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Abstract. We show that the family of Podleś spheres is complete under equivariant Morita
equivalence (with respect to the action of quantum SU(2)), and determine the associated orbits.
We also give explicit formulas for the actions which are equivariantly Morita equivalent with the
quantum projective plane. In both cases, the computations are made by examining the localized
spectral decomposition of a generalized Casimir element.

Introduction. This paper is concerned with SUq(2), the quantum SU(2) group, at real
values 0 < q < 1 ([18]). In [14], the SUq(2)-homogeneous spaces were classified which have
the same spectral decomposition as the ordinary action of SU(2) on the 2-sphere (and
whose spin 1-part generates the algebra). They form a continuous one-parameter-family
S2
qc, called Podleś spheres, and are indexed by a number c ∈ [0,+∞]. In this paper, we

give a classification with respect to a weaker equivalence relation, namely equivariant
Morita equivalence. The notation we follow in the Introduction will be the one of [14].
(In the paper itself we will use a different notational convention which is more convenient
for our purposes).

Theorem 0.1. Write

c : [0,+∞]→ [0,+∞] : x 7→ (q−x − qx)−2.

Then
S2
qc(x)

∼=
SUq(2)-Morita

equiv.

S2
qc(y) ⇔ ∃m ∈ Z with y = |x+m|.
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Moreover, any quantum homogeneous space X of SUq(2) which is equivariantly Morita
equivalent with a Podleś sphere is itself a Podleś sphere.

Remark. The moreover-part follows from the results of [17] and the classification in
[14], but we will give an independent proof.

For the equatorial Podleś sphere S2
q∞, there is an SUq(2)-equivariant Z2-symmetry,

which allows us to form the quantum projective plane RP 2
q as an SUq(2)-homogeneous

space (see e.g. [6]). The following theorem provides the classification of quantum homo-
geneous spaces which are SUq(2)-Morita equivalent with RP 2

q .

Theorem 0.2. For l ∈ 1
2N0, let Bl be the unital ∗-algebra generated by elements X,Z, Y

and 4l + 1 elements As, where

s ∈ {−2l,−2l + 1, . . . , 2l − 1, 2l},

satisfying the following relations:
Y ∗ = X,

Z∗ = Z,

A∗s = (−1)sA−s,{
XZ = q2ZX,

AsZ = −q−2sZAs,
XAs = −As−1(1 + q2s+2l−1Z)for s > −2l,

XA−2l = −A−2lX,
X∗As = −As+1(1− q2s−2l+1Z)for s < 2l,

X∗A2l = −A2lX
∗

and 

{
X∗X = (1− q2l−1Z)(1 + q−2l−1Z),

XX∗ = (1− q2l+1Z)(1 + q−2l+1Z),


AsAs′ = (−1)sX−(s+s

′)(q2s
′−2l+1Z; q2)s+2l

×(−q−2l+1Z; q2)s′+2l for s+ s′ ≤ 0,

= (−1)s(X∗)s+s
′
(q2s

′−2l+1Z; q2)2l−s′

×(−q2s+2s′−2l+1Z; q2)2l−s for s+ s′ ≥ 0.

(In particular, the unital ∗-algebra Alg(X,Z, Y ) generated by X,Z, Y is an isomorphic
copy of the Podleś sphere at parameter c(2l).)

Then we can define on Bl an ergodic action of SUq(2) which agrees with the usual
action on the copy Alg(X,Z, Y ) of the Podleś sphere, and such that

θ2l = (q
1
2 s(s−1)

(q4l−2s+2; q2)
1/2
s+2l

(q2; q2)
1/2
s+2l

As)s ∈ Bl ⊗ C4l+1

is a π2l-eigenvector (where πr for r ∈ 1
2N denotes the spin r-representation of SUq(2),

whose precise (infinitesimal) form can be found in the proof of Proposition 3.2).
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If we denote by the formal symbol Xl the quantum homogeneous space associated with
the action on Bl, then a quantum homogeneous space X of SUq(2) is equivariantly Morita
equivalent with RP 2

q iff it is isomorphic to RP 2
q or one of the Xl.

Classically (i.e. for q = 1), the Bl correspond to the inductions to SU(2) of the
actions Ad(γl) of D∗∞, where D∗∞ ⊆ SU(2) is the double cover of the infinite dihedral
group S1 o Z2, and with the γl denoting its 2-dimensional irreducible representations.
Note that the Bl have a natural equivariant Z2-gradation with X,Y, Z even and the As
odd.

To prove these theorems, we will proceed as follows. In [2], we introduced a ∗-algebra
Uq(−,+), equipped with a right Uq(su(2))-module ∗-algebra structure, where Uq(su(2)) is
the quantum universal enveloping ∗-algebra of su(2). We showed that the Podleś spheres
(for c 6= 0) can be realized as equivariant sub-quotients of this ∗-algebra, by evaluation of
a certain central and self-adjoint Casimir element. But as Uq(−,+) also has a compatible
Uq(su(2))-co-module ∗-algebra structure (more precisely, an Uq(su(2))-Yetter-Drinfel’d
∗-algebra structure), one can compose representations of Uq(−,+) with ordinary repre-
sentations of Uq(su(2)), and split these up into irreducibles (a classical method). From
applying such a composition to the mentioned Casimir element, its decomposition can
easily be deduced by a (trivial) spectral decomposition. From such a procedure we will
then be able to prove Theorem 0.1. Also Theorem 0.2 will be proved in a similar fashion.

Let us remark that by [17], the computation of the orbit under G-equivariant Morita
equivalence for an ergodic action α on a unital C∗-algebra B can be found by studying
the representation theory of B o G. From this observation, it follows that our work
will be directly connected with [16], where the infinitesimal version Pol(S2

qc)oUq(su(2))

is studied from a representation theoretic viewpoint. We will at the appropriate places
remark where we make contact with [16], but on the whole our approach is a little different
as we tend to work locally.

The contents of this paper are as follows.
After a section containing notational conventions, our first section introduces those

quantum group concepts we will need in the paper. All the statements in this section
are either well-known or easy to prove. In the second section, we prove Theorem 0.1, and
as a corollary compute the equivariant Picard group for the Podleś spheres. In the third
section, we prove Theorem 0.2.

Notations. In the remainder of the article, q will denote a real number strictly between
0 and 1. We then write

λ = (q − q−1)−1.

We will also use a different parametrization τ of [−∞,+∞], namely

τ(x) = q−x − qx for x ∈ [−∞,+∞].

All our vector spaces will be over the ground field C. For V a vector space, we denote by
L(V ) the space of linear endomorphisms of V , and by V ◦ the space of linear functionals.
If V is endowed with a Hilbert space structure H , we denote by B(H ) the ∗-algebra
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of bounded operators. When we have a basis ei of a vector space V , parametrized by a
set I, then ei is interpreted to be zero if i /∈ I.

By �, we will denote the algebraic tensor product of two vector spaces or algebras
over C. By ⊗, we will denote the tensor product between Hilbert spaces, or the minimal
tensor product between C∗-algebras. We will also use the leg notation for tensor products:
for example, if we have spaces V1, V2, V3, and X an operator in L(V1� V3), we denote by
X13 the operator on V1 � V2 � V3 acting as X on the first and third component, and as
the identity on the second component.

For r ∈ N ∪ {∞} and a ∈ C, we denote by (a; q)r the q-factorial

(a; q)r =

r−1∏
k=0

(1− qka).

1. Preliminaries

1.1. Quantum groups. We will freely use the language of Hopf algebras, Hopf ∗-
algebras, and C∗-algebraic compact quantum groups (see e.g. [9]). For a Hopf algebra
(H,∆), we will use Sweedler notation in the form

∆(h) = h(1) ⊗ h(2) for h ∈ H.

A C∗-algebraic compact quantum group will always be written in the form (C(G),∆),
and we then refer to the symbol G as ‘the compact quantum group’. The associated Hopf
∗-algebra is written Pol(G). Except for the preliminary section, we will only be interested
in these objects for one particular quantum group, namely G = SUq(2).

Remark. To avoid overloading certain statements, we will in the remainder of this sec-
tion always assume that G is co-amenable, so that C(G) is uniquely determined by
Pol(G).

The following easy lemma will be needed at a certain point. Let H be an algebra,
and V a right H-module. We then denote by Vfin ⊆ V the submodule of all locally finite
elements, i.e.

Vfin = {v ∈ V | {v · h | h ∈ H} is finite-dimensional}.

Lemma 1.1. Let (H,∆) be a Hopf algebra with invertible antipode, and let V and W be
two right H-modules. Then

(V �W )fin = Vfin �Wfin.

We also make the following remark. Let (H,∆) be a Hopf (∗-)algebra, and let A be a
right module (∗-)algebra for (H,∆). (The compatibility with the ∗-structure means that
(a · h)∗ = a∗ · S(h)∗). Let V be a finite-dimensional vector space (resp. Hilbert space)
with a left H-module structure by a (∗-preserving) unital homomorphism π : H → L(V ).
Then A� L(V ) can be made into a right module (∗-)algebra by the formula

(a⊗ x) · h := (a · h(2))⊗ π(S(h(1)))xπ(h(3)).

If we are furthermore in the following situation:
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• (K,∆) is Hopf (∗-)algebra paired with (H,∆) by a map ιH : H → K◦ (with the
compatibility

ιH(h∗)(k) = ιH(h)(S(k)∗)

in the ∗-case),
• the module (∗-)algebra structure on A is induced from a left comodule (∗-)algebra

structure α of K on A, and
• π is induced from a (unitary) corepresentation U ∈ K � L(V ),

then
(a⊗ x) · h = (ιH(h)⊗ ι⊗ ι)(U−113 (α(a)⊗ x)U13).

Also, in the general case, the module A�L(V ) is isomorphic to V �A�V ◦ with the tensor
module structure (where V now carries the right H-module structure v · h := π(S(h))v,
and with V ◦ endowed with the right module structure ω · h := ω(π(h) · )).

1.2. Coactions. We begin with the following remark on terminology. We will use the
equivalent notions of (co)module algebra and (co)action, whenever one of them is more
convenient. In the C∗-algebra context, we will always assume that the co-unit condition
is satisfied.

Our next remarks concern ergodic coactions. We call a left coaction α of a Hopf
algebra on a unital algebra B ergodic if the identity α(b) = 1 ⊗ b for some b ∈ B

implies that b ∈ C1. If α is an ergodic coaction of a C∗-algebraic compact quantum group
(C(G),∆) on a unital C∗-algebra B, we will write B = C(X) for some formal symbol
X, and call it a ‘G-homogeneous space’. We then denote by Pol(X) the linear span of
the finite-dimensional spectral subspaces of C(X). It is a ∗-algebra carrying a natural
coaction of Pol(G) by restricting α. One also has a (unique) invariant (and faithful) state
ϕX on C(X), obtained by integrating out the coaction (so ϕX(x)1C(X) = (ι⊗ϕG)α(x) for
all x ∈ C(X), where ϕG is the invariant state on C(G)). Note that C(X) is completely
determined by Pol(X), by our co-amenability assumption on G (see [11], Proposition 3.8).

The following result by F. Boca ([1]) is fundamental.

Theorem 1.2. Let X be a homogeneous space for a compact quantum group G. Then any
irreducible representation of G appears in C(X) with only finite multiplicity.

The following lemma will also be used at some point.

Lemma 1.3. Let G be a compact quantum group, H a Hilbert space, and let B ⊆ B(H )

be a (not necessarily closed) unital sub-∗-algebra with a coaction αB by Pol(G). Assume
that there exists a normal state ω in B(H )∗ whose restriction to B is faithful and αB-
invariant. Then if A ⊆ B is a unital sub-∗-algebra for which

• αB restricts to an ergodic coaction of Pol(G) on A, and
• the weak closures of A and B coincide,

then A = B.

Proof. Suppose that B 6= A. We may then take an irreducible representation π of G and
a non-zero element x ∈ Bπ, the spectral subspace for π in B, such that x /∈ A. As Aπ is
finite-dimensional by Boca’s theorem, we may moreover assume that x is orthogonal to
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Aπ, and hence to A (where A is equipped with the pre-Hilbert space structure 〈a′, a〉 :=

ω(a∗a′)). But as ω is normal, we would then get ω(xy) = 0 for all y ∈ A′′ = B′′. Clearly
this gives a contradiction with the faithfulness of ω.

1.3. Morita equivalence for coactions. Let αi be left coactions of C(G) on unital
C∗-algebrasBi. One says the Bi areG-Morita equivalent if there exists a unital C∗-algebra
E with a left coaction α, together with a G-invariant self-adjoint projection e, such that,
denoting e1 = e and e2 = 1− e, we have that Ee1E and Ee2E are norm-dense in E, and
eiEei ∼= Bi by a G-covariant isomorphism. Alternatively, it is more common to define
the Bi to be G-Morita equivalent if there exists an equivariant B1-B2-equivalence Hilbert
bimodule (see e.g. the remark after Theorem 2.5 in [13]). The equivalence of the latter
definition with the above ‘linking algebra’ picture is well-known and easily proven. It is
also easily shown that G-Morita equivalence is indeed an equivalence relation.

If the αi are ergodic, and we write Bi = C(Xi), we will also call the Xi themselves
G-Morita equivalent.

The following results can be deduced from the ones in section 4 of [17].

Proposition 1.4. Let the X1,X2 be two G-homogeneous quantum spaces. Then the fol-
lowing are equivalent.

• The Xi are G-Morita equivalent.
• There exists a finite-dimensional unitary corepresentation U of C(G) on a Hilbert
space H and a G-invariant projection p ∈ C(X2)⊗B(H ) such that

C(X1) ∼= p(C(X2)⊗B(H ))p

by a G-equivariant isomorphism.

Here C(X2)⊗B(H ) is, as before, equipped with the coaction

x 7→ U∗13(α⊗ ι)(x)U13.

To prove⇒, take an equivariant equivalence Hilbert bimodule (E , αE) between C(X1)

and C(X2), a suitable unitary left corepresentation U of C(G) on a Hilbert space H , and
any finite set of non-zero elements ξi ∈ E such that αE(ξi) =

∑
j U
∗
ij ⊗ ξj . Then using the

ergodicity of the action of X1, one shows that, possibly up to a non-zero scalar, the map

E → C(X2)⊗HU : ξ 7→
∑
i

〈ξ, ξi〉C(X2) ⊗ ei

is a G-equivariant isometry between C(X2)-Hilbert modules, where the range is equipped
with the coaction x 7→ U∗13(α ⊗ ι)(x), and where the ei form a basis of H which gives
rise to the matrix coefficients Uij of U .

To prove ⇐, the essential point to prove is that for any G-invariant projection p, the
Hilbert module p(C(X2) ⊗H ) is still full (cf. [17], Lemma 4.5). This will follow from
the fact that (ι⊗ ω)(p) ∈ C(X2) is invariant for a well-chosen faithful state ω ∈ B(H )∗
(namely an invariant functional for the action x 7→ U(1⊗ x)U∗ by (Pol(G),∆op)).

The following lemma will allow us to determine Morita equivalences by an inductive
process.
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Lemma 1.5. Let π1, . . . , πn be a generating set of irreducible representations of a compact
quantum group G (i.e. any irreducible representation of G is contained in some power
of ⊕πi). Let X1 and X2 be two G-homogeneous spaces. Then X1 and X2 are Morita
equivalent iff there exists a finite set of G-homogeneous spaces Y1, . . .Ym with

• Y1
∼= X1 and Ym ∼= X2,

• for each k ∈ {1, 2, . . . ,m − 1}, there exists an i ∈ {1, 2, . . . n} and a minimal
G-invariant projection p ∈ C(Yk)⊗B(Hπi) such that

C(Yk+1) ∼= p(C(Yk)⊗B(Hπi))p.

The proof is based on the previous proposition and two basic observations:

• If
C(Y1) = p1(C(Y2)⊗B(Hπ1))p1

and
C(Y2) = p2(C(Y3)⊗B(Hπ2))p2,

then with p3 = p1(p2 ⊗ 1) = (p2 ⊗ 1)p1 we have

C(Y1) = p3(C(Y3)⊗B(Hπ2⊗π1))p3.

• If π1 ⊆ π2 with corresponding projection p : Hπ2 →Hπ1 , then

C(Y)⊗B(Hπ1) = (1⊗ p)(C(Y)⊗B(Hπ2))(1⊗ p).

Note that the above two results also (and more naturally) apply to the associated
irreducible equivariant C(X)-Hilbert modules, i.e. any irreducible equivariant Hilbert
C(X)-module appears as a component in some C(X) ⊗ Hπ for π a finite-dimensional
representation.

Proposition 1.6. Let G be a compact quantum group, and H a quantum subgroup. Then
we can form the G-homogeneous quantum space X = H\G. Any G-Morita equivalent ho-
mogeneous quantum space is then obtained by taking an irreducible unitary corepresenta-
tion U of C(H) on a Hilbert space H , and inducing the associated H-action on B(H )

to G.

The proof can be based on the isomorphisms

KG
0 (C(H\G)) ∼= K0(C(H\G) oG) ∼= K0(C∗(H)),

the first isomorphism being the Green-Julg isomorphism which is valid for any action.

1.4. Galois objects

Definition 1.7 ([15]). Let (H,∆) be a Hopf (∗-)algebra, A a unital (∗-)algebra, and α
a right coaction of (H,∆) on A. Denote

B = {a ∈ A | α(a) = a⊗ 1},

the fixed point algebra. One says α is Galois if the Galois map

G : A�
B
A→ A�H : a⊗ a′ 7→ (a⊗ 1)α(a′)

is bijective.
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One says (A,α) is a Galois object if α is ergodic (i.e. B = C).

For a Galois object, we write S for the canonical anti-isomorphism Aop → A : aop 7→ a,
and denote

h[1] ⊗ h[2] := (S−1 ⊗ ι)(G−1(1⊗ h)) ∈ Aop �A.
The mapping h 7→ h[1] ⊗ h[2] is then a unital homomorphism. As for H itself, one can
make A into a right H-module (∗-)algebra by means of the Miyashita-Ulbrich (or adjoint)
action

a� h := S(h[1])ah[2].

Then (A,α,�) is a right Yetter-Drinfel’d module (see [3], or Lemma 2.9 of [15]).
A trivial example of a Galois object is obtained by taking (an isomorphic copy of)

the Hopf (∗-)algebra itself, with the coaction being the comultiplication. In fact, later on
we will be mainly concerned with a particular Galois object for a Hopf ∗-algebra which
becomes trivial when forgetting the ∗-structure.

We record the following fact for later use.

Lemma 1.8. Let (A,α) be a Galois object for the Hopf ∗-algebra (H,∆). Let B be an
arbitrary unital ∗-algebra, and let πB : A→ B be a unital ∗-homomorphism. Then:

1. There exists a right H-module ∗-algebra structure on B, determined by

b� h = πB(S(h[1]))bπB(h[2]).

2. If (V, π) is a finite dimensional unitary left H-module, then

(πB ⊗ π)α : A→ B � L(V )

is a morphism between right H-module ∗-algebras. In fact, the module ∗-algebra
structure on B�L(V ) (as at the end of Section 1.1) coincides with the one induced
by this ∗-homomorphism as in the first point.

Proof. The first fact can be proven as in the Hopf ∗-algebra case (see e.g. [9], Lemma
5.5). For the first part of the second fact, use that (A,α,�) is a right Yetter-Drinfel’d
module. For the second part, the following identity for h ∈ H will imply the claim:

S(h(2)[1])⊗ h(2)[2] ⊗ S(h(1))⊗ h(3) = S(h[1])(0) ⊗ h[2](0) ⊗ S(h[1])(1) ⊗ h[2](1).
To prove this formula, apply e.g. the identities (2.1.3) and (2.1.2) from Lemma 2.1.7 of
[15] to the right hand side.

Also the following result will be needed at some point, although only in a very simple
situation.

Proposition 1.9. Let G be a compact quantum group, B a unital C∗-algebra equipped
with an action by G, and H a finite group (or even quantum group) which has a G-
equivariant Galois action on B. Then BH and H nB are G-equivariantly Morita equiv-
alent.

Indeed, by a well-known theorem concerning Galois extensions ([10]), we have that
HnB ∼= EndBH (B) by the natural homomorphism (where B is considered just as a right
BH -module on the right hand side). This identification is compatible with the ∗-structure
and the G-action, by assumption, leading to the stated equivariant Morita equivalence.
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Restating the proposition in the form we will need it in, the above says that, under
the given conditions,

p :=
1

|H|
∑
h∈H

λh ∈ H nB

will be a full G-invariant projection. If moreover H is abelian, and χ a character, then of
course also

pχ =
1

|H|
∑
h∈H

χ(h)λh ∈ H nB

is full, with
p(H nB)p ∼= pχ(H nB)pχ ∼= BH

equivariantly.

1.5. Quantized universal enveloping algebras

Definition 1.10. We denote by Uq(su(2)) the quantized universal enveloping ∗-algebra
of su(2). It is the unital algebra generated by elements E,F,K,K−1, with commutation
relations KE = q2EK, KF = q−2FK, KK−1 = 1 = K−1K and

[E,F ] = λ(K −K−1),

where we recall that λ = (q− q−1)−1. The ∗-operation is determined by E∗ = K−1F and
K∗ = K.

We can equip Uq(su(2)) with the unital ∗-homomorphism

∆ : Uq(su(2))→ Uq(su(2))� Uq(su(2)),

uniquely determined by the fact that ∆(K) = K ⊗K and

∆(E) = E ⊗ 1 +K−1 ⊗ E,
∆(F ) = F ⊗K + 1⊗ F.

The couple (Uq(su(2)),∆) then forms a Hopf ∗-algebra.

Definition 1.11. We denote by Uq(−,+) the ∗-algebra which, as an algebra, is generated
by elements X,Y, Z, Z−1, T with commutation relations XZ = q2ZX, Y Z = q−2ZY ,
Z−1Z = 1 = ZZ−1 and {

Y X = 1 + q−1TZ − q−2Z2,

XY = 1 + q TZ − q2 Z2.

The ∗-structure is uniquely determined by the formulas X∗ = Y , Z∗ = Z.

Note that T can be expressed in terms of X,Y and Z±1. Then T can be shown to be
central and self-adjoint. It is interpreted as the Casimir element of Uq(−,+).

Remark. It is easily shown that Uq(−,+) coincides (after introducing a square root of
Z) with the ∗-algebra Ŷc from [16], section 5 for c 6= 0 (the c can then be removed by
rescaling the parameters). It is also the same ∗-algebra (again after adjoining a square
root of Z) as the one denoted by the corresponding symbol in [2].
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Proposition 1.12. The ∗-algebra Uq(−,+) can be made into a (Uq(su(2)),∆)-Galois
object by the coaction α, defined on the generators X,Y, Z, T by

α(Z) = Z ⊗K−1,
α(X) = X ⊗ 1 + Z ⊗ (q−1/2λ−1E),

α(Y ) = Y ⊗ 1 + Z ⊗ (q−1/2λ−1K−1F ),

α(T ) = T ⊗K + Z ⊗ (λ−2FE − q−1(K −K−1))

+X ⊗ (q1/2λ−1F ) + Y ⊗ (q1/2λ−1EK).

This fact can be shown as follows: if we forget the ∗-structure, then Uq(−,+) is an
isomorphic copy of Uq(su(2)) by the following identifications:

X ↔ iq−
1
2λ−1E,

Y ↔ iq−
1
2λ−1K−1F,

Z ↔ iK−1,

T ↔ i(λ−2EF + qK−1 + q−1K).

The above coaction is then just the comultiplication of Uq(su(2)), which shows the Galois
map is an isomorphism. One should then check the compatibility with the ∗-operation
separately, but this is clear on sight. One could say that we have made a ‘Wick rotation’
for one Borel subalgebra (generated by E and K), but left the remaining part (gener-
ated by F ) unaltered. This will explain why we will get unilaterally infinite-dimensional
representations of our ∗-algebra later on. Also note that via the above isomorphism, T is
identified with an imaginary scalar multiple of the Casimir element of Uq(su(2)), but for
the new ∗-structure it is self-adjoint.

Hence, as we have already mentioned, the above Galois object is thus trivial when
forgetting the ∗-structure. Alternatively, one can consider the real version of UR

q (su(2)),
i.e. the Hopf R-algebra generated by E,F and K, and similarly consider the real version
UR
q (−,+). Then UR

q (−,+) is a non-trivial Galois object for UR
q (su(2)), but becomes

trivialized after complexification.
Let us also remark how the way in which Ŷc appears in [16] might lead one to think it

could be a Galois object. For Ŷc can be seen as the relative commutant (or centralizer) of
Pol(S2

qc) inside Pol(S2
qc) oUq(su(2)). It is easy to check that a dual coaction on a smash

(or crossed) product always restricts to the centralizer of the copy of the original algebra,
so that we deduce from the above that Ŷc will indeed be a right Uq(su(2))-comodule
∗-algebra. Now the dual coaction on a smash product is always a Galois coaction. So one
might naively believe that the restriction to the centralizer will then also be Galois, but
this is not true in general. However, in the present case Ŷc splits of as a tensor product
([4]), and by this fortuitous instance the restricted coaction does become a Galois object.
To illustrate the subtleness of this situation, we mention that the associated analytic
result is not true: the relative commutant of L∞(S2

qc) inside L∞(S2
qc)oSUq(2) does not

become a Galois object (or even a Galois action) for L (SUq(2)) (the analytic version
of Uq(su(2))). However, one can remedy this situation in another way, and we will come
back to this in future work.
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As Uq(−,+) ∼= Uq(su(2)) when the ∗-structure is ignored, we can deduce the following
result from [8]. Recall the terminology ‘locally finite’ introduced above Lemma 1.1.

Proposition 1.13. The locally finite elements of Uq(−,+) w.r.t. the adjoint action form
a unital ∗-algebra Ufin

q (−,+) which is generated by X,Y, Z and T .

Indeed, it follows from [8] that Ufin
q = {Zm | m ∈ N} � Uq(su(2)), so the foregoing

proposition follows from the easily verified fact that span{X,Y, Z, T} is closed under the
action by Uq(su(2)) (using for example the explicit formula for this action below). One
may also easily verify that Ufin

q (−,+) can be represented by generators and relations in
the same way as Uq(−,+).

Let us present the concrete formulas for the adjoint action on Uq(−,+) by Uq(su(2)).
If b ∈ Uq(−,+), then

b�K = ZbZ−1,

b� (q−1/2λ−1E) = Z−1[b,X],

b� (q3/2λ−1F ) = [b, Y ]Z−1.

It is also apparent from the formula for α that there exists an α-equivariant (and
hence �-equivariant) ∗-automorphism σ of Uq(−,+), determined by

σ : Uq(−,+)→ Uq(−,+) : b 7→ −b for b ∈ {X,Z, Y, T}.

1.6. The compact quantum group SUq(2). We will not need to know the explicit
form of C(SUq(2)) or even Pol(SUq(2)), and therefore simply recall from e.g. [9], section
4.4 that there exists a non-degenerate pairing between Pol(SUq(2)) and Uq(su(2)). One
then has the following result.

Proposition 1.14. There is a one-to-one-correspondence between the following struc-
tures:

• Left coactions of (C(SUq(2)),∆) with a finite-dimensional space of invariant ele-
ments.
• Right module ∗-algebras A for Uq(su(2)) such that

• Afin = A.

• All eigenvalues for the action of K are positive.

• The space of a ∈ A with a·g = ε(g)a for all g ∈ Uq(su(2)) is finite-dimensional.

• There exists a faithful unital ∗-homomorphism of A into a unital C∗-algebra.

1.7. Podleś spheres. Warning: For notational reasons, we will follow a slightly different
convention than the more common one used in the Introduction: we will use the index
τ(x) = q−x − qx instead of c(x) = τ(x)−2. Note that τ is an odd function.

Definition 1.15. Let x ∈ (−∞,+∞), and denote τ = τ(x). The ∗-algebra Pol(S2
qτ )

is generated by three elements Xτ , Zτ , Yτ with X∗τ = Yτ , Z∗τ = Zτ , XτZτ = q2ZτXτ ,
YτZτ = q−2ZτYτ , and with{

YτXτ = (1− qx−1Zτ )(1 + q−x−1Zτ ),

XτYτ = (1− qx+1Zτ )(1 + q−x+1Zτ ).
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It carries a right Uq(su(2))-module ∗-algebra structure, induced from a left Pol(SUq(2))-
coaction, for which the span of the 1, Xτ , Zτ , Yτ is a direct sum of the trivial and the spin
1-representation of SUq(2). The corresponding action of SUq(2) is then ergodic.

We call the symbol S2
qτ the Podleś sphere at parameter τ . When τ = 0, we call it the

equatorial Podleś sphere.

Remarks. 1. One also has the standard Podleś sphere S2
q∞
∼= SUq(2)/S1. As it is

degenerate from our point of view, we will treat it separately later on.
2. There is an equivariant ∗-isomorphism στ from Pol(S2

qτ ) to Pol(S2
q,−τ ) sending bτ

to −b−τ for b ∈ {X,Z, Y }. Hence up to isomorphism, Pol(S2
q,τ ) only depends on

|τ |, and we could parametrize Podleś spheres by c = 1
τ2 , the convention we used

in the Introduction. For the purposes of the article, it will be more convenient not
to identify such Podleś spheres immediately. For example, on the equatorial Podleś
sphere we get in particular an involutive equivariant automorphism σ0, which plays
an important rôle in the theory.

The following was proven in [2], and can be verified directly. We will denote by Polext(S2
qτ )

the ∗-algebra which is obtained by adjoining to Pol(S2
qτ ) an inverse of Z (which clearly

does not introduce additional relations).

Proposition 1.16. There is a Uq(su(2))-equivariant unital ∗-homomorphism

πτ : Uq(−,+)→ Pol ext(S2
qτ ),

induced by sending a generator b ∈ {X,Z, Y } to the corresponding element bτ . The kernel
of this homomorphism is generated by the element T−τ . Under this morphism, Ufin

q (−,+)

is sent to Pol(S2
qτ ).

Remarks. • We note that also the standard Podleś sphere can be obtained in a
similar manner, using instead the ∗-algebra Uq(0,+) from [2].
• From the observations in Section 1.5, it follows that the action of Uq(su(2)) on the

(localized) Podleś sphere is inner. This was also observed in [16].
• The isomorphisms στ mentioned before the proposition are seen to be induced from

the automorphism σ at the end of Section 1.5.

The following result gives a classification of all irreducible ∗-representations of Pol(S2
qτ )

(see [14]).

Proposition 1.17. Any irreducible ∗-representation of Pol(S2
qτ(x)) on a Hilbert space is

either

• faithful, in which case it is isomorphic to one of the following two ∗-representations
π± on l2(N):{

Zτ(x) 7→ Zτ(x),± : ek 7→ ±q2k∓x+1ek,

Xτ(x) 7→ Xτ(x),± : ek 7→ ±(1− q2k)1/2(1 + q2k∓2x)1/2ek−1.

• one-dimensional, by sending Zτ to zero and Xτ to a complex number of modulus 1.
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Note that the above also classifies all irreducible representations of Ufin
q (−,+), which

were computed in [16]. It is obvious what is meant then by the ∗-representation

πτ,± : Ufin
q (−,+)→ B(l2(N)).

The equality
πτ,− = π−τ,+ ◦ σ

is easily observed. If we consider the pre-Hilbert space V = C[N] with its natural orthonor-
mal basis ek, we can represent Polext(S2

qτ ) (and Uq(−,+)) as a ∗-algebra of adjointable
endomorphisms of V (i.e. banded operators) by the same formulas as the one in the fore-
going proposition. To avoid overloading the notation, we will make no distinction between
an element in π±(Pol(S2

qτ )) seen as an operator on l2(N) or its restriction to V .
We end by introducing some extra notational conventions.

Notation 1.18. For b ∈ {X,Y, Z}, we will identify bτ with the operator

bτ := bτ,− ⊕ bτ,+ ∈ L(V ⊕ V ),

and we write bτ for the operator

bτ := b−τ,+ ⊕ bτ,+ ∈ L(V ⊕ V ).

We write
Pol+(S2

qτ ),Pol−(S2
qτ ),Pol(S2

qτ ),Pola(S2
qτ )

for the images of Ufin
q (−,+) under the respective ∗-representations πτ,±, πτ = πτ,−⊕πτ,+

and πτ,a = π−τ,+ ⊕ πτ,+, all of whose images are isomorphic.

2. Equivariant Morita equivalences for the Podleś spheres. In this section, we
will prove Theorem 0.1. We will fix x ∈ (−∞,+∞), and continue to write τ := τ(x) =

q−x − qx.

Notation 2.1. For w ∈ {+,−, , a}, we consider Polextw (S2
qτ ) � M2(C) with the right

Uq(su(2))-module ∗-algebra structure as at the end of Section 1.1, using on C2 the
spin 1/2-representation π1/2. We then denote by π(2)

τ,w the morphism from Uq(−,+) to
Polextw (S2

qτ )�M2(C) as in Lemma 1.8.2.

We denote by {e+, e−} the canonical basis of C2, so that Uq(su(2)) acts by
Ke± = q∓1e±,

Ee± = q1/2δ±,+e−,

F e± = q−1/2δ±,−e+.

We further denote the product basis elements ek ⊗ e± of l2(N)⊗ C2 as ek,±.

Proposition 2.2. The self-adjoint operator T (2)
τ,+ := π

(2)
τ,+(T ) is bounded, its spectrum

consisting of two eigenvalues. Moreover, it is an invariant element in Pol+(S2
qτ )�M2(C).

Proof. First of all, it is clear that T (2)
τ,+ will be invariant, as T is invariant for the adjoint

action � (it is a central element of Uq(−,+)), and π
(2)
τ,+ is equivariant. Then T

(2)
τ,+ ∈

Pol+(S2
qτ ) �M2(C) by Lemma 1.1, the remark after it and Proposition 1.16, using the

expression for α(T ) given in Proposition 1.12.
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Next, a straightforward computation shows that T (2)
τ,+ preserves the span of the 2-

element set {ek,+, ek+1,−} for k ≥ 0, with the resulting 2-by-2-matrix being given by

(T
(2)
τ,+)+,+ = q−1τ − (q−1 − q)q2k−x+2,

(T
(2)
τ,+)+,− = λ−1(1− q2k+2)1/2(1 + q2k−2x+2)1/2,

(T
(2)
τ,+)−,+ = λ−1(1− q2k+2)1/2(1 + q2k−2x+2)1/2,

(T
(2)
τ,+)−,− = qτ + (q−1 − q)q2k−x+2.

(The remaining vector e0,− is an eigenvector, with eigenvalue the right lower corner of
the above matrix with k = −1).

We find that the eigenvalues of these matrices are τ(x + 1) = q−(x+1) − qx+1 and
τ(x− 1) = q−(x−1) − qx−1, and in particular are independent of k. This proves that T (2)

τ,+

has precisely two eigenvalues.

Remark. Note that the eigenvalues of T (2)
τ,+ naturally appear as differences of q-powers,

in contrast with the classical Casimir element of Uq(su(2)) whose eigenvalues are sums
of q-powers.

As we will need it in the next section, we write down a basis of orthogonal eigenvectors
for T (2)

τ,+.

Lemma 2.3. An orthonormal set of eigenvectors for T (2)
τ,+ at eigenvalue τ(x± 1) is given

by the ξτ(x±1)k,+ , where k ∈ N and

(1 + q2x)1/2 · ξτ(x+1)
k,+ = (ek−1,+ ek,−) ·

(
−(1− q2k)1/2

qx(1 + q2k−2x)1/2

)
,

(1 + q2x)1/2 · ξτ(x−1)k,+ = (ek,+ ek+1,−) ·
(
qx(1 + q2k−2x+2)1/2

(1− q2k+2)1/2

)
.

We can also introduce an operator T (2)
τ,− w.r.t. πτ,− in a similar way, and the relation

πτ,− = π−τ,+ ◦ σ then immediately gives that T (2)
τ,− = −T (2)

−τ,+. We denote the respective
eigenvectors for the eigenvalues τ(x± 1) of T (2)

τ,− as

(1 + q2x)1/2 · ξτ(x+1)
k,− = (ek,+ ek+1,−) ·

(
(1 + q2k+2x+2)1/2

qx(1− q2k+2)1/2

)
,

(1 + q2x)1/2 · ξτ(x−1)k,− = (ek−1,+ ek,−) ·
(
−qx(1− q2k)1/2

(1 + q2k+2x)1/2

)
.

We will also need to know the invariant functional on Pol(S2
qτ ). The following result

was proven in [12] (see also [16]). We use Notation 1.18.

Proposition 2.4. Let ϕτ be the faithful normal positive functional on B(l2(N)⊕ l2(N))

which has Zτ as its associated trace class operator. Then the restriction of ϕτ to Pol(S2
qτ )

is Uq(su(2))-invariant.

One way to prove this is as follows: we want to show ϕτ (x � b) = ϕτ (x)ε(b) for
x ∈ Pol(S2

qτ ) and b ∈ {E,F,K±1}. First show invariance for elements in Pol(S2
qτ ) · Z,

which are trace class operators. One can use here the formulas in terms of the inner
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action without worrying about the unboundedness (of Z−1 and the trace Tr). One is left
with showing invariance for elements of the form Xn or (X∗)n with n ∈ N. But the only
non-trivial case to consider is n = 1, for which we can simply compute the values.

We now give a proof of Theorem 0.1.

Proof of Theorem 0.1. Let us first note that we can apply Proposition 1.14 to Pol(S2
qτ )�

M2(C), so that we can work on the level of Uq(su(2)).
We use the notation of Proposition 2.2. Write

p+ ∈ Pol+(S2
qτ )�M2(C)

for the eigenprojection of T (2)
τ,+ which corresponds to the eigenvalue τ(x + 1). Then by

Proposition 1.16, the restriction of π(2)
τ,+ to p+(V �C2) factors through Polext(S2

qτ(x+1)).
As the image of Zτ(x+1) is easily seen to have distinct non-zero positive eigenvalues, it
follows from the classification of ∗-representations of the Pol(S2

qτ ) that this representation
of Pol(S2

qτ(x+1)) on p+(l2(N)⊗C2) is a copy of πτ(x+1),+. (In fact, one may check directly

that the isomorphism is simply given by sending ξτ(x+1)
k,+ to ek.) The similar statements

hold for the eigenspace of τ(x− 1), as well as for the π−-representations. We denote p−
for the eigenprojection of T (2)

τ,− at eigenvalue τ(x+ 1), and

p = p− ⊕ p+ ∈ B((l2(N)⊕ l2(N))⊗ C2).

Let us denote B = p(Pol(S2
qτ )�M2(C))p. To see that

B = Pol(S2
qτ(x+1)), (∗)

let us first remark that, by the preceding paragraph, the restriction of π(2)
τ(x) to p((V ⊕V )⊗

C2) is precisely πτ(x+1). Hence Pol(S2
qτ(x+1)) ⊆ B equivariantly. Further, if ϕ1/2 is the

invariant state on M2(C) for the adjoint spin 1/2-action of SUq(2), and ϕτ the invariant
functional of the previous proposition, then ϕτ ⊗ ϕ1/2 is invariant on Pol(S2

qτ )�M2(C).
It follows that there exists a faithful normal functional on B(p((l2(N)⊕ l2(N))⊗ C2)) ∼=
B(l2(N)⊕ l2(N)) which restricts to an invariant functional on B.

Now we remark that B ⊆ B(l2(N)) ⊕ B(l2(N)). As B(l2(N)) ⊕ B(l2(N)) =

Pol(S2
qτ(x+1))

′′, we can conclude (∗) by Lemma 1.3.
Hence S2

qτ(x) and S
2
qτ(x+1) are SUq(2)-Morita equivalent by Proposition 1.4. A similar

analysis with the eigenvalue τ(x− 1) shows p⊥(Pol(S2
qτ )�M2(C2))p⊥ = Pol(S2

q,τ(x−1)).
This proves that all Podleś spheres S2

qτ(x) and Sqτ(y) with x, y ∈ R and x − y ∈ Z are
SUq(2)-Morita equivalent.

As the spin 1/2 representation is generating, it follows from Lemma 1.5 that Sqτ(x)
is equivariantly Morita equivalent with some X iff X ∼= Sqτ(y) for some y with x− y ∈ Z.
The statement of Theorem 0.1 now follows for x 6= ∞ by observing that Pol(Sqτ(x)) ∼=
Pol(Sqτ(−x)).

Finally, the standard Podleś sphere S2
q0 is only equivariantly Morita equivalent with

itself by the remark after Proposition 1.6. Indeed, it is the quotient space of SUq(2) by
S1, but the latter only has one-dimensional irreducible representations, so any induced
coaction is isomorphic to the original one.

We end this section with the following observation.
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Corollary 2.5 (of the proof of Theorem 0.1). With G = SUq(2), the equivariant Picard
group PicG(S2

qτ ) of the Podleś spheres is determined as follows.

• PicG(S2
q∞) ∼= Z,

• PicG(S2
qτ(x))

∼= Z2 for x ∈ Z,
• PicG(S2

qτ(x)) is the trivial group in the remaining cases.

By the equivariant Picard group for a G-homogeneous space X, we mean the equiva-
lence classes of equivariant equivalence C(X)-Hilbert bimodules, with composition given
by the balanced C(X)-product.

Proof. For S2
q∞ the result follows as the equivalence classes of irreducible imprimitivity

Hilbert modules are labeled by Z = Irrep(S1), and Pol(S2
q∞) has no outer equivariant

automorphisms. It is easily verified that the resulting group structure is also Z.
For S2

qτ(x) with x /∈ Z, we have computed that any irreducible imprimitivity Hilbert
module has some Pol(S2

qτ(y)) as its endomorphism algebra, where y ∈ x+Z. As Sqτ(x) ∼=
Sqτ(y) equivariantly iff x = ±y, and as S2

qτ(x) has no outer equivariant automorphisms,
the result for this case also follows.

Finally, for S2
q0, the first part of the previous argument still applies, but now we

will have OutG(Pol(S2
q0)) = Z2. Hence PicG(S2

q0) ∼= Z2. As the Sqτ(x) with x ∈ Z are
G-Morita equivalent with S2

q0, the result follows also for these cases. (In fact, observe
that the Pol(S2

qτ(2l))-linear span of the As inside the ∗-algebra Bl of Theorem 0.2 give
a concrete equivariant equivalence (pre-)Hilbert C∗-bimodule between Pol(Sqτ(2l)) and
Pol(Sqτ(−2l)) ∼= Pol(Sqτ(2l)).)

Remark. A similar distinction between equilateral Podleś spheres (i.e. τ 6= 0 or ∞),
and the only further one that we are aware of, appears in Proposition 9 of [7], where the
spectral decomposition of a certain subspace of the restricted duals of the Podleś spheres
is computed. However, now the set of exceptional cases is slightly larger, as they are given
by the τ(x) with x ∈ 1

2N. We have not examined in detail whether there is any direct
connection with the above result.

3. Equivariant Morita equivalence for the quantum projective plane. We will
first show that the module ∗-algebra Bl of Theorem 0.2 is well-defined.

We will index the elements b ∈ {X,Y, Z} ⊆ Bl with 2l (dropping the τ -symbol
w.r.t. previous notation), and denote the As as A(s)

2l . However, when the indices are not
crucial in a computation, we will drop them.

We will also use the following orthogonal basis for the pre-Hilbert space V ⊕V , where
V = C[N]: for k ∈ N − 2l = {−2l,−2l + 1, . . .}, we denote by e(l)k,+ the vector 0 ⊕ ek+2l,

and for k ∈ N, we denote by e(l)k,− the vector ek ⊕ 0.
We want to build now on V ⊕V a bounded ∗-representation of Bl. Namely, we let the

generators of Bl correspond to the following banded operators:
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X2le
(l)
k,± = ±(1± q2k)1/2(1∓ q2k+4l)1/2e

(l)
k−1,±,

Z2le
(l)
k,± = ±q2k+2l+1e

(l)
k,±,

X∗2le
(l)
k,± = ±(1± q2k+2)1/2(1∓ q2k+4l+2)1/2e

(l)
k+1,±,

A
(s)
2l e

(l)
k,± = (±1)s(±q2k+2s+2; q2)

1/2
2l−s(∓q

2k+2; q2)
1/2
2l+se

(l)
k+s,∓.

It is an easy task to check that the commutation relations in Theorem 0.2 are satisfied
for these operators. If we restrict to Pol(S2

qτ(2l)) ⊆ Bl, we see that we get the natural
representation πτ(2l).

Lemma 3.1. The above representation is faithful.

Proof. Let us formally write X−1 for X∗. Then the commutation relations, together with
their adjoints, clearly allow to write any element of Bl as a linear combination of elements
of the form

• XmZn with m ∈ Z, n ∈ N,
• AsZn with s ∈ {−2l + 1,−2l + 1, . . . , 2l − 1} and n ∈ N,
• A−2lXmZn with m,n ∈ N, and
• A2l(X

∗)mZn with m,n ∈ N.

We will now show that the representations of these monomials are linearly independent.
We will in the following already use the same notation for these operator algebraic im-
plementations. Note that in any case none of the above monomials are zero operators.

From looking at the natural Z×Z2-gradation on Bl by the adjoint action of Z, we see
immediately that the above families are linearly independent amongst each other, and
that inside each family we can only have linear dependencies of the form AsX

mP (Z) = 0

for some non-zero (Laurent) polynomial P in Z. But it is clear that these do not occur.

Using Notation 1.18, consider Polexta (S2
qτ(2l)) ⊆ L(V ⊕ V ), which induces a module

∗-algebra structure on the ∗-algebra of banded operators on V ⊕ V by Lemma 1.8.1.

Proposition 3.2. The above module ∗-algebra structure restricts to Bl, and coincides
with the one described in Theorem 0.2.

Proof. It is clear that the above module ∗-algebra structure restricts to Pol(S2
qτ(2l)) ⊆ Bl,

and coincides with the usual one. We are therefore left to show that it behaves in the
right way on the operators As.

Let us write e for the sign operator

e : V ⊕ V → V ⊕ V : e
(l)
k,± 7→ ±e

(l)
k,±,

so that b2l = eb2l for b ∈ {X,Z, Y }. Denote θ(s)2l = λsAs where

λs = q
1
2 s(s−1)

(q4l−2s+2; q2)
1/2
s+2l

(q2; q2)
1/2
s+2l

.

We then have

θ
(s)
2l �K = Zθ

(s)
2l Z

−1 = eZθ
(s)
2l Z

−1e = −q2seθ(s)2l e = q2sθ
(s)
2l .
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This small computation already makes it clear why we cannot use the naive map of
Uq(−,+) into Pol(S2

qτ(2l)) to define the module ∗-algebra structure.
Similarly, we compute

θ
(−2l)
2l � (q−1/2λ−1E) = Z−1e[θ

(−2l)
2l , eX] = Z−1e(θ

(−2l)
2l Xe− eXθ(−2l)2l )

= −Z−1(θ
(−2l)
2l X +Xθ

(−2l)
2l ) = −Z−1(θ

(−2l)
2l X − θ(−2l)2l X) = 0,

showing that θ(−2l)2l is a highest weight vector for the spin 2l-representation.
For s > −2l, we have

Xθ
(s)
2l = − λs

λs−1
(1− q2l+1Z)θ

(s−1)
2l ,

and, by taking the adjoint of the commutation relations for the X∗, we also have

θ
(s)
2l X =

λs
λs−1

(1− q−2s−2l+1Z)θ
(s−1)
2l .

So then we find

θ
(s)
2l � (q−1/2λ−1E) =

λs
λs−1

(q−2s−2l+1 − q2l+1)θ
(s−1)
2l .

Simplifying, this becomes

θ
(s)
2l � E = q−s−2l+

1
2λ(1− q4l+2s)1/2(1− q4l−2s+2)1/2θ

(s−1)
2l .

Carrying out a similar calculation for F , or using the compatibility between the module
structure and the ∗-operation, we also find

θ
(s)
2l � F = qs−2l−

1
2λ(1− q4l+2s+2)1/2(1− q4l−2s)1/2θ(s+1)

2l

for s < 2l, and θ(2l)2l �F = 0. In all, we find that the action of Uq(su(2)) on the elements
θ
(s)
2l indeed gives a (right) presentation of the spin 2l-representation.

We now show that the action on Bl is ergodic.

Lemma 3.3. The module ∗-algebra Bl has only the scalar multiples of the unit as its
invariant elements.

Proof. Using the arguments concerning the basis constructed in Lem-ma 3.1, we see that
an invariant element b can be written as b1 + b2 with b1 ∈ Pol(S2

qτ(2l)) and b2 a linear
combination of elements of the form A0Z

n with n ∈ N. As the natural grading on Bl is
Uq(su(2))-compatible, both b1 and b2 have to be invariant. But the action on a Podleś
sphere is ergodic, so b1 reduces to a scalar. On the other hand, set b2 = A0P (Z) with
P (Z) a polynomial in Z. Then the invariance of b2 under the adjoint action of E leads
to the following functional equation for P :

(1− q−2l−1Z)P (−q−2Z) = (1 + q2l−1Z)P (Z).

It is clear that the only solution is P = 0.

We can thus apply Proposition 1.14 to find that Bl has a well-defined action by
SUq(2). This finishes the existence part of the SUq(2)-action proposed in Theorem 0.2.
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It is also easy to provide the invariant functional on Bl.

Proposition 3.4. Let ϕl be the normal positive functional on the von Neumann algebra
B(l2(N)⊕ l2(N)) which has Z as its associated trace class operator. Then ϕl is Uq(su(2))-
invariant on Bl.

Proof. Let p± be the projections onto the summands of l2(N)⊕ l2(N). We find that the
conditional expectation

E : B(l2(N)⊕ l2(N))→ B(l2(N))⊕B(l2(N)) : x 7→ p−xp− + p+xp+

restricts to an equivariant conditional expectation Bl → Pol(S2
qτ(2l)). Since ϕl = ϕτ(2l)◦E,

the proposition follows from Proposition 2.4.

We can now prove Theorem 0.2.

Proof of Theorem 0.2. We first remark that the definition of Bl also makes sense when
l = 0. In fact, it is easily seen that B0 is just a copy of Pol(S2

q,0)oZ2 where Z2 acts by the
automorphism σ0 (see the remark after Definition 1.15). All results of this section then
hold for B0, except that B0 is not ergodic: the proof of 3.3 in fact shows that the space
of invariants is linearly spanned by 1 and A0. Now the ‘antipodal reflection map’ σ0 on
Pol(S2

q0) gives a Galois action by Z2 (cf. [5], Proposition 2.10). Hence, by the discussion
after Proposition 1.9, B0 is SUq(2)-equivariantly Morita equivalent with Pol(RP 2

q ), which
is by definition the fixed point algebra under σ0. If we denote p± = 1

2 (1 ± A0), then
p±B0p± ∼= Pol(RP 2

q ) equivariantly.
Now for l ∈ 1

2N, let us write V2l,± for the space V = C[N] considered with the
π±-action by Pol(S2

qτ(2l)), and V2l = V2l,− ⊕ V2l,+. Consider Bl �M2(C), represented on
V2l � C2. Let us write the eigenvectors ξ from Lemma 2.3 and the remark under it as
follows:

e
(l± 1

2 )

k,+ = ξ
τ(2l±1)
k+2l±1,+, k ∈ N− (2l ± 1),

e
(l± 1

2 )

k,− = ξ
τ(2l±1)
k,− , k ∈ N.

We may identify the span of the e(l±
1
2 )

k,ν over all k with V2l±1,ν , where ν ∈ {−,+}.
Then we can write V2l �C2 as V2l−1 ⊕ V2l+1, with corresponding projection maps p2l±1.
From the results of the previous section, it follows that

p2l±1(Pol(S2
qτ(2l))⊗M2(C))p2l±1 = Pol(S2

qτ(2l±1)),

in its natural presentation w.r.t. the basis e(l±
1
2 ). Now as π−τ,+ = πτ,− ◦ σ, we have that

in the new basis also
π
(2)
τ(2l),a = πτ(2l−1),a ⊕ πτ(2l+1),a,

where we recall the notations Notation 1.18 and Notation 2.1. By Lemma 1.8.2, the action
of Uq(su(2)) on Bl �M2(C) will be implemented by this representation.

We want to show now that

p2l±1(Bl ⊗M2(C))p2l±1 = Bl± 1
2
,

where for the moment we assume l > 0 in the −-case. As the σ-weak closure of Bl is
clearly the whole of B(l2(N)⊕ l2(N)), and as the latter has a normal positive functional
which restricts to an invariant functional on Bl, by the previous proposition, a similar
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argument as in the proof of Theorem 0.1 shows that it is sufficient to prove that the right
hand side is contained in the left hand side.

We have already remarked above that the copy of the Podleś sphere inside Bl± 1
2
will

belong to the left hand side. It remains to prove this also for the generators A(s)
2l±1.

Let us denote ek,µ,ν for the vector e(l)k,µ ⊗ eν in V2l ⊗ C2. Then we may write√
1 + q4l · e(l+

1
2 )

k,± = (ek,±,+ ek+1,±,−) ·
(
∓(1∓ q2k+4l+2)1/2

q2l(1± q2k+2)1/2

)
,

√
1 + q4l · e(l−

1
2 )

k,± = (ek−1,±,+ ek,±,−) ·
(
±q2l(1± q2k)1/2

(1∓ q2k+4l)1/2

)
.

Conversely we have

1√
1 + q4l

· ek,±,+ = (e
(l+ 1

2 )

k,± e
(l− 1

2 )

k+1,±) ·
(
∓(1∓ q2k+4l+2)1/2

±q2l(1± q2k+2)1/2

)
,

1√
1 + q4l

· ek,±,− = (e
(l+ 1

2 )

k−1,± e
(l− 1

2 )

k,± ) ·
(
q2l(1± q2k)1/2

(1∓ q2k+4l)1/2

)
.

One computes then that w.r.t. the original basis of V2l⊗C2 =

(
V2l ⊗ e+
V2l ⊗ e−

)
, one has

A
(0)
2l+1 =


−A(0)

2l (1− q4l+2Z2)

q2lA
(−1)
2l (1 + q−2l−1Z)(1 + q2l+1Z)

−q2lA(1)
2l (1− q−2l+1Z)(1− q2l+1Z)

q4lA
(0)
2l (1− q−4l−2Z2)

 .

A similar computation shows that, for l > 0, we can write

A
(0)
2l−1 =

(
−q4lA(0)

2l −q2lA(−1)
2l

q2lA
(1)
2l A

(0)
2l

)
. (∗)

We have thus shown that

A
(0)
2l±1 ∈ p2l±1(Bl ⊗M2(C))p2l±1.

As all other A(s)
2l±1 lie in A(0)

2l±1 � Uq(su(2)), it follows that

A
(s)
2l±1 ∈ p2l±1(Bl ⊗M2(C))p2l±1

for all s, and so p2l±1(Bl ⊗M2(C))p2l±1 = Bl± 1
2
.

Now Theorem 0.2 will follow from Lemma 1.5 and the above discussion, if we can
also show that Pol(RP 2

q )⊗M2(C) ∼= B 1
2
. From the remarks in the first paragraph of this

proof, it is sufficient to show that

(p+ ⊗ 1)(B0 ⊗M2(C))(p+ ⊗ 1) ∼= B 1
2
.

Now an easy computation shows that (A0 ⊗ 1)p1(A0 ⊗ 1) = p−1. As we already know
that

p1(B0 ⊗M2(C))p1 ∼= B 1
2
,
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on which the SUq(2)-action is ergodic, we must have that p1 and p−1 are minimal pro-
jections in the fixed point algebra of B0 ⊗M2(C). As also (A0 ⊗ 1) lies in the latter, it
follows that the fixed point algebra is in fact M2(C). Hence

(p+ ⊗ 1)(B0 ⊗M2(C))(p+ ⊗ 1) ∼= p1(B0 ⊗M2(C))p1 ∼= B 1
2
,

and we are done.

Acknowledgements. I would like to thank U. Krähmer for pointing out to me the
references [7] and [16].

References

[1] F. Boca, Ergodic actions of compact matrix pseudogroups on C∗-algebras, in: Recent Ad-
vances in Operator Algebras (Orléans, 1992), Astérisque 232 (1995), 93–109.

[2] K. De Commer, On the construction of quantum homogeneous spaces from ∗-Galois ob-
jects, Algebras and Representation Theory 15 (2012), 795–815.

[3] Y. Doi and M. Takeuchi, Hopf-Galois extensions of algebras, the Miyashita-Ulbrich action,
and Azumaya algebras, J. Algebra 121 (1989), 488–516.

[4] G. Fiore, On the decoupling of the homogeneous and inhomogeneous parts in inhomoge-
neous quantum groups, J. Phys. A 35 (2002), 657–678.

[5] P. Hajac, Strong connections on quantum principal bundles, Commun. Math. Phys. 182
(1996), 579–617.

[6] P. Hajac, R. Matthes and W. Szymański, Quantum real projective space, disc and spheres,
Algebras and Representation Theory 6 (2003), 169–192.

[7] I. Heckenberger and S. Kolb, Podleś quantum sphere: dual coalgebra and classification of
covariant first order differential calculus, J. Algebra 263 (2003), 193 – 214.

[8] A. Joseph and G. Letzter, Local finiteness of the adjoint action for quantized enveloping
algebras, J. Algebra 153 (1992), 289–318.

[9] A. Klimyk and K. Schmudgen, Quantum Groups and Their Representations, Springer,
Berlin, 1997.

[10] H. F. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana
Univ. Math. J. 30 (1981), 675–692.

[11] H. Li, Compact quantum metric spaces and ergodic actions of compact quantum groups,
J. Funct. Anal. 256 (2009), 3368–3408.

[12] K. Mimachi and M. Noumi, Quantum 2-spheres and big q-Jacobi polynomials, Commun.
Math. Phys. 128 (1990), 521–531.

[13] R. Nest and C. Voigt, Equivariant Poincaré duality for quantum group actions, J. Funct.
Anal. 258 (2010), 1466–1503.

[14] P. Podleś, Quantum spheres, Lett. Math. Phys. 14 (1987), 193–202.
[15] P. Schauenburg, Hopf-Galois and Bi-Galois extensions, in: Galois Theory, Hopf Algebras,

and Semiabelian Categories, Fields Inst. Commun. 43, AMS, 2004, 469–515.
[16] K. Schmüdgen and E. Wagner, Representations of cross product algebras of Podleś quan-

tum spheres, Journal of Lie Theory 17 (2007), 751–790.
[17] R. Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), 1–83.
[18] S. L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differential

calculus, Publications of RIMS Kyoto University 23 (1987), 117–181.

http://dx.doi.org/10.1007/s10468-011-9265-7
http://dx.doi.org/10.1016/0021-8693(89)90079-3
http://dx.doi.org/10.1088/0305-4470/35/3/312
http://dx.doi.org/10.1007/BF02506418
http://dx.doi.org/10.1023/A:1023288309786
http://dx.doi.org/10.1016/0021-8693(92)90157-H
http://dx.doi.org/10.1512/iumj.1981.30.30052
http://dx.doi.org/10.1016/j.jfa.2008.09.009
http://dx.doi.org/10.1007/BF02096871
http://dx.doi.org/10.1016/j.jfa.2009.10.015
http://dx.doi.org/10.1007/BF00416848
http://dx.doi.org/10.1016/j.jfa.2007.08.013
http://dx.doi.org/10.2977/prims/1195176848



	Preliminaries
	Quantum groups
	Coactions
	Morita equivalence for coactions
	Galois objects
	Quantized universal enveloping algebras
	The compact quantum group SUq(2)
	Podles spheres

	Equivariant Morita equivalences for the Podles spheres
	Equivariant Morita equivalence for the quantum projective plane

