dirac measure concentrated at the point a;
• δ∞ ∈ P(R+) is the Dirac measure concentrated at infinity;
• m+ is the Lebesgue measure on R+;
• Ta(µ) is the operator of the multiplicative shift on P+ defined as

Taµ(A) =
{
µ(a−1A) for a 6= 0,
δ0 for a = 0;

• L1 (µ) is the Banach space of all absolutely integrable functions with respect to a
measure µ ;
• if α and β are two measures, then α � β means that α is absolutely continuous

with respect to β and dα
dβ is the Radon–Nikodym derivative of α with respect to β;

• E is the expected value of a random variable;
• � is the “multiplicative convolution”, the operation on P+ corresponding to the

product of two independent random variables;
• ∗α is the α-convolution;
• κ(◦) is the characteristic exponent of the generalized convolution (g.c.) ◦;
• Γ is the Euler Gamma function.

3. Generalized convolutions

3.1. Definitions and examples. Generalized convolutions were introduced by Urbanik
[43] as commutative and associative P+-valued binary operations ◦ satisfying the follow-
ing conditions:

1. The measure δ0 is a unit element, i.e.,
µ ◦ δ0 = µ

for all µ ∈P+.
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2. Linearity:
(cµ+ (1− c)ν) ◦ η = c(µ ◦ η) + (1− c)(ν ◦ η),

for all 0 ≤ c ≤ 1 and all µ, ν, η ∈ P+.
3. Homogeneity:

Ta(µ ◦ ν) = Taµ ◦ Taν

for all a ∈ R+ and all µ, ν ∈P+.
4. Continuity: if µn → µ, then

µn ◦ ν → µ ◦ ν

for all ν ∈P+.
5. There exists a sequence c1, c2, . . . of positive numbers such that

Tcnδ
◦(n)
1 → µ0 6= δ0.

The power δ◦(n)
1 is taken here in the sense of the operation ◦.

Realization, i.e., an explicit example of g.c., can be described in a natural way by
means of the following operator defined on F+:

Zuf(v) =
∫
f(x) (δu ◦ δv) (dx), f ∈ F+. (1)

Obviously, the function
g(f)(u, v) := Zuf(v), u, v ∈ R+

belongs to F(R+ × R+) for each f ∈ F+. We also introduce

Zw(v)Z
uf(v) =

∫
g(f)(u, x) (δw ◦ δv) (dx).

Our considerations can be, actually, based only on a part of the properties. First of all,
we state the theorem which was proved in several versions in [61], [51], [56].

Theorem 3.1. Let ◦ be a commutative and associative P+-valued binary operation which
satisfies the conditions 1–4 above. Then the following holds:

1. g(f)(u, v) ∈ C(R+ × R+) for each f ∈ C+;
2. for each f ∈ F+ and every µ, ν ∈P+ :∫∫

Zuf(v)µ(du)ν(dv) =
∫
f(x) (µ ◦ ν) (dx); (2)

3. for each f ∈ F+ and every u, v ∈ R+,

Zuf(v) = Zvf(u);

4. for each f ∈ F+ and every v ∈ R+,

Z0f(v) = f(v);

5. for each f ∈ F+ and every u, v ∈ R+,

Zw(v)Z
uf(v) = Zu(v)Z

wf(v).
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Proof. Statements 1, 3, and 4 follow, obviously, from the definition of the operator
Zuf(v). To prove statement 2, we note that, for two discrete measures µ and ν rep-
resented as

µ =
n∑
k=1

µkδak , ν =
m∑
i=1

νiδbi ,

where ak, bi ∈ R+, k = 1, . . . , n, i = 1, . . . ,m, and a function f ∈ F+, the statement can
be explicitly checked.

Next, for any two measures µ, ν ∈ P+, there exist sequences of discrete measures
{µn} , n = 1, 2, . . . , and {νm} , m = 1, 2, . . . , such that µn → µ, νm → ν, and∫∫

Zuf(v)µn(du)νm(dv) =
∫
f(x) (µn ◦ νm) (dx), f ∈ F+.

Setting here n,m → ∞, we obtain (2) for each f ∈ C+. Next, for each f ∈ F+, we
can choose a sequence {fn}, n = 1, 2, . . . , of functions belonging to C+ which converges
(µ ◦ ν)-almost everywhere to f . According to Lebesgue’s bounded convergence theorem,

lim
n→∞

∫∫
Zufn(v)µ(du)ν(dv) =

∫∫
Zxf(v)µ(dx)ν(dv).

Thus, statement 2 is proved. To prove statement 5, we consider, for f ∈ F+,

I(u, v, w) =
∫
f(x)(δu ◦ δv ◦ δw)(dx).

Due to commutativity and associativity of the operation ◦,

I(u, v, w) =
∫
f(x)(δw ◦ (δu ◦ δv))(dx) =

∫
f(x)(δu ◦ (δw ◦ δv))(dx).

However, in view of (1),∫
f(x)(δu ◦ (δw ◦ δv))(dx) = Zw(v)Z

uf(v)

and ∫
f(x)(δw ◦ (δu ◦ δv))(dx) = Zu(v)Z

wf(v).

The theorem is proved.

The above theorem allows us to extend g.c. toM+. For this purpose, we can suggest
that, in (2), µ, ν ∈M+ and introduce g.c. onM+ as∫∫

Zuf(v)µ(du)ν(dv) =
∫
f(x) (µ ◦ ν) (dx), (3)

where f ∈ C+. The spaceM+ with this g.c. ◦ will be referred to as a generalized convo-
lution algebra and denoted by (M+, ◦,+). Analytical properties of these algebras will be
discussed later, while several classical realizations of g.c. in terms of the operator Zuf(v)
are listed below.

• α-convolution ( ∗α) (0 < α <∞)

Zuf(v) = f((uα + vα)
1
α ).



248 Z. VOLKOVICH, D. TOLEDANO-KITAI AND R. AVROS

With α = 1, we obtain the ordinary convolution. Obviously, the sequence cn =
n−

1
α (n = 1, 2, . . . ) satisfies condition (5), δ1 being the weak limit of the sequence

Tcnδ
◦(n)
1 .

• ∞-convolution
Zuf(v) = f(max(u, v)).

Since δ◦(n)
1 = δ1 (n = 1, 2, . . . ), the sequence cn = 1 (n = 1, 2, . . . ) satisfies condition

(5). For α = 1, this operation corresponds to the calculation of the maximum of
two independent random variables.

Note that the above two convolutions are not “stochastic” in the sense that the con-
volution of two point measures is also a point measure.

• (α, 1)-convolution (0 < α <∞)

Zuf(v) =
f((uα + vα)

1
α ) + f(|uα − vα| 1α )

2
.

• (α, β)-convolution (0 < α <∞, 1 < β <∞)

Zuf(v) =
Γ
(
β
2

)
Γ
(
β−1

2

)√
π

∫ 1

−1

f(
(
u2α + v2α + 2u2αv2αz

) 1
2α )(1− z2)

(β−3)
2 dz.

Setting cn = n−
1
2α (n = 1, 2, . . . ) for (α, β)-convolution (0 < α <∞, 1 < β <∞),

we obtain the probability measure

µ0 (A) =
2α
(
β
2

) β
2

Γ
(
β
2

) ∫
A

xα+β−2 exp
(
−β

2
x2α

)
dx,

as the weak limit of the sequence Tcnδ
◦(n)
1 . Indeed, this distribution is a version of

the well-known Rayleigh’s law. For α = 1, these convolutions were considered by
Kingman [20] with regard to random walks with spherical symmetry in an Euclidean
space of dimension β. Urbanik [43] attempted to extend some Kingman’s results
to g.c.

3.2. Algebra homomorphisms. In the theory of probability, the characteristic func-
tions constitute a crucial tool for solving a great number of practical problems. It appears
reasonable to introduce analogous functions in generalized convolution algebras. Accord-
ing to the approach of Urbanik [43], [45], this can be done by means of the so-called
algebra homomorphisms.

Definition 3.2. A mapping h of M+ into R is called a homomorphism of the algebra
(M+, ◦,+) if

• h(aµ+ bν) = ah(µ) + bh(ν), for all a, b ∈ R and all µ,ν ∈M+;
• h(µ ◦ ν) = h(µ)h(ν), for all µ,ν ∈M+.

Clearly, each generalized convolution algebra has two trivial homomorphisms: h ≡ 0
and h ≡ 1. Algebras which admit a non-trivial homomorphism are called weakly-regular.
If there is a non-trivial continuous homomorphism, the algebra is called regular.
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Theorem 3.3. If h is a continuous homomorphism of the algebra (M+, ◦,+), then

• |h(µ)| ≤ 1 for all µ ∈ P+;
• for all µ ∈M+,

h(µ) =
∫
h(δx)µ(dx). (4)

Proof. Let us prove the first statement by reductio ad absurdum. Suppose that there
exists a measure µ ∈ P+ such that

c = |h(µ)| > 1.

Take
νn = c−2nµ◦(2n) + (1− c−2n)δ0.

It is easy to see that
lim
n→∞

h(νn) = h(δ0). (5)

On the other hand,
h(µ ◦ δ0) = h(µ)

implies that ch(δ0) = c and
h(δ0) = 1. (6)

Therefore,
h(νn) = c−2nh(µ◦(2n)) + (1− c−2n) = 2− c−2n,

which gives
lim
n→∞

h(νn) = 2.

However, the last equation is in contradiction with (5) and (6).
Due to linearity of the homomorphism, it is sufficient to check (4) only for µ ∈ P+.

First of all, it is obvious that, for a discrete measure

µ =
n∑
k=1

µkδak ,

we obtain (4). Since the set of all such measures is dense in the sense of weak convergence
in P+, (4) holds for all probability measures.

Now, for a homomorphism h, we introduce the kernel

ωh(x) = h(δx).

Obviously, ωh(0) = 1. According to the theorem proved above, this function defines the
homomorphism through (4),

Zxωh(y) = ωh(x)ωh(y) (7)

for all x, y ∈ R+, and each kernel satisfies this equation. ωh(x) ∈ C+ if and only if ◦ is a
regular convolution.
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Let us consider the kernels appearing in the realizations of g.c. presented above.

• α-convolution is regular with non-trivial kernels

ωh(x)= exp(−cxα), c > 0;

• (α, 1)-convolution (0 < α <∞) is regular with non-trivial kernels

ωh(x)= cos(cxα), c 6= 0;

• (α, β)-convolution (0 < α <∞, 1 < β <∞) is regular with non-trivial kernels

ωh(x) = Γ
(
β

2

)(
2
cx

) β
2−1

J β
2−1(cx), c 6= 0, (8)

where Jν is the Bessel function;
• ∞-convolution is weakly-regular with non-trivial kernels

ωh(x) =
{

0 if x < c,

1 otherwise,
c > 0.

Now we can introduce a characteristic function of g.c. for the elements ofM+ on the
basis of a homomorphism h in the form

Φh(µ, t) =
∫
ωh(xt)µ(dx), t ∈ R+. (9)

By definition,

• Φh(µ+ ν, t) = Φh(µ, t) + Φh(ν, t), for all t ∈ R+ and all µ,ν ∈M+;
• Φh(µ ◦ ν, t) = Φh(µ, t)Φh(ν, t), for all t ∈ R+ and all µ,ν ∈M+;
• Φh(Taµ, t) = Φh(µ, at), for all a, t ∈ R+ and all µ ∈M+;
• Φh(µ, 0) = 1, for all µ ∈M+.

At this stage, we can ask which extension of the transform Φh(µ, t) can reflect the
topological properties of the distributions.

Theorem 3.4. If we suppose that g.c. ◦ is regular and there exists a measure η0 ∈ M+

such that the family of functions Φh(η0, ct), c ∈ R+ is dense in the weak topology in the
space C+, then

• each measure µ∈M+ is uniquely determined by its characteristic function Φh(µ, t);
• the sequence {µn} of probability measures from P+ converges to µ ∈ P+ if and only
if the functions Φh(µn, t) uniformly tend to the function Φh(µ, t) in every finite
interval.

Proof. Let us suppose that
Φh(ν1, t) = Φh(ν2, t)

for all t ∈ R+. This means that∫
Φh(ν1, tu)η0(du) =

∫
Φh(ν2, tu)η0(du)

for all t ∈ R+ or∫
η0(du)

∫
ωh(xtu)ν1(dx) =

∫
η0(du)

∫
ωh(xtu)ν2(dx).
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Changing the order of integrations, we obtain∫
Φh(η0, tx)ν1(dx) =

∫
Φh(η0, tx)ν2(dx),

which implies that ν1 = ν2 because the set Φh(η0, tx) is dense in the weak topology in
the space C+.

Next, if {µn} → µ and tn → t, then

h(Ttnµn)→ h(Ttµ).

In other words, if {µn} → µ, then the functions Φh(µn, t) uniformly tend to the function
Φh(µ, t) in every finite interval.

Let us assume that a sequence {Φh(µn, t)} uniformly converges to a function Φ(t) in
every finite interval. To show that µn weakly converges to a probability measure µ and
that Φ(t) = Φh(µ, t), it is sufficient to note that the sequence {µn} is compact, which
means that each subsequence of {µn} includes a convergent subsequence. However, it is
easy to see that each limit point has the characteristic function Φ(t). Hence, the sequence
{µn} is weakly convergent.

Urbanik showed [43], [45] that an important example of the distribution η0 is provided
by the measure µ0 introduced by definition 5 in section 3.1. The distribution µ0 obeys
the following relationship: for all a, b ∈ R+, there exists κ ∈ R+\0 such that

Taµ0 ◦ Tbµ0 = Tcµ0,

where cκ = aκ + bκ. For a regular g.c., this gives

Φh(µ0, t) = exp(−ctκ), c > 0. (10)

Indeed, the measure µ0 is an analogue of a stable distribution defined in the algebras
with g.c. Distributions of this kind play a crucial role in the generalized convolutions
theory. For this reason, in the next section, we consider stable distribution in detail.

4. ◦-stable measures and generators

4.1. ◦-stable measures. In this section, we present some properties of ◦-stable mea-
sures, which were established in [43], [45], [48], [51]. A measure λ ∈ P+ is said to be
◦-stable if λ 6= δ0 and

λ = lim
n→∞

Tanν
◦(n)

for a measure ν ∈ P+ and a sequence an > 0 tending to 0. The measure ν is said to
belong to the domain of attraction of λ.

S denotes the set of all ◦-stable measures. This set is not empty because the measure
µ0 introduced in section 3.1, definition 5, is included in S. For 0 < p ≤ ∞, the set Sp

comprises all the measures different from δ0 and satisfying, for all a, b ∈ R+, the equality

Taλ ◦ Tbλ = Tg(a,b)λ, (11)
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where

gp(a, b) =
{

(ap + bp)
1
p , p > 0,

max(a, b), p =∞.

It is easy to check that

1. Ta(Sp) = Sp, a > 0, p > 0;
2. Sp1 ∩ Sp2 = ∅ for p1 6= p2;
3. Sp ⊂ S for 0 < p <∞, which follows from the equation

Tanλ
◦(n) = λ,

where an = n−
1
p ;

4. S∞ 6= ∅ if and only if g.c. is ∞-convolution. Obviously, for ∞-convolution, S∞ =
{δa : a > 0} = S;

5. λ ∈ Sp does not have an atom at the origin.

Proof. To prove assertion 5, we take λ ∈ Sp. By assertion 4, we can suppose that p <∞.
In this case,

λ = cδ0 + (1− c)β,

where 0 ≤ c < 1 and β ∈ P+. Thus

λ ◦ Tnλ = T bnλ = cδ0 + (1− c)Tbnβ,

where bn = (1 + np)
1
p . It follows that

lim
n→∞

(λ ◦ Tnλ) =cδ0 + (1− c)δ∞. (12)

Alternatively,

λ ◦ Tnλ = c2δ0 + c(1− c)Tnβ + c(1− c)β + (1− c2) (β ◦ Tnβ)

and, in view of
lim
n→∞

Tnβ = lim
n→∞

(β ◦ Tnβ) = δ∞,

we obtain
lim
n→∞

(λ ◦ Tnλ) =cδ0 + c(1− c)β + (1− c)δ∞. (13)

The comparison of (12) and (13) shows that c = c2, which yields c = 0.

For each α <∞ there exists a power variable substitution under which the convolution
∗α transforms into ∗1. Based on this fact, we can conclude that, in this case, Sp = ∅ for
p > α and the density of each distribution which belongs to Sp, p < α, is expressed as

γp,α (E) = α

∫
E

R p
α

(x−αp)
dx

x
,

where R p
α
is an entire function (see, for example, [77]). Moreover, if λ ∈ Sp for a g.c. ◦,

then, for all µ, ν ∈ P+,

(λ� µ) ◦ (λ� ν) = λ� (µ ∗pν) , (14)
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where � is the “multiplicative convolution”. To prove the above relationship, by theorem
3.1 and (11), we obtain the following relation:

(λ� µ) ◦ (λ� ν) =
∫∫

(λ� δu) ◦ (λ� δv)µ(du)ν(dv)

=
∫∫

λ (µ ∗pν)µ(du)ν(dv)

= λ� (µ ∗pν) .

Let Xp be a random variable having the probability distribution γp,1. For any p

(0 < p <∞) and q (0 < q < p), denote by πp,q the probability distribution of the random

variable Y = X
1
p
q
p
.

Lemma 4.1. Let λ ∈ Sp (0 < p <∞). Then, for any q (0 < q < p),

• γ = λ� πp,q ∈ Sq;
• the measure γ has almost everywhere positive density;
• λ� πp,q → λ if p→ q.

Proof. According to the definition of ηp,1, we get

exp(−t
q
p ) =

∫
exp(−tx)η q

p ,1
(dx), t ∈ R+

and the density of πp,q is

ρ(πp,q)(x) = pR q
p
(x−q)

dx

x
.

Let us calculate
Φp(πp,q, t) = p

∫
exp(− (tx)p)R q

p
(x−q)

dx

x

through the variable substitution x→ x
1
p :

Φp(πp,q, t) =
∫

exp(−tpx)R q
p
(x−

q
p )
dx

x
= exp(−tq).

It follows from the above that, for all a, b ∈ R+, the equality

(Taπp,q) ∗p (Tbπp,q) = Tgq(a,b)πp,q

holds. Furthermore, employing (14), we obtain for all a, b ∈ R+

Ta(γ) ◦ Ta(γ) = (λ� Ta (πp,q)) ◦ (λ� Tb (πp,q))

= λ� (Ta (πp,q) ∗pTb (πp,q))

= λ� Tgq(a,b)πp,q = Tgq(a,b) (λ� πp,q) = Tgq(a,b)(λ).

Thus γ ∈ Sq.
Obviously, γ has almost everywhere positive density because so does πp,q. The last

assertion of Lemma 4.1 follows from the fact that πp,q → δ1 if p→ q.

Note that if S∞ 6= ∅, then, according to the above property 5, g.c. coincides with
∞-convolution and, for any (0 < q < ∞), the Weibull-Gnedenko distribution with the
density

ρq(x) = qx−(q+1) exp(−x−q)
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belongs to Sq. If Sp 6= ∅ (0 < p <∞), then Sq 6= ∅ for all (0 < q ≤ p) (see Lemma 4.1),
and, consequently, for each 0 < q < p there exists a distribution λp which has almost
everywhere positive density. Such value of p exists for any g.c.

Some main properties of ◦-stable distributions can be summarized in the following
form:

• For any g.c. ◦, the following statement is true:

S =
⋃
p

Sp.

• For every g. c. ◦, there exists an index κ (0 < κ ≤ ∞) such that

– Sp = ∅ for p > κ and Sp 6= ∅ for all 0 < q ≤ κ;

– For each 0 < p < κ, there exists a distribution λp having almost everywhere
positive density.

The index κ is called the characteristic exponent of the g.c. ◦ and denoted by κ(◦).
• For any measure belonging to the domain of attraction of a measure from Sp (0 < p

<∞), the moments

Mp =
∫
uqµ(du)

are finite for all 0 < q < p and, for all s > 1
p ,

lim
n→∞

Tn−sµ
◦(n) = δ0.

4.2. Infinitesimal characteristics. The approach described below is based on the ap-
plication of the generalized shift operators (g.s.o.) theory relying on theorem 3.1, which
states that, for every u, v, w ∈ R+ and f ∈F+, the relationship

Zw(v)Z
uf(v) = Zu(v)Z

wf(v)

holds. This relationship, together with

Z0f(v) = f(v), v ∈ R+,

shows that the set of operators Zu, u ∈ R+, constitutes a family of g.s.o.
Levitan [28] constructed a convolution on P+ using infinitesimal operators of a g.s.o.

family in the following way. Let a(x) and b(x) be real-valued positive continuous functions
on R+. Denote by ω(x, λ), λ ∈ R, the solution of the problem

S(x)(y) = b(x)y′′(x) + a(x)y′(x) = −λy,
y(0) = 1, y′(0) = 0.

The convolution is, actually, introduced via equation (2), where, for each two times dif-
ferentiable function from C+, the operators g(u, v) = Zuf(v) are defined as solutions with
several additional conditions:

S(u)(g) = S(v)(g), (15)

g(u, 0) = f(u),
∂g

∂v

∣∣∣∣
u=0

= 0.
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Here |ω(x, λ)| ≤ 1 for all values of x and λ and the integral transform

Φ(µ, λ) =
∫
ω(x, λ)µ(dx), µ ∈ P+

plays the role of the generalized characteristic function.
It is interesting to note that the present results were previously obtained in [27] for

the particular case of

S(x)(y) = y′′(x) +
β − 1
x

y′(x), β ≥ 1.

Here ω(x, λ) coincides with the kernel of the characteristic function of (1, β)-convolution.
Thus, the Levitan convolutions were introduced earlier in a proper analytical way based
on the realizations which were later shown to be the classical realizations of the Urbanik
generalized convolutions, introduced on the basis of their probabilistic properties. It would
be natural to ask if g.c. algebras could be defined by means of generators similar to (15).
Such an approach was considered by Volkovich [61].

We say that a family of measures {µt} ∈ P+, t ∈ R+, is a g. c. semigroup (or a
◦-semigroup) if the following conditions are satisfied:

µt ◦ µs = µt+s (t, s ≥ 0);

lim
t→0

µt = δ0.

It follows from the above that µ0 = δ0. A ◦-semigroup induces a time-homogeneous
◦-independent increments process, which is often called a ◦-Lévy process (see, for exam-
ple, [36]). Such a process can be naturally constructed by means of the ◦-stable distribu-
tions.

Let λp be a ◦-stable distribution corresponding to a power p <∞. Introduce the laws

λp,t = T
t
1
p
λp, t ∈ R+.

Obviously,
λp,t1 ◦λp,t2 = λp,t1+t2

for all t1, t2 ∈ R+.

Let {µt} be a ◦-semigroup. Consider the space L(µt) of the Borel functions on R+

satisfying, for u ∈ R+, the condition

f ∈ L1 (δu ◦ µt) .

Clearly, C+⊂ L(µt), for each measure µt. Introduce a family of operators defined on L(µt):

P t(f)(u) =
∫
f(x)(δu ◦ µt)(dx).

It is easy to check that this family gives an operator semigroup

P t2 (P t1(f)(u)) = P t1+t2(f)(u).

Clearly,
lim
t→0

P t(f)(u) = f(u)
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for all functions f ∈ C+, for each u ∈ R+. Denote by S (λp,t) the infinitesimal operator of
P t(f) in L(µt) with the domain Dom(S (λp,t)). The following statement was shown to
be valid [61]:

If f ∈ Dom(S (λp,t)), then the relationship

g(u, v) = Zuf(v)

holds if and only if
S (λp,t )(u)(g(u, v)) = S (λp,t )(v)(g(u, v))

and
g(0, v) = f(v), g(u, 0) = f(u).

This proposition shows that every g.c. is uniquely defined by each of the operators S (λp,t).
Such an approach coincides with Levitan’s approach presented in (15). The description
of the intersection of these convolutions construction was given in [1].

Theorem 4.2. If there exists p such that S (λp,t) is a differential operator, then the
convolution is either α-convolution (0 < α <∞) or (α, β)-convolution (0 < α < ∞,
1 ≤ β <∞) and, for α = 1, the operator S (λp,t) is represented as

• S (λp,t)(f)(x) = df
dx , α-convolution;

• S (λp,t)(f)(x) = d2f
dx2 , (α, 1)-convolution;

• S (λp,t)(f)(x) = d2f
dx2 + (β−1)

2x
df
dx , (α, β)-convolution.

5. Banach algebras associated with generalized convolutions

5.1. Generalized convolutions of functions. It is known that the Banach algebras
are an appropriate tool for the study of the analytical properties of the probability distri-
bution on locally compact groups. It appears that the construction of a similar instrument
to be used in algebras with g.c. would be quite natural. This approach was first suggested
by Volkovich [62], [63], the crucial notions of the concept being the ◦-quasi-invariant mea-
sures. A similar technique was also discussed later [37].

Definition 5.1. A measure η ∈ P+ is called ◦-quasi-invariant if

µ ◦ δu � η

for all µ� η and u ∈ R+.

So, if η is a ◦-quasi-invariant measure, then, according to theorem 3.1, for two measures
α, β ∈M+ absolutely continuous with respect to the measure η, we get

(α ◦ β)(E) =
∫ ∫

(δu ◦ δv)(E)α(du)β(dv) =
∫

(α ◦ δu)(E)β(du)� η.

Thus, the measure (α ◦ β) is absolutely continuous with respect to the measure η. More-
over, if we introduce

η̂ = δ0 + η,

then, for two measures α, β � η̂, we obtain

(α ◦ β)(E) = abδ0(E) + a(1− b)β′(E) + (1− a)bα′(E)+(α′ ◦ β′)(E),
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where
α = aδ0 + (1− a)α′, β = bδ0 + (1− b)β′,

0 ≤ a, b ≤ 1 and α′, β′ � η. Now we can define g.c. for the elements of L1(η̂). For two
functions f1, f2 ∈ L1(η̂), we consider η̂(f1) ◦ η̂(f2) for

η̂(fi)(E) =
∫
E

fi(u)η̂(du), i = 1, 2.

It is clear that

η̂(f1) ◦ η̂(f2)(E) =
∫

(η̂(f2) ◦ δv) (E)f1(v)η̂(dv) =
∫
f1(v)η̂(dv)

∫
E

Avf2(u)η̂(du),

where
Avf2(u) =

d (η̂(f2)◦δv) (u)
dη̂

.

Based on the above, we introduce g.c. for the elements of L1(η̂) as

(f1 ◦ f2) (u) =
∫
f1(v)Avf2(u)η̂(dv).

In addition, it can be seen that, for any g ∈ L∞(η̂),∫
Zvg(u)f(u)η̂(du) =

∫
g(u)(η̂(f) ◦ δv)(du) =

∫
g(u)Avf(u)η̂(du).

Next, we introduce the symmetric functional algebra

L = (L1(η̂),+, ◦, ˜),

where the involution is x̃ = x for x ∈ L1(η̂) and the bar denotes the complex conjugate.
It is easy to check that L is a symmetric, commutative, and associative Banach algebra
with the unit δ0. It is well-known (see e.g., [35]) that the maximal ideals of the convo-
lution algebras on locally compact groups play a crucial role in harmonic analysis on
groups.

By analogy, it appears natural to study the maximal ideals of the newly constructed
algebra. Let M̂ be the set of all maximal ideals of L different from L1(η̂). Take a maximal
ideal M ∈ M̂ and consider the corresponding homomorphism h(M) of L:

h(M)(x)=
∫
ωM(v)x(v)η̂(x)(dv), (16)

where ωM ∈ F+. It can be seen that, for x, y ∈ L1(η̂) ,

h(M) (x ◦ y) =
∫ ∫

ωM(v)x(u)Avy(u)η̂(x)(dv)η̂(x)(du)

=
∫ ∫

ZvωM(v)η̂(x)(x)(du)η̂(x)(y)(dv).

On the other hand,

h(M) (x ◦ y) = h(M)(x)h(M)(y) =
∫
ωM(u)η̂(x)(x)(du)

∫
ωM(v)η̂(x)(y)(dv).

Below, some properties of the kernels ωM(u) are summarized.

1. ZvωM(u) = ωM(v)ωM(u) holds η̂ × η̂ almost surely. In other words, the function
ωM(v) satisfies the kernel equation (7) η̂ × η̂ almost surely.
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2. ωM(0) = 1. This can be proved by setting η̂(x) = η̂(y) = δ0. It follows from the
previous equation that

ω2
M(0) = ωM(0).

Note that ωM(0) 6= 0 because, otherwise,

h(M) (x ◦ δ0) = h(M) (x) = 0

for each x ∈ L1(η̂), which contradicts M 6= L1(η̂).
3. ‖ωM‖∞ = 1. According to (16),

‖h(M)‖ = ‖ωM‖∞ .

On the other hand, it is well known (see, for example, [35]) that ‖ωM‖∞ ≤ 1; yet
ωM(0) = 1.

4. Suppose that, for each y ∈ L1(η̂),

lim
vn→v

Avny(u) = Avy(u)

in the L1(η̂) norm, which results in ωM ∈ C+. In view of the previous assertion, we
must only make sure that the kernel is continuous.
Let us take y ∈ L1(η̂) such that h(M) (y) = 1. We can see that

|ωM(vn)− ωM(v)| =
∣∣∣∣∫ (ZvnωM(u)− ZvωM(u)) y(u)η(du)

∣∣∣∣
=
∣∣∣∣∫ ωM(u) (Avny(u)−Avy(u)) η(du)

∣∣∣∣ ≤ ∫ |Avny(u)−Avy(u)| η(du)→ 0

if vn → v.

Although the concept of the ◦-quasi-invariant measures was introduced in [62], [63],
this approach was significantly extended and generalized by Urbanik [51], [54] in the
following way.

Introduce the measure
m0 = δ0 + m+

and denote by V0 the subset of M+ containing all the measures which are absolutely
continuous with respect to the measure m0.

Lemma 5.2. The space V0 is closed under g.c.

Proof. Let us take λ ∈ Sp (0 < p < ∞) having almost everywhere positive density. We
get

T
2

1
p
λ (E) = (λ ◦ λ) (E) =

∫ ∫
(δu ◦ δv) (E)λ(du)λ(dv).

Suppose that m0(E) = 0. Since λ � m+, we have T
2

1
p
λ (E) = 0, which implies that

(δu ◦ δv) (E) = 0 for (u, v) ∈ R+ × R+ λ× λ-almost surely. Thus,

(α ◦ β) (E) =
∫ ∫

(δu ◦ δv) (E)α(du)β(dv) = 0 (17)
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for any two measures α, β �m+. Next, let us consider two measures which belong to Vo:

α̂ = aδ0 + (1− a)α, β̂ = bδ0 + (1− b)β,

where α, β �m+. It is easy to see that

(α̂ ◦ β̂)(E) = abδ0(E) + a(1− b)β(E) + b(1− a)α(E) + (1− a)(1− b) (α ◦ β) (E).

If m0(E) = 0, then
δ0(E) = 0, α(E) = 0, β(E) = 0

and, in view of (17), (α̂ ◦ β̂)(E) = 0.

This fundamental lemma, established in [51], makes it possible to construct, in a sim-
ilar way, the normed ring L = (L1(m0),+, ◦, ˜). Below, we briefly describe the analytical
results obtained in the paper on the basis of the algebra ideals properties.

5.2. Maximal ideals. Our purpose is to design an analogue of the characteristic func-
tion (9) in the form

ΦM(µ, t) =
∫
ωM(tu)µ(du), t ∈ R+, (18)

where M ∈ M̂.

In what follows, Ms denotes the subset of the maximal ideals corresponding to
real-valued kernels. This set consists of the symmetric ideals obeying the condition
x̃(M) = x(M). Two trivial symmetric ideals are

x(M0) =
∫
x(v)m0(dv), x(M∞) = x({0}).

We also introduce
Ms

+ = Ms\{M0,M∞}

and
Mλ = {M | (T2λp − λp) 6= 0}

for an absolutely continuous, with respect to m0, measure λp ∈ S. In this case, Mλp 6= ∅,
M0,M∞ /∈Mλp and there exists a complex constant c(M) with Re(c(M)) > 0 such that

ΦM(λp, t) = exp(−c(M)tp)

for all t ∈ R+ and M ∈Mλp . Moreover, it is possible to prove that, for each λp,

Ms ∩Mλp 6= ∅

and the set Ms
+ is not empty. This means that each g.c. possesses a non-trivial real-valued

kernel of the ωM(u) kind.

Theorem 5.3. Let ωM(0)(u), M(0) ∈Ms
+, be an arbitrary kernel. Then, for any M(1) ∈

Ms
+, there exists a value a ∈ R+\0 such that, for all u ∈ R+,

ωM(u) = ωM(0)(au)

m0-almost everywhere, the correspondence between R+\0 and Ms
+ being one-to-one.
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The following analogue of the classical Bochner theorem can be considered as a direct
application of the above results. A continuous linear functional l on L is said to be positive
if

l(x ◦ x) ≥ 0

for all x ∈ L.

Theorem 5.4. Each positive continuous linear functional l on L, for any kernel ωM(u),
M ∈Ms

+, has the representation

l(α) =
∫

R+

ωM(tu)σ(du),

where σ is a bounded Borel measure on R+.

5.3. Weak characteristic functions. The concept of a characteristic function for g.c.
was discussed in section 3.2. In particular, we saw that a g.c. admits a characteristic
function if and only if it is regular. Thus, there exists a non-constant continuous homo-
morphism from the g.c. algebra into the real numbers algebra. Although not every g.c.
is regular, the real-valued kernels considered in the previous section make it possible to
extend the characteristic function concept to all generalized convolutions.

We say that the g.c. ◦ admits a weak characteristic function if there exists a one-to-one
correspondence ĥ between P+ and F+ such that

1. ĥ(µ) is continuous if µ ∈ P+ ∩ V0;
2. ĥ(cµ+ (1− c)ν) = cĥ(µ) + (1− c)ĥ(ν) for all 0 ≤ c ≤ 1 and all µ,ν ∈ P+;
3. ĥ(µ ◦ ν) = ĥ(µ)ĥ(ν) for all µ,ν ∈ P+;
4. ĥ(Taµ)(t) = ĥ(µ)(at) (a > 0);
5. m0-almost everywhere for every µ ∈ P+

lim
a→0

ĥ (ηa ◦ µ) = ĥ (µ)

and the pointwise convergence ĥ (ηa ◦ µn) → ĥ (ηa ◦ µ) on R+ for all a > 0 is
equivalent to the convergence µn → µ.

Note that all the equalities considered here are true m0-almost everywhere.
To begin with, we list some properties of weak characteristic functions which directly

follow from their definition.

1. ĥ(δ0) ≡ 1;
2. ĥ(µ)(0) = 1 for all µ ∈ P+;
3. ‖ĥ(µ)‖∞ = 1 for all µ ∈ P+.

To prove the last assertion we obviously conclude from the two previous ones that

‖ĥ(µ)‖∞ ≥ 1.

Suppose that ‖ĥ(µ)‖∞ = c > 1. Then∥∥∥∥∥ ĥ2 (µ)

c2 − ĥ2 (µ)

∥∥∥∥∥
∞

=∞. (19)
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Introduce

λ =
(
c2 − 1

) ∞∑
n=1

µ◦(n)

c2n
∈ P+.

Additionally,

λ = µ2 ◦
((

c2 − 1
)

c2
δ0 +

1
c2
λ

)
,

which yields

ĥ (λ) = ĥ2 (µ)
((

c2 − 1
)

c2
+

1
c2
ĥ (λ)

)
,

m0-almost everywhere. The latter expression implies that m0-almost everywhere

ĥ (λ) (c2 − ĥ2(µ)) = (c2 − 1)ĥ2(µ).

It follows from the above that, if (c2 − ĥ2 (µ) (E)) = 0, then ĥ2 (µ) (E) = 0 m0-almost
everywhere and m0(E) = 0. Thus, (c2 − ĥ2 (µ)) > 0 m0-almost everywhere and

ĥ (λ) =

(
c2 − 1

)
ĥ2 (µ)

(c2 − ĥ2 (µ))

m0-almost everywhere. The above expression contradicts equation (19) because
ĥ (λ) ∈ F+.

It would be natural to expect that the weak characteristic functions and the homo-
morphisms defined by the maximal ideals are strongly interrelated. For instance, it can
be easily proved that the relationship

h(α) =
∫
ĥ (δ1) (u)α(du), α ∈ V0

produces a homomorphism of L = (L1(m0),+, ◦,∼) corresponding to an ideal which
belongs to Ms

+. We have already seen that this set is empty. Thus, the converse statement
appears to be more interesting.

Theorem 5.5. Each g.c. admits a weak characteristic function. A kernel M ∈ Ms
+

generates a weak characteristic function via the relationship (18).

As we have seen earlier, each weak characteristic function is uniquely defined via
the kernel ΦM(δ1, t) = ωM(t). It follows from theorem 5.3 that all weak characteristic
functions are similar, that is

ΦM1(µ, t) = ΦM2(µ, ct)

for a constant c > 0 and for all µ ∈ P+. A similar conclusion can be drawn regarding the
stable distributions. For this reason, in what follows, we will use the notation Φ(µ, t) for
a weak characteristic function, omitting the index M.

Theorem 5.6. Suppose that κ (◦) <∞. Then

1. λ ∈ Sp if and only if
Φ(λ, t) = exp(−ctp)

holds m0-almost everywhere for some c > 0 and 0 < p ≤ κ (◦);
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2. For any 0 < p ≤ κ (◦) all measures which belong to Sp are similar. This means
that, if λ1, λ2 ∈ Sp, then λ1 = Tcλ2 for some c > 0.

As a direct consequence of the theorem, we obtain that all distributions which belong
to S\Sκ are equivalent to the Lebesgue measure. The set Sκ consists of the so-called
characteristic measures arising as limit laws of axiom 5 for g.c. [51]. Each g.c. is com-
pletely defined by its characteristic exponent and characteristic measure, which can be
formulated, more specifically, in the following form.

Theorem 5.7. If ◦ and ◦1 are general convolutions such that κ(◦) = κ(◦1) and the
characteristic measures of ◦ and ◦1 are similar, then the two general convolutions coin-
cide.

The similarity of all weak characteristic functions allows to associate with every g.c.
a subset C(◦) ⊂ F+ defined as: f ∈ C(◦) if and only if f = Φ(µ, t) m0-almost every-
where for some µ ∈ P+. Evidently, this set does not depend upon the choice of a weak
characteristic function.

Theorem 5.8. Let f ∈ F+, then f ∈ C(◦) if and only if the following two conditions
hold:

1.
lim
t→0

1
t

∫ t

0

f(u)du = f(0) = 1;

2. For any pair µ, ν ∈ V0, the following inequality holds:∫
f(u)(µ ◦ µ)(du)

∫
f(u)(ν ◦ ν)(du) ≥

(∫
f(u)(µ ◦ ν)(du)

)2

.

Moreover, if a ◦-quasi-invariant exists, then the g.c. is regular, which means that the
kernel of the transform in (18) belongs to C+.

6. Realizations of regular g.c. It was mentioned in section 3.1 that the notion of
g.c. was essentially based on the classical realizations presented in that section. However,
finding new realizations is still a relevant problem. In this connection, it was suggested
[22] to consider the so-called quasi-stable functions.

Definition 6.1. A function f ∈ C+ is said to be quasi-stable if it has the Cauchy
property. In other words, for every a, b ∈ R+, the function f(ax)f(bx) belongs to the
convex hull of the set {f(cx), : c ∈ R+}:

f(ax)f(bx) =
∫
f(cx)µc(a,b)(dc), (20)

where µc(a,b) ∈P+ for every a, b ∈ R+.

Theorem 6.2. A function f ∈ C+ is a kernel of the characteristic function for a regular
g.c. if and only if the following two conditions hold:

• f is a quasi-stable function;
• f(t) = 1− tκL(t), where κ > 0 and the function L(t) is slowly varying at the origin;
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• there exists a measure σ ∈ B such that

lim
t→∞

∫
f(xt)σ(dx) < 1.

It should be noted that the second condition of the theorem was introduced by Bing-
ham [4] with the aim of describing the domains of attraction of ◦-stable distributions.
A slightly different standpoint, based on the notion of B-stable probability distributions,
was discussed by Urbanik [47].

Specifically, let (Ω,A,P ) be a probability space such that, for every sequence µi ∈
P(R), i = 1, 2, . . . , there exists a sequence {Xi}, i = 1, 2, . . . , of independent random vari-
ables on (Ω,A,P ) with probability distributions {µi}. In fact, the variables are assumed
to be symmetric. For a given sub-σ-algebra B ⊂ A, a random variable X has a B-stable
distribution µ if, for each set of positive numbers {ci} , i = 1, . . . , n, and each set of inde-
pendent random variables {Xi} , i = 1, . . . , n, distributed according to µ, there exist an
independent non-negative B-measurable random variable C and a random variable X0,

distributed according to µ, such that the variables
∑n
i=1 ciXi and CX0 are identically

distributed:
n∑
i=1

ciXi ∼ CX0. (21)

Obviously, it is sufficient to establish this relationship only for n = 2. For the trivial
field B = {∅,Ω}, a B-stable distribution is a stable one in the classical meaning. Moreover,
it is true for every finite field B, as demonstrated in [47].

A multivariate generalization of the B-stable distributions notion was suggested by
Volkovich in [64], where random variables were considered as taking values in a Eu-
clidean space. This construction can be reduced to the one-dimensional one by means of
the well-known Cramer-Wold principle. It should be noted that this “multidimensional”
point of view often provides visual geometric interpretation of the involved distributions.
The characteristic function of a B-stable distribution is, obviously, a quasi-stable func-
tion, where µc(a,b) from equation (20), for a, b > 0, is the distribution of the variable
C from equation (21) in the case of n = 2, c1 = a, and c2 = b. The additional con-
ditions of theorem 6.2 should be checked; yet, in contrast to other cases, this does not
present a problem. In [34] the B-stable distributions on a separable Banach space have
been introduced. Here, they were named weak-stable distributions. Moreover, Misiewicz
[33] defined infinitely divisible measures with respect to the generalized weak convolu-
tion. Jasiulis and Misiewicz [14] gave the Lévy-Khintchine representation for an infinitely
divisible measure and defined µ-stable measures in the sense of weak generalized convo-
lution.

A regular g.c. is defined in the framework of the presented model by the operator

Zaf(b) =
∫
f(c)µc(a,b)(dc), x, y ∈ R+, f ∈ C+.

All the classical realizations of regular generalized convolutions listed in section 3.1 can
be obtained in such a way. Several new realizations discovered later have the following
characteristic function kernels:
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• the Kucharczak and Urbanik convolutions

1.

fn(t) =
{

(1− t)n for 0 ≤ t ≤ 1,
0 otherwise,

where n ∈ N. Note that, for n = 1, this convolution coincides with the Kendall
convolution induced by the Kendall operation on random sets [19].

2.

fα(t) =


(1− 2(1+α)[log2 t]−,
−(2− 2−α)(1− 2[log2 t])tα) for 0 ≤ t ≤ 1,
0 otherwise,

where 0 < α < 1;

• the Volkovich convolutions defined for the parameter 0 < ν < 1
2 :

1.

fν(t) =
tνKν(t)

Γ(ν)2ν−1
,

where Kν(t) is the Macdonald function of index ν [64];

2.
ων(t) =

tν

Γ(ν)2ν
(cos(νπ)Kν(t)− Yν(t)) ,

where Yν(t) is the Neyman function of index ν [73].

Another example of a non-regular convolution different from the ∞-convolution was
constructed by Urbanik [53]. Let 0 < p < 1 be an arbitrary number and, for λ ∈ P+,

λ(A) = (1− p)δ1 + p

∫
A∩[1,∞]

u−2du.

It is easy to show that
(λ� δ0) ◦ (λ� δ0) = (λ� δ0)

and, for a ≤ b, 0 < b,

(λ� δa) ◦ (λ� δb) = λ�
[(

1− pa
b

)
δb + p

a

b
Tbσ

]
,

where � is the “multiplicative convolution”, ◦ is the∞-convolution, and σ has the density

g(u) =


2p

(2p−1)u3 − 1

(2p−1)u
2−p
1−p

, p 6= 1
2 , 1 ≤ u,

1+2 log u
u3 , p = 1

2 , 1 ≤ u,
0 otherwise.

For every ν, µ ∈ P+, there exists a uniquely defined measure ρ (ν, µ) such that

(λ� ν) ◦ (λ� µ) = λ� ρ (ν, µ) .

Thus, the operation (ν, µ)→ ρ (ν, µ) results in a non-regular g.c.
The notion of weakly stable random vectors has been introduced as a direct natural

generalization of the B-stable distribution notion. The essential assumption is that the
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random variable X in (21) takes values in a measurable space, which is often associated
with a Banach space endowed with the appropriate σ-algebra. Misiewicz, Oleszkiewicz
and Urbanik [34] provided a full characterization of weakly stable distributions with
a non-trivial discrete part and also substantially contributed to characterizing weakly
stable distributions in a general case. Convolutions produced in this way were studied by
Misiewicz [33], while Jasiulis and Misiewicz [13] described the relation between weakly
stable and pseudo-isotropic distributions.

7. Related models

7.1. Stochastic convolution. An attempt to construct a general convolution model
was presented by Volkovich [65], [66], [67], and [70]. The operation is defined here on the
space P(X) of all probability measures on a separable complete metric space X endowed
with the weak topology by means of the integral transform

Φ(µ,m) =
∫
ω(x,m)µ(dx),

where µ ∈ P(X) and m is an element of a separable complete metric space M such that
ω(x,m) is a real bounded continuous function on X × M .

Stochastic convolution ◦ is a binary operation on P(X) satisfying the following con-
ditions:

• Each distribution µ is uniquely defined by its transform values Φ(µ,m) for all
m ∈M and there is no closed subset ofM with such a property;
• There exists x0 ∈X such that ω(x0,m) = 1 for all m ∈M;
• µn → µ if and only if

Φ(µn,m) → Φ(µ,m)

for all m ∈M;
• µ3 = µ1 ◦ µ2 if and only if

Φ(µ3,m) = Φ(µ1,m)Φ(µ2,m)

for all m ∈M;
• Denote by F (B0) the set of all ◦-divisors of B0 ⊂ P(X). The set F (B0) is relatively

compact if and only if B0 is relatively compact.

The last condition plays a crucial role in the design of the model. Indeed, this is
an analogue of the known shift-compact property of divisors introduced in [39]. This
property of Urbanik’s regular convolutions was established earlier by Bingham [4].

The notion of stochastic convolutions arises from the study of various operations on
probability measures. The regular generalized convolution algebras provide a key example
which yields good results on the basis of a promising axiomatic system. Other examples
are: the above-mentioned Levitan convolution, the polynomial hypergroup convolutions
of Lasser [24], [25], [26], and the convolutions of Askey and Gasper [3]. According to
Hazod’s MathSciNet review of [66],
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• further examples can be found in the context of (certain) abelian hypergroups in
[6] and the literature cited therein;

• additionally, semigroups with stochastic convolution are related to the Hungarian
semigroups, investigated by Székely and Ruzsa [41].

The general stochastic convolution model provides a common approach to the Lévy-
Khintchine canonical representation of infinitely divisible probability measures and re-
lated negative definite functions. It also allows to characterize Gaussian distributions in
terms of quadratic forms.

7.2. V -infinitely divisible laws. Another model which was prompted by the general-
ized convolutions notion was that of the V -infinitely divisible distributions suggested in
[68], [71] and [73]. Such measures arise in the problems of stochastic centering of the sums
of real independent random variables and are related to the super-stable distributions of
Zolotarev. Characterizations of probability laws by means of stochastic properties of
linear statistics can be considered as another source for achieving similar goals. The simi-
larity of integral representations of the ordinary characteristic function and logarithms of
the characteristic function of regular infinitely divisible distributions and of V -infinitely
divisible distributions suggests that all the above representations can be interpreted and
analyzed from a common general point of view.

This can be, actually, done by means of external points of a compact convex set using
Cauchy’s representation theorem. Johansen [15] used Cauchy’s theorem to obtain the
representation of logarithms of the characteristic function of regular infinitely divisible
distributions. (This result is presented, for example, in the well-known book of Linnik
and Ostrovski [30], part 11).

The technique under consideration can also be applied to proving the classical Bochner
theorem on the integral representation of the continuous positive definite function. A cru-
cial component of Johansen’s approach is the concept of the negative definite functions
having properties similar to the properties of the ordinary positive definite functions. It
should be noted that the relation between the two notions mentioned above was discussed
in [2]. The representation for infinitely divisible distributions on commutative local com-
pact groups was obtained by means of “the shift-compact property of the divisors set”
[39] mentioned in section 7.1.

Still another methodology based on the consideration of suitable test functions alge-
bras is discussed in [76]. Here the key point is a link from V -infinitely divisible dis-
tributions to the conditionally positive definite functions, which were introduced by
Micchelli [32] and widely utilized in the approximation theory. Integral representa-
tions of conditionally positive definite functions can be used for studying the Lévy-
Khintchine formulas and vice versa. So, a general description in the framework of
the model is provided by means of the integral representation of the positive func-
tional produced on an appropriate semi-normed ring. The Bochner’s theorem, the Lévy-
Khintchine formula and the representation of characteristic functions of V -infinitely di-
visible distributions can be considered as particular cases of this general representa-
tion.



GENERALIZED CONVOLUTIONS 267

Definition 7.1. A distribution µ ∈ P(R) is called V -infinitely divisible (V -i.d.) if, for
each natural n, there exists a distribution µn and a non-negative number an such that

e−an|t|
2
Φ(µ, t) = Φn(µn, t) (22)

for every t ∈R.

Here, Φ(µ, t) is the regular characteristic function of µ ∈ P(R).
Let us define the subsets Vs, s > 0 of V -i.d. distributions with respect to the asymp-

totic behavior of a sequence an in (22) as

an = O(1) ∗ nα, α = 1− 1
s+ 1

, n→∞.

It is evident that

• V0 is the set of regular infinitely divisible distributions;
• Vs ⊂ Vs+1 for every s.

It was proved in [68] and [73] that

• Φ(µ, t) 6= 0 for all t ∈R if µ ∈ Vs.

Some examples of the laws in the case of µ ∈ Vs can be obtained from Linnik’s
distributions with the characteristic functions

Φ(µ, t) = exp(−A |t|2 − |t|γ),

where
[
γ
2

]
is an even number such that γ is not an even number and A is a positive

sufficiently large constant. It is easy to see that µ ∈ Vs for

s >
γ

2
− 1.

V -i.d. distributions appear in problems related to characterizations by means of the
stochastic properties of linear statistics (see, for example, [18], parts 2 and 5).

Let {Xj}, j = 1, . . . ,m, be a sequence of independent identically distributed random
real values which have a distribution µ and let {bj} , j = 1, . . . , 2m, be real numbers. We
construct the forms

L1 =
m∑
j=1

bjXj ; L2 =
m∑
j=1

bm+jXj

and consider the problem of the characterization probability laws employing the proper-
ties of the identical distribution of L1 and L2. If

max
1≤j≤m

|bj | 6= max
1≤j≤m

|bj+m| , (23)

then

• Φ(µ, t) 6= 0 for all t ∈ R and the function

ω(t) = log Φ(µ, t)

can be defined for all t ∈ R;
• ω(t) = O(tβ) for t→∞ and some β > 0;
• µ ∈ Vs for some s > 0.
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We introduce the set D0 of all test functions (i.e., infinitely differentiable complex
functions having compact support) on the real line R. Dk, k > 1, are subsets of D0 which
satisfy the condition ∫

xjh(x)dx = 0

for all 0 ≤ j ≤ k − 1. Note that, in this section, whenever integration limits are not
specified, it is implied that the lower limit is −∞ and the upper limit is +∞. Denote by
∂ the differentiation operation on D0 and by

I(h)(x) =
∫ x

−∞
h(u)du

the integration operation on D0. It can be easily verified that

∂(Dk) = Dk+1, I(Dk) = Dk−1, k > 0.

Definition 7.2. A continuous function f on R is called m-positive definite if∫∫
f(x− y)h(x)h(y)dxdy ≥ 0 (24)

for each h ∈ Dm, where h(y) is the conjugate of h(y).

It is well known that a 0-positive definite function is a regular positive definite func-
tion. By the famous Bochner theorem, the set of such functions coincides with the ap-
propriate normalized set of all characteristic functions. For a 1-positive definite f , the
function (−f) is a negative definite function. Such a function arises [31] as the logarithm
of the characteristic function of an infinitely divisible distribution. As mentioned above,
in approximation theory, m-positive definite functions are referred to as conditionally
positive definite functions.

Theorem 7.3. If µ ∈ Vs, then the function f(t) = log(Φ(µ, t)) is an m-positive definite
function for m > s+ 1.

Furthermore, we endow the set Dn, for an even n = 2m, with a semi-normed ring
structure using the integral transform with the kernel

Kn(x, t) =
exp(itx)

(ix)n
,

where x 6= 0, n > 0. Note that the technique of constructing a convolution-like operation
is similar to the approach to constructing the stochastic convolution in section 7.1. The
integral transform is defined as

Ψn(h, x) =
∫
Kn(x, t)h(t)dt =

1
(ix)n

∫
exp(itx)h(t)dt, h ∈ Dn .

Let us introduce a binary operation on Dn:

(h ◦ g)(t) = I(n)(h ∗ g),

where “∗” denotes the regular convolution of the functions h, g ∈ Dn and I(n) is the nth

iteration of the integral operator I on Dn.
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Theorem 7.4. If f = (h ◦ g), then

• f ∈ Dn;
• Ψn(f, x) = Ψn(h, x)Ψn(g, x) for all x ∈ R.

Thus the triplet (Dn,+, ◦) yields a commutative ring. We can also define an involution
operation h∼(t) = h(−t) and a family of semi-norms on this ring:

‖h‖j = max
|x|≤j

|Ψn(h, x)| , j = 1, 2, 3, . . .

It is easy to see that:

• Ψn(h∼, x) = Ψn(h, x) for all x ∈ R;
• ‖h∼‖j = ‖h‖j for all j = 1, 2, 3, . . . ;
• ‖Ψn(h∼ ◦ h, x)‖j = ‖Ψn(h, x)‖2j for all j = 1, 2, 3, . . . ;
• The topology produced by the system of semi-norms ‖·‖j is not weaker than the

weak-star topology induced by the set of all continuous functions on R.

Denote by Rn the closure of the symmetric algebra with the topology described above
and build up a functional on Rn defined by a continuous function f :

F2m(f)(h) =
∫

(−1)mf(t)h(t)dt.

Theorem 7.5. If f is an m-positive definite function, then the functional F2m(f)(h) is
a positive continuous functional on the algebra (D2m,+, ◦).

By this theorem, representations of positive functionals on semi-normed rings given
in [7] can be employed. Thus

F2m(f)(h) =
∫∫ exp(itx)−

∑2m−1
j=0 (itx)j/j!

(ix)2m
π(dx)h(t)dt

for a finite measure π on R, which results in

f(t) = P2m−1(t) +
∫ exp(itx)−

∑2m−1
j=0 (itx)j/j!

x2m
π(dx), (25)

where P2m−1(t) is a polynomial of degree (2m− 1). The result (25) can be summarized
in the following form:

Theorem 7.6. Let f be an m-positive definite function, then there exists a polynomial
P2m−1(t) of degree (2m − 1) and a finite measure π on R such that the representation
(25) holds. The polynomial P2m−1(t) and the measure π are uniquely defined by f .

Corollary 7.7. A continuous function f on R satisfying the condition f(0) = 1 is posi-
tive definite if and only if this function is the characteristic function of some distribution
on R.

In this case, f is a 0-positive definite function and, in view of (25), we obtain f(0) = 1
and

f(t) =
∫

exp(itx)π(dx),
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where π is a probability measure on R. This is the Bochner representation of the positive
definite functions.

Corollary 7.8. A probability measure µ is infinitely divisible if and only if

log Φ(µ, t) = ict+
∫

(exp(itx)− 1− itx)
x2

π(dx), (26)

where c is a real constant and π is a finite measure on R.

This corollary is, actually, a version of the Lévy-Khintchine formula for infinitely
divisible distributions. As mentioned earlier, if a distribution µ is infinitely divisible, then
f(t) = log(Φ(µ, t)) is a 1-positive definite function. Taking into account that f(0) = 0
and f(−t) = f(t), we obtain (26) from (25).

An alternative approach, based on the relationship between V -infinitely divisible dis-
tributions and conditionally positive definite functions, was offered by Volkovich [75]. In
the cited work, the generalized function theory is applied. Namely, according to theo-
rem 7.3, the function f(t) = log(Φ(µ, t)), µ ∈ Vs, is an m-positive definite function for
m > s+1. Substituting in (24) h = ∂(m−1)(g), where g ∈ D0, we can see that the function

k(t) = (−1)m−1f (2m−2)(t)

is a positive definite generalized function, f (2m−2)(t) being the generalized derivative of
the function f . An integral representation of f can be obtained by means of accurate
iterative integration of the Bochner–Schwartz representation of the appropriate general-
ized function (see, for example, [60]). Other representations of this kind are also known
in the generalized functions theory and one of them can be employed in our situation.
Specifically, representation (25) can be interpreted as a consequence of the representation
of conditionally appropriate positive definite generalized functions presented in [9].

8. Open problems. In this section, we briefly describe two open problems connected
to the generalized convolution field.

The first problem is related to the extension of the generalized convolution notion to
the distributions on the whole real line. Examples of such an operation can be found in
[72], while another approach is presented in [34]. Potential properties of operations on
the whole real line have been also discussed in [12].

The second problem is connected to the representativity of generalized convolutions.
This problem had been indirectly discussed for a long time before it was finally formulated
by Urbanik [48].

Let us consider two generalized convolutions, ◦ and ◦′. The convolution ◦ is said to
be representable in ◦′ (◦ ≺ ◦′) if there exists a continuous non-trivial linear map

h : P+ → P+

with the following properties:

• h(µ ◦ ν) = h(µ) ◦′ h(ν);
• h(Taµ) = Tah(µ).
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For regular g.c., the relationship ◦ ≺ ◦′ implies that each characteristic function of ◦
is also a characteristic function of ◦′, that is,

ω(t) =
∫
ω̃(tu)µ(du), µ ∈ P+,

where ω and ω̃ are kernels of the characteristic functions of ◦ and ◦′, respectively.
It is easy to see that the α-convolution, 0 < α ≤ 2, is representable in the (1, 1)-

convolution due to the relationship

e−t
α

=
∫ +∞

−∞
cos(ut)γα(du),

where γα is a symmetric stable law with the power 0 < α ≤ 2. The same statement
can be easily verified for all generalized convolutions produced by B -stable distributions.
All known realizations of generalized convolutions can be reduced, by means of a power
variable exchange, to convolutions representable in the (1, 1)-convolution.

The open problem which arises from the above is whether there exists a realization of
regular generalized convolutions which does not satisfy the latter property. In other words,
the question is whether there exists a regular convolution which is non-representable in
the (1, 1)-convolution.
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