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SERIES EXPANSIONS OF

PERTURBED POLYNOMIAL PROGRAMS

KONSTANTIN AVRACHENKOV

INRIA Sophia Antipolis, 2004 route des Lucioles, B.P. 93, 06902, France

VLADIMIR EJOV and JERZY A. FILAR

School of Mathematics and Statistics, University of South Australia

Mawson Lakes, SA 5095, Australia

E-mail: jerzy.filar@unisa.edu.au

Abstract. In this note we consider a perturbed mathematical programming problem where both

the objective and the constraint functions are polynomial in all underlying decision variables and

in the perturbation parameter ε.

Recently, the theory of Gröbner bases was used to show that solutions of the system of first

order optimality conditions can be represented as Puiseux series in ε in a neighbourhood of

ε = 0. In this paper we show that the determination of the branching order and the order of the

pole (if any) of these Puiseux series can be achieved by invoking a classical technique known as

the “Newton’s polygon” and using it in conjunction with the Gröbner bases techniques.

1. Introduction. There are many real-world problems that are formulated as either

linear or nonlinear mathematical programs. In a vast majority of cases it is assumed that

the objective function and the constraints are fully and precisely known. However, that

is rarely the case in applications. Hence a fundamental question that arises concerns the

stability (or instability) of a solution when the problem is slightly perturbed.

A recent paper [5] considered solutions of the optimality conditions for the, equality

constrained, mathematical program:

min f(x, ε)

s.t. hi(x, ε) = 0; i = 1, . . . , p.
(MP(ε))

where x ∈ ℜn, ε ∈ [0,∞), f , and hi’s are polynomial functions on ℜn × [0,∞). The case
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ε = 0 corresponds to the underlying unperturbed program (MP(0)). The parameter, ε,

will be called the perturbation.

The problem of characterising solutions, x∗(ε), of (MP(ε)) as functions of the per-

turbation parameter, ε is closely related to the well established topics of sensitivity or

post-optimality, or parametric analyses of mathematical programs. There is already a

substantial volume of literature devoted to these topics (see for instance Bonnans and

Shapiro [3], Fiacco [8], Gaitsgory and Pervozvanskii [18], Gal [10], Gal and Greenberg

[11] and Levitin [16]). The approach proposed in Ejov and Filar [5] has been inspired by

Jeroslow [12], [13], Eaves and Rothblum [7], Szczechla et al. [20] and Coulomb et al. [4].

The latter approach—based on the theory of complex analytic varieties (e.g. see Whit-

ney [22]), Gröbner bases(e.g., see [1]) and series expansions—treats singular and regular

perturbations in a unified way. In [5] Gröbner bases were used to construct Puiseux se-

ries solutions of the now classical Karush-Kuhn-Tucker conditions (the existence of such

solutions was already established in [4]). Hence, it is now known that there exists a neigh-

bourhood (0, ε∗), an integer m > 0 and a solution x∗(ε) of (MP(ε)) in that neighbourhood

that is expressible as a Laurent-Puiseux series of the form

x∗(ε) =

∞
∑

k=K

ε
k
m ck. (PS)

In [5] the above was achieved by showing that Buchberger’s algorithm in Gröbner bases

theory can be used to characterise the variety of interest as the zero set of a system of

bivariate polynomials. A classical result—due to Pusiseux (e.g., see [19], [6])—concerns a

Puiseux series solution of an irreducible bivariate polynomial. Hence, a somewhat tedious,

reduction of a bivariate polynomial to its irreducible factors was proposed in [5].

This note is devoted to the problem of determination of the branching order and the

order of the pole (if any) of the above Puiseux series with the help of Newton’s polygons.

2. Polynomial programming setting. Consider a perturbed mathematical program

min f(ε,x)

subject to

hi(ε,x) = 0 ; i = 1, 2, . . . , p (1)

where all functions are polynomials in the original decision variables x = x1, x2, . . . , xn

and the single perturbation parameter ε. We are interested in the asymptotic behaviour

of the solutions xk(ε)’ s as ε ↓ ε0, where ε0 is naturally 0, but also may be some other

distinguished accumulation point of the perturbation parameter.

Definition 2.1. We shall say that a feasible point (ε, x) is regular if the gradient vectors

of the constraints are independent.

It is well known that at a regular feasible point (ε, x) the first order optimality condi-

tions are satisfied. That is, there exist Lagrange multipliers (dependent on ε) λ1, λ2, . . . , λp

∈ R, not all zero, such that
p

∑

i=1

λi∇hi(ε, x) + ∇f(ε, x) = 0.
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Hence, the system we are interested in consists of polynomial equations

hi(ε,x) = 0, i = 1, 2, . . . , p ;

p
∑

i=1

λi∇hi(ε, x) + ∇f(ε, x) = 0. (2)

In particular, we are interested in solutions of (2) that express xj(ε) as Puiseux series in

ε for j = 1, . . . , n.

To see that the latter arise naturally, consider a simple unconstrained problem of

minimizing the function

f(ε, x1, x2) =
x4

1

4
+

x4
2

4
+

ε

3
x3

1x2 + εx1.

We observe that the vanishing gradient conditions ∂f
∂x1

= ∂f
∂x2

= 0 require the solution of

simultaneous polynomial equations

f1 = x3
1 + εx2

1x2 + ε = 0,

f2 = x3
2 +

ε

3
x3

1 = 0.

The generators polynomials {f1, f2} do not compose a Gröbner basis1. To obtain a

Gröbner basis for F = {f1, f2} we first choose the pure lexicographic term order x1 ≺
x2 (for different types of term orderings we refer a reader to [1] p. 19). The leading

terms of f1 and f2 are εx2
1x2 and x3

2, respectively, with εx2
1x2 being their least common

multiple. Hence, the S-polynomial that is an algebraic combination of f1 and f2 with

monomial coefficients in which the leading term cancels out (for the precise definition of

S-polynomials see [1] p. 40) equals to

s1 := S(f1, f2) = x2
2f1 − εx2

1f2 = x2
2x

3
1 + εx2

2 −
1

3
ε2x5

1;

the next S-polynomial is

s2 := S(s1, f1) = −1

3
ε3x7

1 − 2εx2x
3
1 − ε2x2 − x2x

6
1;

and, finally, S-polynomial

s = S(s2, f1) =

(

1 − 1

3
ε4

)

x9
1 + 3εx6

1 + 3ε2x3
1 + ε3

is a bivariate polynomial in (ε, x1), that is an element of the Groebner basis of F with

respect to the term order x1 ≺ x2, which in Maple is denoted as gbasis(F, plex(x1, x2)).

Analogous construction for the term order x2 ≺ x1 leads to a bivariate polynomial in

(ε, x2) that is,

r = (ε4 − 3)x9
2 + 3ε2x6

2 − ε4x3
2 +

1

9
ε6.

Had s and r been irreducible polynomials, they would have each determined a unique

solution in a form of complex algebraic functions x1(ε) and x2(ε) that would admit a

Puiseux expansion at a branching point in ε.

1Loosely speaking a Gröbner basis derived from a given set of polynomials is another set of
polynomials that generate the same ideal as the original set but are easier to solve (see [1]).
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It turns out that in our case s and r are reducible. Nevertheless, the substitution

ε := 3t3 leads to the factorisation

s = −(3x3
1t

4 − x3
1 − 3t3)(9x6

1t
8 + 3x6

1t
4 + x6

1 + 9t7x3
1 + 6x3

1t
3 + 9t6).

The first factor f3 := 3x3
1t

4 − x3
1 − 3t3 is irreducible and has the solution

x1 = −
3
√

3t
3
√

1 − 3t4
, t = 3

√

ε

3
(3)

that admits a representation as a Puiseux series in ε:

x1 = − 3
√

3t − 3
√

3t5 + O(t9) = −ε1/3 − 3−4/3ε5/3 + O(ε3). (4)

Let’s suppose that the coordinates (x1, ε) of the initial point x0 = (x1, x2, ε) satisfy

the above solution for x1. So, we can add f3 to our original system F in order to find

the factor of r that is compatible with f3. To achieve this we change the term order

to x1 ≺ x2 and consider the Gröbner basis gbasis(F, plex(x2, x1)). This Gröbner basis

contains a bivariate in (x2, ε) element x3
2(1 − 3t4) − 3t6, which is, in fact, a factor of r. 2

The solution

x2 =
3
√

3 t2

3
√

1 − 3t4
, t = 3

√

ε

3
, (5)

which equals tx1, combined with (3) produces a solution of the original system f1 = f2 = 0

through the initial point x0, that can be expressed as a Puiseux series in ε around ε = 0

as

x2 =
3
√

3t2 +
3
√

3t6 + O(t10) = 3−1/3ε2/3 + 3−5/3ε2 + O(ε3). (6)

Remark 2.1. In the above example it was a simple matter to obtain the needed irre-

ducible factor f3. However, in general, this not a trivial task. It is this observation that

motivated the present note.

3. Reduction to bivariate polynomials. The polynomial system (2) defines a variety

W1, that is, a null-set of some ideal IW1
generated by polynomials gi(z, η), i = 1, 2, . . . , ν.

Adopt the term order T1 := z1 ≺ z2 ≺ . . . zn keeping η as a parameter. Find the reduced

Gröbner basis (see [1] p. 48) of IW1
. To keep the notation simple we denote this basis by

GB(1)(W1) = {g1(z, η), . . . , gt(z, η)} . In the complex domain zj replaces the real variable

xj and η replaces ε.

The following key lemmata are proved in [5]. They demonstrate that the original

system can be replaced by a decoupled system of bivariate polynomials in η and in one

of the zj variables.

Lemma 3.1. (i) One can order g1, . . . , gt so that g1 is a univariate polynomial in the

variable z1, polynomial g2 contains only the variables z1, z2, polynomial g3 con-

tains only z1, z2, z3 and so forth until the polynomial gn, containing z1, . . . , zn. In

particular, t = n.

(ii) The coefficients of gi, i = 1, . . . , t are rational functions in the η variable.

2It could happen that the latter gbasis(F, plex(x2, x1)) might consist of only the unit {1},
that would simply mean that f3 does not have a compatible irreducible bivariate polynomial in
(x2, ε) and we should have considered other irreducible factors of s.
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Consider polynomial g1(z, η). Having multiplied by the the least common multiple

of the denominators of its coefficients we obtain a bivariate polynomial in (z, η) that

we denote by g̃1(z, η). This polynomial can be factorised into prime (irreducible) factors

([15]):

g̃1(z1, η) =

ℓ1
∏

1

pj(z1, η). (7)

Without loss of generality we assume that the initial point (x0, ε0) belongs to the

zero-set of p1(z1, η), the first factor3 in (7). We now add p1(z1, η) to the GB(1)(W1),

change the term order to T2 := z2 ≺ z1 ≺ . . . ≺ zn and construct the reduced Gröbner

basis GB(2)(W1) initiated by the set of generators GB(1)(W1) and the term order T2. By

Lemma 3.1 the first element of GB(2) will be a univariate polynomial g(z2) with rational

coefficients in η. Again, multiplying by the least common multiple of the coefficients’

denominators and taking the irreducible factor p2(z2, η) such that (x0, ε0) belongs to its

zero set, we obtain the second irreducible bivariate (in z2 and η) polynomial that we can

add to GB(2) to continue with the process. The uniqueness of the solution of a system

of bivariate irreducible polynomial equations (see Section 5) ensures that this solution

belongs to the original variety W1. The above argument proves the following lemma.

Lemma 3.2. In a neighbourhood of (x0, ε) ∈ S the variety W1 is defined as a union

of zero-sets of τ systems of n irreducible bivariate polynomials pi
1(z1, η), pi

2(z2, η), . . . ,

pi
n(zn, η), i = 1, . . . , τ .

Note that the superscript i in the above refers to a selection of one irreducible com-

ponent from each of the product expression of the type (7) for g̃k(zk, η); k = 1, 2, . . . n.

Thus, τ could be a large number.

For instance, in the preceding example an irreducible (in zj variables) bivariate system

consisted of

p1
1(z1, η) = 3z3

1t4 − z3
1 − 3t3, p1

2(z2, η) = z3
2(1 − 3t4) − 3t6 for t = 3

√

η

3
.

The practically interesting perturbed polynomial programs are those that admit real

solutions for real values of the perturbation parameter ε. Here we formulate a criterion

for the existence of a real solution in terms of the Taylor or Laurent-Puiseux series

coefficients.

Consider the original optimization problem (1) and its reduction through the complex-

ification and the Gröbner bases’ elimination procedure to a finite sequence of algebraic

problems of the form

{Qj(zj , η) = 0; j = 1, . . . , n}, (8)

for some irreducible bivariate polynomials Qj(zj , η) of the degrees degzj
Qj = mj . In [5]

the following theorem was proved.

3The initial point could also belong to the zero set of some other polynomial in the prod-
uct, say, pj(z1, η). In this case the described algorithm should be applied to each possibility
pj(z1, η) = 0.
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Theorem 3.1. The program (1) has a real solution x(ε) on some interval ε ∈ (0, ε0),

ε0 > 0 if and only if for at least in one of the algebraic reductions (8) every solution zj

can be written as a Taylor or Laurent-Puiseux series with real coefficients:

(i) zj(ε) =

∞
∑

k=0

c
(j)
k εk, c

(j)
k ∈ R,

or

(ii) zj(ε) =

∞
∑

k=−k0

c
(j)
k ε

k

m′

j , c
(j)
k ∈ R,

for some k0 > 0, m′
j < mj and for the choice of the branch ε

1

m′

j > 0.

Once again, we see that there is a need for a more systematic method of deriving irre-

ducible factors and that such a method would be facilitated by an efficient determination

of the orders mj .

4. Irreducible factors by Gröbner bases. Consider a bivariate polynomial

Q(z, η) =
∑

α+β≤m

cαβzαηβ

which is a polynomial in (z, η) of degree m > 1 with complex coefficients cαβ . Without

loss of generality we assume that Q(0, 0) 6= 0, that is, c00 6= 0; (this can always be achieved

by moving the origin away from the zero set of Q). Having fixed two positive integers

integers m1 and m2 = m − m1, we would like to find out if it is possible to represent

Q(z, w) as a product

Q(z, η) = Q1(z, η)Q2(z, η) (9)

for some polynomials Q1 =
∑

α+β≤m1
aαβzαηβ and Q2 =

∑

α+β≤m2
bαβzαηβ of degrees

m1 and m2, respectively. Without loss of generality we assume that a00 = 1. Equat-

ing coefficients in (9) at each power product zαηβ we obtain the following system of,

at most, quadratic equations in the coefficients (aαβ, bαβ), that determines all possible

factorizations of Q into two factors of prescribed degrees m1 and m2:

∑

γ+λ=α
δ+µ=β

aγδbλµ =

{

cαβ , cαβ 6= 0,

0, otherwise,
(10)

that we denote by F(Q, m1, m2).

Any solution {aαβ} and {bαβ} of F(Q, m1, v2) provides a factorization of Q into

factors of degrees m1 and m2. Under the assumption a00 = 1 system (10) has, at most,

finitely many solutions. If the solution set of (10) in F(Q, m1, m2) is empty then that Q

can not be factorized into polynomials of degrees m1 and m2. Consider the ideal Im1,m2
of

the polynomials in the variables {aαβ} and {bαβ} generated by F(Q, m1, m2). Theorem

2.2.7 p. 63 [1] states that F(Q, m1, m2) has no solutions if and only if any Gröbner basis

of Im1,m2
consists of just a unit. Because Q has at most finitely many factors of the

prescribed degrees, the only alternative case is when the solution set of F(Q, m1, m2) is

finite. Then the same Theorem 2.2.7 p. 63 [1] states that if we adopt a pure lexicographic

term order then the first element in the corresponding Gröbner basis will be univariate,
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the second will be bivariate, and so forth, that enables us to find the solutions aαβ , bαβ

precisely. Running this algorithm for m1 = 1, . . . , [m
2 ] we either verify that Q is irreducible

or come across the smallest value m1 that provides a factorization. Polynomial Q1 of the

degree m1 then has to be irreducible. Applying the same algorithm to Q2 and so on, we

eventually obtain all other irreducible factors of Q.

It can be seen from the above that even finding the smallest value m1 that provides

the needed factorization is not a simple task. Fortunately, in the section below it will be

seen that a classical technique due to Newton can supply this quantity.

5. Orders of Puiseux’s series based on Newton’s diagram. The above method

is essentially based on the derivation of the system of irreducible bivariate polynomials.

However, as one can see from the example of Section 2, it might be the case that the

Gröbner basis elimination algorithm produces a system of reducible bivariate polynomials.

In the preceding section it was shown that one can again apply Gröbner bases to factorize

these into irreducible components. However, this approach is computationally demanding.

In the present section we propose an alternative approach based on the Newton diagram

technique. Since the latter is a classical construction (e.g., see [21]) we merely outline it

here and illustrate various steps on the simple example of Section 2.

Here we permit that some polynomials in our bivariate system are reducible. In par-

ticular, in our example the reducible bivariate system consists of:

s =

(

1 − 1

3
η4

)

z9
1 + 3ηz6

1 + 3η2z3
1 + η3 = 0,

r = (η4 − 3)z9
2 + 3η2z6

2 − η4z3
2 +

1

9
η6 = 0.

Let us consider a generic bivariate polynomial equation of the above form

an(η)zn + an−1(η)zn−1 + . . . + a1(η)z + a0(η) = 0, (11)

where coefficents ak(η), k = 0, . . . , n are polynomials of the perturbation parameter η.

Namely,

ak(η) = a
(0)
k + ηa

(1)
k + . . . + ηpka

(pk)
k , (12)

for k = 0, . . . , n with at least one a
(0)
k 6= 0.

To obtain the Puiseux series in η of a solution of (11), we substitute (12) and the

following Ansatz power series

z(η) = z(1)ηα + z(2)ηβ + . . . , (13)

where α and β are rational numbers and α < β, into (11). We note that the terms with

the lowest degree of η can be only among

a
(ρ0)
0 ηρ0 , . . . a

(ρk)
k (z(1))kηρk+kα, . . . a(ρn)

n (z(1))nηρn+nα,

with

ρk = min{ i | a
(i)
k 6= 0 },

for k ∈ {0, 1, . . . , n} and ak(η) 6≡ 0.
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For instance, in the case of the s polynomial in our example we have that ρ0 = 3,

ρ3 = 2, ρ6 = 1 and ρ9 = 0. Similarly, in the case of the r polynomial in our example we

have that ρ0 = 6, ρ3 = 4, ρ6 = 2 and ρ9 = 0.

In order for lower powers in η in (11) to cancel (after the above substitutions are made

to replace z), it is needed that at least two powers among

ρ0, . . . , ρk + kα, . . . , ρn + nα

coincide and the remaining powers be larger. Of course, one can follow a brute force

search procedure. However, the Newton diagram approach makes the search much easier.

To construct a Newton diagram, we plot the collection of points (0, ρ0), . . . (k, ρk),. . .

(n, ρn) on a plane for k ∈ {0, 1, . . . , n} and ak(z) 6≡ 0. Next let us draw a line through the

point (0, ρ0) which coincides with the ordinate axis and rotate this line counterclockwise

around (0, ρ0) until it touches one of the other points, say (l, ρl). In fact, several points

may fall on this line. Then, we choose the point on the line with the largest abscissa and

draw a line through it parallel to the ordinate axis and again rotate it counterclockwise

until it touches another point in the collection. Continuing in this manner, we obtain a

lower envelope of the convex hull of the points (0, ρ0),. . . (k, ρk),. . . (n, ρn). This is the

Newton diagram (it is also often called Newton polygon). In the case of our s polynomial

given above the Newton diagram is simply Figure 1.

1

3

1 9

Fig. 1. Newton diagram for polynomial s

Now we note that the tangents of the angles between the segments of the Newton

polygon and the negative direction of the abscissa give possible values for α. Indeed,

consider a segment and some point from the collection (0, ρ0),. . . (k, ρk),. . . (n, ρn) that

does not lie on this segment. If we draw a line through that point parallel to the segment,

the line will be above the segment, by construction. Hence, the powers of the terms

corresponding to the points which do not belong to the segment are higher than the

powers of the terms corresponding to the segment points.

Of course, in the case of our s polynomial, we see from Figure 1 that there is only

one segment with tangent of α = 1/3. Hence m = 3 is the branching order of the

corresponding Puiseux series solution.

The descending segments of the Newton polygon yield asymptotics for the roots that

approach zero as the perturbation parameter goes to zero; and the ascending segments

of the Newton polygon yield asymptotics for the roots that go to infinity as η goes to
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zero. Note that in the case of the s polynomial in our example, there are no ascending

segments and hence the Puiseux series has no singularity at η = 0.

Once α is determined, we can proceed to the calculation of the coefficient z(1). Con-

sider a segment with the points (k, ρk) such that ρk + kα = σ = const. In order for the

lower power terms to cancel after the substitution of (13) into (11), z(1) should satisfy

the polynomial equation
∑

k : ρk+kα=σ

a
(ρk)
k (z(1))k = 0. (14)

The number of the non-zero roots in the above equation is equal to the length of the

projection of the segment on the abscissa axis. Since the sum of all projections is equal

to n, we obtain asymptotic expansions for all the roots of the polynomial (11).

Continuing with the application of the Newton diagram approach to the polynomial

s we observe from Figure 1 and the preceding calculations that

z1(η) = z
(1)
1 η1/3 + . . . .

The substitution of the above series into polynomial s gives a polynomial equation for z
(1)
1 .

(z
(1)
1 )9 + 3(z

(1)
1 )6 + 3(z

(1)
1 )3 + 1 = 0,

((z
(1)
1 )3 + 1)3 = 0.

The above equation indeed has nine complex roots (equal to the length of the projection

of the relevant line segment on the horizontal axis). However, it has only one real solution,

that is z
(1)
1 = −1.

The procedure for determination of β and z(2) is completely analogous. The only

difference is that we would be constructing an upper (rather than the lower) envelope of

the convex hull of the relevant points.
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