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Abstra
t. Norm-to-weak* 
ontinuity of ex
ess demand as a fun
tion of pri
es is proved byusing our two-topology variant of Berge's Maximum Theorem. This improves signi�
antly uponan earlier result that, with the extremely strong �nite topology on the pri
e spa
e, is of limitedinterest, ex
ept as a vehi
le for proving equilibrium existen
e. With the norm topology on thepri
e spa
e, our demand 
ontinuity result be
omes useful in appli
ations of equilibrium theory,espe
ially to problems with 
ontinuous 
ommodity spe
tra. Some auxiliary results are also given,in
luding 
losedness of the total produ
tion set and additivity of the asymptoti
 
one operation.Both are needed in proving equilibrium existen
e by the use of the Debreu-Gale-Nikaido Lemma.1. Introdu
tion. Although the properties of demand in in�nite-dimensional 
ommod-ity and pri
e spa
es have attra
ted mu
h interest, hitherto the results on its pri
e-
ontinuity that are needed for establishing equilibrium existen
e by the dire
t ex
ess-demand approa
h have been unsatisfa
tory. For example, both Aliprantis and Brown[1, p. 204℄, who initiated this line of resear
h, and Araujo [2℄ report negative �ndings,whilst Florenzano [10, p. 216℄ manages only a 
ontinuity result with the �nite topologyon the pri
e spa
e, obliging her to use �nite-dimensional pri
e sets.1 These failures led2000 Mathemati
s Subje
t Classi�
ation: Primary 91B50; Se
ondary 46B42, 46E30.Key words and phrases: Berge's Maximum Theorem, demand 
ontinuity, equilibrium.Finan
ial support of the ESRC is gratefully a
knowledged (grant R000232822).The paper is in �nal form and no version of it will be published elsewhere.

1The dire
t approa
h to equilibrium existen
e 
onsists in extending the methods developedoriginally for a �nite-dimensional 
ommodity spa
e, and 
ontinuity of demand in pri
es is neededif the ex
ess-demand method is adopted. For want of a satisfa
tory result on the demand derivedfrom the optimizing behaviour of individual 
onsumers and produ
ers, Aliprantis and Brown [1℄take 
ontinuous demand as a primitive rather than derived 
on
ept�ex
ept in [1, Example 4.8,p. 205℄, where they, too, resort to using �nite-dimensional pri
e sets.
[163]



164 A. HORSLEY AND A. J. WROBELothers to use �nite-dimensional approximations of the 
ommodity spa
e as well as ofthe pri
e spa
e,2 be
ause this method does not require demand 
ontinuity: see, e.g., [5℄,[8℄ or [21℄. The resort to approximation is often pa
kaged with an interpretation of thein�nite-dimensional 
ommodity spa
e as an idealized des
ription of a �large but �nite�number of 
ommodities: see, e.g., [21, p. 512℄. Sometimes this may be appropriate, butin problems for whi
h in�nite-dimensional modelling is tailor-made, and where it hasturned out to be most su

essful, the spe
tra of 
ommodities are genuinely 
ontinuous,e.g., the �ows of goods in 
ontinuous-time pri
ing of publi
 utilities. In su
h 
ontexts,it is mistaken to hold that all meaningful results 
an be 
aptured by the approximationapproa
h. Dis
retization rules out te
hniques that yield key 
al
ulus results, su
h as the
ontinuity of the equilibrium pri
e density [16℄ and its uses in the marginal valuation of
apital and other �xed inputs in [14℄ and [17℄. It also rules out the sensitivity analysisthat is needed for any implementation of the equilibrium solution: in the 
ase in point,demand 
ontinuity properties are essential for de
iding whether small deviations fromthe equilibrium pri
e system will or will not result in large shifts of demand.For demand 
ontinuity to be of interest in appli
ations, the topologies used on thepri
e and 
ommodity spa
es must be kept, respe
tively, as weak and as strong as possible.If, by 
ontrast, an extremely strong topology is used on the pri
e spa
e as in [10℄, thendemand 
ontinuity be
omes a weak result that has little value ex
ept as a vehi
le foran equilibrium existen
e proof. For a more detailed a

ount of [10℄, as well as of [1℄, seeSe
tion 6.What we establish is norm-to-weak* 
ontinuity of demand, whi
h is the best generalproperty available when the 
ommodity spa
e, L, is the Bana
h dual of a pri
e spa
e L′(on whi
h the demand map is de�ned). It is essential that this result be appli
able to pref-eren
es that are weakly* upper semi
ontinuous (w∗-u.s.
.) but not ne
essarily weakly*lower semi
ontinuous (w∗-l.s.
.), sin
e even some of the simplest fun
tional forms forutility are not weakly* 
ontinuous. For example, an additively separable, stri
tly 
on-
ave utility fun
tion on L∞
+ is not w∗-l.s.
. (although it is Ma
key-
ontinuous and hen
e

w∗-u.s.
.): see [5, Appendix II℄. Lower semi
ontinuity of preferen
es should thereforebe assumed for a topology that is signi�
antly stronger than the weak* topology�andthe best 
hoi
e is the �nite topology of the 
ommodity spa
e, denoted by TFin(L). Thisgives a very large 
lass of 
ontinuous preferen
es, whi
h obviously in
ludes all the norm-
ontinuous ones. The TFin-
ontinuity 
ondition is a
tually no more restri
tive than itis in the �nite-dimensional 
ase (so the only truly �in�nite-dimensional� restri
tion onpreferen
es here is that of w∗-u.s. 
ontinuity).3The 
ase of a preferen
e order 4 that is w∗-u.s.
. but only TFin-l.s.
. requires a variantof Berge's Maximum Theorem with two topologies on the set of a
tions, whi
h is here the
onsumption set. Su
h extensions, given in [18℄, are applied to prove demand 
ontinuity
2Florenzano [10, Proof of Proposition 3, p. 216℄ works with demand as a map of a �nite-dimensional pri
e set into the in�nite-dimensional 
ommodity spa
e, as do Aliprantis and Brown[1, Example 4.8, p. 205℄ when dealing with derived demand.
3A fun
tion U : L → R is 
ontinuous for TFin if (and only if) its restri
tion to any a�nesubspa
e of a �nite dimension d is 
ontinuous for the usual topology of R

d.



DEMAND CONTINUITY AND EQUILIBRIUM 165(Theorem 5) as well as another result used in the dire
t proof of equilibrium existen
e(Lemma 7).The main reason for using the weak* topology (w∗) is that it is weak enough to makethe 
onsumption set 
ompa
t. Furthermore, in the 
ontext of demand 
ontinuity, theparameter set is the pri
e spa
e L′ with the norm topology, and w∗ is also weak enoughto make the budget 
orresponden
e norm-to-w∗ upper hemi
ontinuous (u.h.
.). The othertopology on the 
onsumption set is purely auxiliary in that it enters the assumptions butnot the 
on
lusion�whi
h is that the ex
ess-demand 
orresponden
e is norm-to-w∗ u.h.
.The role of this auxiliary topology is only to make the preferen
es l.s.
. whilst making thebudget 
orresponden
e lower hemi
ontinuous (l.h.
.) when the pri
e spa
e L′ 
arries thenorm topology. Sin
e TFin(L) meets the latter 
ondition despite its strength�the budget
orresponden
e is a
tually even weak-to-TFin l.h.
., as the Proof of Theorem 5 shows�itis the best 
hoi
e for the auxiliary topology.In the 
ontext of demand 
ontinuity, the pri
e-spa
e topology should be kept as weakas possible (i.e., just strong enough to make the budget 
orresponden
e u.h.
. with w∗on the 
onsumption set, and l.h.
. with TFin(L) thereon). We a
hieve this by using thenorm topology of L′. This is what allows us to improve on the analysis of Florenzano[10, Proof of Proposition 3℄, who establishes demand 
ontinuity, but only when the pri
espa
e 
arries the �nite topology TFin(L′), whi
h is even stronger than the strongest ve
tortopology TSV(L′). As with the two norms, the two �nite topologies (on the pri
e and
ommodity spa
es) should not be mistaken for ea
h other: whereas the use of TFin(L′)as in [10℄ severely weakens the demand 
ontinuity result, our use of TFin(L) 
an onlystrengthen it (albeit perhaps not signi�
antly by 
omparison with using the norm of Lfor this purpose).The stronger 
ontinuity property of demand does not, however, strengthen the equi-librium existen
e result itself (Theorem 8): this does not di�er signi�
antly from [10,Propositions 3 and 4℄, ex
ept for minor improvements. Given here mainly for 
omplete-ness, it establishes the existen
e of an equilibrium with a pri
e system p⋆ in the norm-dual
L∗ of L (whi
h is larger than the predual L′, unless the spa
e is re�exive). However, forthe 
ontinuity properties of demand to be relevant for investigating the impa
t of pri
edeviations, the exa
t equilibrium pri
e p⋆ must be known to belong not just to L∗ buta
tually to the smaller pri
e spa
e L′ (sin
e demand is de�ned only on L′). Although nosu
h pri
e representation result is given here, under appropriate assumptions it holds forboth (i) the 
ommodity spa
e of all essentially bounded fun
tions L∞, with L′ = L1 (thespa
e of integrable fun
tions) and (ii) the 
ommodity spa
e of measures M, with L′ = C(the spa
e of 
ontinuous fun
tions on a 
ompa
t spa
e of 
ommodity 
hara
teristi
s): see[5℄ and [21℄, respe
tively.4The analysis is 
omplemented by examples showing that demand may be unde�nedat a p ∈ L∗ \ L′ and, also, that demand 
an be weak-to-weak* dis
ontinuous (as a mapof L′ into L): see Se
tion 7.Our own interest in Bewley's model [5℄ 
omes from our use of it in 
ontinuous-timepeak-load pri
ing. This has the potential for implementation by publi
 utilities and 
om-

4For the 
ase of L = L∞, see also [15℄. And Ri
hard's result [28℄ applies to both 
ases.



166 A. HORSLEY AND A. J. WROBELpetitive industries: see [14℄, [15℄, [16℄, [17℄ and the referen
es therein. In this 
ontext,however, demand 
ontinuity would be of even greater interest if it 
ould be establishedfor the Ma
key topology on the 
ommodity spa
e L∞ (paired with the pri
e spa
e L1),but this is an open question. If true, it would mean, for example, that the disequilibriumresulting from a pri
e deviation whi
h is small in the L1[0, T ]-norm 
ould be 
orre
tedby rationing users without mu
h loss of utility or output (on the assumption that theirutility and produ
tion fun
tions are Ma
key 
ontinuous, but that mu
h is needed anywayto guarantee that p⋆ ∈ L1). It is also of interest to examine demand 
ontinuity for thesupremum norm on the 
ommodity spa
e L∞[0, T ]: su
h a property would mean thatthe extra 
ost of meeting demand out of equilibrium 
ould be �absorbed� by the supplier(sin
e this is the norm that makes his 
ost fun
tion 
ontinuous in peak-load pri
ing).For su
h a 
ontinuity property, the pri
e spa
e has to be restri
ted further, and its normstrengthened to the supremum norm, on a suitable subspa
e of L1[0, T ] su
h as C[0, T ].For this use of the supremum norm to be possible, the equilibrium pri
e fun
tion p⋆ mustbe known to be at least bounded; and in [15℄ we identify 
ases in whi
h p⋆ is a
tually in
C[0, T ] when the 
ommodity spa
e is L∞[0, T ]. That the usual norm of the pri
e spa
e
L1 is not strong enough to make demand a norm-to-norm 
ontinuous map of L1 into L∞is 
lear from simple 
ounterexamples, as well as from a general dis
ontinuity result ofAraujo [2, Theorem 3(b)℄.5However, Araujo's 
on
lusion [2, p. 319℄ that �it is not a good idea to try to provethe existen
e of equilibria by means of a globally de�ned (i.e., on the whole dual) de-mand fun
tion� is mistaken, at least in so far as he spe
i�
ally refers to Bewley's model:although the demand map (from L1 to L∞) is norm-to-norm dis
ontinuous, this simplyhas little or no bearing on this approa
h to equilibrium existen
e. A su�
ient property ofdemand is its norm-to-weak* 
ontinuity, although genuine te
hni
al di�
ulties do arisein exploiting it. The base ∆∗ of the polar P ∗ of the produ
tion 
one is not norm-
ompa
t,nor is the demand map de�ned on the whole of ∆∗ be
ause this is a subset of L∗ and notof L′, on whi
h demand is de�ned. And although ∆∗ is weakly* 
ompa
t, its interse
-tion with L′ is not: the weak* 
losure of ∆∗ ∩L′ equals the larger pri
e set ∆∗. There is,nevertheless, a useful extension of the Debreu-Gale-Nikaido Lemma�given by Floren-zano [10℄�that does apply to this setting. Its appli
ation 
an prove only the existen
eof an equilibrium pri
e p⋆ in L∗ (and not in L′), but the problem of pri
e represen-tation is 
on
eptually separate from that of its existen
e; and in prin
iple p⋆ 
an beshown to belong to L′ by an additional argument. Su
h an argument is well known forthe 
ase of L = L∞ with L′ = L1 (and is based on the Hewitt-Yosida de
ompositionof L∞∗).6Some other te
hni
al results needed to realize the full potential of the dire
t approa
hare also provided. As is re
ognized in [5, p. 520℄ and [8℄, for the Adequa
y Assumptionit is best to use the largest 
one 
ontained in the total produ
tion set Y : this helpsboth to weaken the assumption and to limit the range of relevant pri
es to a 
ompa
t

5This exploits the separability of L1 and the nonseparability of L∞ for their respe
tive norms.By 
ontrast, L∞ is separable for the weak* topology (when L1 is separable for the norm).
6So far as we know, no 
orresponding argument exists for L = M with L′ = C.



DEMAND CONTINUITY AND EQUILIBRIUM 167set ∆∗.7 However, if this 
one is to be used for an equilibrium existen
e proof based onthe Debreu-Gale-Nikaido Lemma, one needs to know that it is weakly* 
losed. This isestablished here: Y is shown to be 
losed (Lemma 2), and it follows that so is the 
onein question, whi
h therefore equals the asymptoti
 
one, as Y . One also needs to knowthat it (asY ) is equal to the sum of the asymptoti
 
ones of the individual produ
tionsets, and this is shown in Lemma 4.82. Model and assumptions. The 
ommodity spa
e, L, is taken to be the norm-dual(equal to the order-dual) of a Bana
h latti
e L′; i.e., L = L′∗. The nonnegative 
one in L′is denoted by L′
+, and the norm of a p ∈ L′ is ‖p‖′. The dual nonnegative 
one in L is L+.The (dual) norm of an x ∈ L is denoted by ‖x‖. The norm-dual L∗ of L, whi
h 
ontains

L′, is used as the pri
e spa
e; and 〈p |x〉 denotes the value of a 
ommodity bundle x ∈ Lat a pri
e system p ∈ L∗. The weak* topology of L is denoted by w∗ for brevity; the fullnotation is w(L, L′). As for the weak* topology of L∗, this is always denoted by w(L∗, L)for 
larity. Also, the �nite topology on the 
ommodity spa
e L�in whi
h a set is 
losed ifand only its interse
tion with any a�ne subspa
e of a �nite dimension d is 
losed for theusual topology of R
d�is denoted by TFin(L). This is abbreviated to TFin (whi
h nevermeans TFin(L′)).The (�nite) sets of produ
ers and households (or 
onsumers) are denoted by Pr and

Ho. The produ
tion set of produ
er i ∈ Pr is denoted by Yi, and the 
onsumption setof household h ∈ Ho is Xh. Consumer preferen
es, taken to be 
omplete and transitive,are given by a total (a.k.a. 
omplete) weak preorder 4h on Xh, for ea
h h. The 
orre-sponding stri
t preferen
e is denoted by ≺h. The household's initial endowment is xEn
h ;the household's share in the pro�ts of produ
er i is ςhi ≥ 0, with ∑

h ςhi = 1 for every
i. (The ranges of running indi
es in summations, et
., are always taken to be the largestpossible with any spe
i�ed restri
tions.)The attainable 
onsumption and produ
tion sets 
onsist of those points of Xh or Yithat appear in some feasible allo
ation. Formally, with xEn :=

∑

h xEn
h denoting the totalinitial endowment, the attainable 
onsumption and produ
tion sets are

XAt
h := Xh ∩

(

−
∑

h′: h′ 6=h

Xh′ + xEn +
∑

i

Yi

) (1)
Y At

i := Yi ∩
(

∑

h

Xh − xEn −
∑

i′: i′ 6=i

Yi′

). (2)The 
omplete list of assumptions follows.
7A similar restri
tion on the relevant range of pri
es 
an be obtained on the 
onsumptionside by assuming the properness of preferen
es: see [26℄ and [8, pp. 2�3℄. However, it is shown in[22, Se
tion 3℄ that this use of properness is formally equivalent to assuming that the produ
tion
one has a nonempty interior (for the norm topology). A distin
tive feature of L∞ is that itsnonnegative orthant has a nonempty interior.
8These results are obtained by using the �lo
alization� of weak* 
losedness property tobounded parts of 
onvex sets, known as the Krein-Smulian Theorem. The te
hnique is alsoinstrumental in establishing weak* upper semi
ontinuity of 
on
ave fun
tions: see [13℄.



168 A. HORSLEY AND A. J. WROBELSet Closedness: The sets Yi and Xh are w∗-
losed (for ea
h i and h).Set Convexity: The sets Yi and Xh are 
onvex.Preferen
e Continuity: For ea
h h the preorder 4h is:1. w∗-upper semi
ontinuous, i.e., for every x′ the set {x ∈ Xh : x′ 4h x} is
w∗-
losed; and2. TFin-lower semi
ontinuous, i.e., for every x′ the set {x ∈ Xh : x 4h x′} is
TFin-
losed.Preferen
e Convexity: For ea
h h, if x ≺h x′, then x ≺h ǫx′ + (1 − ǫ)x for everynumber ǫ with 0 < ǫ ≤ 1.9Nonsatiation: For every h and x ∈ XAt

h there exists x′ ∈ Xh with x ≺h x′.Ina
tion Feasibility: 0 ∈ Yi for every i.Boundedness: For every norm-bounded set B ⊂ L, the set
Yi ∩

(

L+ − B −
∑

i′: i′ 6=i

Yi′

)

is norm-bounded (for ea
h i); and Xh is 
ontained in L+ (for ea
h h).10Adequa
y: For ea
h h,
(Xh − xEn

h ) ∩ cor as Y 6= ∅ (3)where Y :=
∑

i Yi, i.e., a feasible trade for the 
onsumer belongs to the 
ore (a.k.a.the algebrai
 interior) of the asymptoti
 
one of the total produ
tion set.Comments :
• The Adequa
y Assumption (3) guarantees that feasible allo
ations exist, i.e., that

XAt
h and Y At

i are nonempty.
• The 
one asY 
an be 
hara
terized as the largest 
one (with vertex at 0) that is
ontained in Y ; it is further dis
ussed in Se
tion 4.
• Part of the Adequa
y Assumption is that cor asY 6= ∅. For a 
onvex set A, its 
oreis equal to the interior of A for ea
h of the following: TFin (the �nite topology), TSV(the strongest ve
tor topology), and TSLC (the strongest lo
ally 
onvex topology,a.k.a. the natural or 
onvex-
ore topology): see, e.g., [24, (1.3) and Se
tion 3: p.108℄. In a Bana
h spa
e L, the 
ore of a 
onvex, norm-
losed set A is also equal tothe norm-interior of A (in L): see, e.g., [12, p. 84℄ or [30, II.7.1℄.
• The (algebrai
) polar A◦ of a 
one A ⊂ L with a nonempty norm-interior is a 
onein L∗ with a w(L∗, L)-
ompa
t base. This is essential for the �xed-point argumentin the equilibrium existen
e proof, where su
h a base ∆∗ for the pri
e 
one P ∗ :=

(asY )◦ \ {0} is spe
i�ed by (14).
• For demand 
ontinuity, a signi�
antly weaker form of the Adequa
y Assumption issu�
ient (Theorem 5). This is be
ause, in the 
ontinuity proof, the assumption is
9This 
ondition is also known as semi-stri
t quasi-
onvexity. It implies quasi-
onvexity (i.e.,the 
onvexity of {x : x′

4 x}) if 4 is TFin-u.s.
.: see, e.g., [7, pp. 59�60℄.
10When L = L∞, this Boundedness Assumption is equivalent to that of [5, p. 520℄, sin
enorm-boundedness and order-boundedness are the same in this 
ase.



DEMAND CONTINUITY AND EQUILIBRIUM 169needed only to make the budget 
orresponden
e lower hemi
ontinuous by guaran-teeing that ea
h 
onsumer's in
ome is (stri
tly) above the survival minimum at allpri
e systems from the relevant range, i.e., that
∀p ∈ P ′ ∃xh ∈ Xh 〈p |xh − xEn

h 〉 < 0 (4)where P ′ := P ∗ ∩ L′. This obviously holds if
∃xh ∈ Xh ∀p ∈ P ′ 〈p |xh − xEn

h 〉 < 0, (5)i.e., if a feasible trade is (stri
tly) negative as a linear fun
tional on P ′. And (3)implies the stronger property of negativity on P ∗, i.e., it implies that
∃xh ∈ Xh ∀p ∈ P ∗ 〈p |xh − xEn

h 〉 < 0. (6)For a proof, see (12).
• For the 
ase of Y = −L+ in a Bana
h latti
e L, Condition (3) implies a spe
i�
restri
tion on the spa
e itself: corL+ 6= ∅ if and only if L is the spa
e C(K) of all
ontinuous real-valued fun
tions on a 
ompa
t K. This is the Kakutani-Krein-KreinTheorem: see, e.g., [30, V.8.5 with V.8.4℄.11 The existen
e of a y ∈ L that is stri
tlypositive on L∗

+ \ {0}, as is required for (6), 
an be a signi�
antly weaker 
onditionthan the nonemptiness of corL+. This is be
ause, in any Bana
h latti
e L, stri
tlypositive elements are the same as quasi-interior points of L+;12 and the latter existwhenever L is separable:13 see, e.g., [30, V.7.6℄. Therefore (6) is a useful 
onditionwhen L = L̺(Ξ,A, µ) for a ̺ < +∞ (where µ is a sigma-�nite measure on a
ountably generated sigma-algebra A, or on its 
ompletion).
• The assumption that L has a (Bana
h) predual 
an be avoided by repla
ing L′with some separating subspa
e of the norm-dual L∗ and using the weak topology

w(L, L′) instead of the weak* topology on L. For example, when L = L1 one 
an set
L′ = L∗ = L∞, and work with w(L1, L∞) using the Dunford-Pettis Compa
tnessCriterion.

• The spa
eM(K) has generally no element that is stri
tly positive onM∗
+\{0}. Butit has elements that are stri
tly positive on C+ \ {0} when K is a metri
 
ompa
t:any measure that is positive on every open subset of K is an example. So, although(6) 
annot hold in this 
ase, Condition (5) 
an still be useful.

• The Adequa
y Assumption keeps the value of the initial endowment above theminimum; any pro�t in
ome plays no part in the argument (ex
ept for being non-negative). For best results, all the produ
tive fa
tors should be in
luded in the listof 
ommodities, to represent the rents on any �xed fa
tors as endowment rather
11More pre
isely, L 
an be equivalently renormed so as to be isomorphi
, as a normed latti
e,to C(K). For the 
ase of L∞, note that: (i) renorming is unne
essary, (ii) the K in question isextremally dis
onne
ted.
12If L is an order-
omplete Bana
h latti
e of minimal type (e.g., L1 or L̺ for a ̺ < ∞),then stri
tly positive elements (or, equivalently, quasi-interior points of L+) are also the sameas weak order units: see, e.g., [30, V.7.7℄.
13More generally, quasi-interior points exist (and are dense in L+) for any separable, 
om-pletely metrizable and lo
ally 
onvex spa
e (a separable Fré
het spa
e) L ordered by a 
losed
one that generates it (i.e., a 
one L+ su
h that L+ − L+ = L).



170 A. HORSLEY AND A. J. WROBELthan pro�t in
ome. This 
an be a
hieved by �
oni�
ation�, whi
h formally 
onvertsa te
hnology with de
reasing returns to s
ale into one with 
onstant returns. Thispro
edure�detailed in, e.g., [27, Se
tion 5℄�enlarges the 
ommodity spa
e by in-trodu
ing �entrepreneurial� fa
tors, one for ea
h produ
tion set Yi that is not a
one from the start.14 The added fa
tors are in �xed supply: there is, say, a unitof ea
h, whi
h is owned by the 
onsumers in amounts proportional to their sharesin the �rm. (Ea
h fa
tor is taken to be of use only for the �rm in question, andso it does not enter 
onsumer preferen
es.) The original produ
tion set Yi is em-bedded into the enlarged 
ommodity spa
e by setting the additional 
oordinatesof ea
h input-output ve
tor at −1 for the i-th entrepreneurial fa
tor (and at 0 forthe others). Finally, the i-th produ
tion set is rede�ned as the 
losure of the 
onegenerated (in the enlarged spa
e) by the embedded original set.
• Although the lower semi
ontinuity of preferen
es need be (and is) assumed only for
TFin, little would be lost by way of appli
ations had l.s. 
ontinuity been assumedfor the norm of L. (By 
ontrast, in the pri
e spa
e L′ the distin
tion between thenorm topology and TFin(L′) is signi�
ant, as is pointed out in the Introdu
tion.)

• Note, however, that TFin is not a ve
tor topology, unless dim L is 
ountable (whi
his never the 
ase for an in�nite-dimensional Bana
h spa
e L): see, e.g., [24, Se
tion 3:p. 108℄. When the ve
tor-spa
e property, or lo
al 
onvexity, is also needed, the bestrepla
ement is TSV, or TSLC. Even with TSLC on L, every 
on
ave utility fun
tion
U : L → R (de�ned and �nite on the whole 
ommodity spa
e) is 
ontinuous: see,e.g., [3, V.3.3 (d)℄.3. Compa
tness of attainable setsLemma 1. The attainable sets XAt

h and Y At
i are w(L, L′)-
ompa
t, for ea
h h and i.Equivalently, the set of all feasible allo
ations is weakly* 
ompa
t.Proof. First 
onsider the 
ase of Xh = L+ for ea
h h. Then:

XAt
h = L+ ∩

(

−L+ + xEn +
∑

i

Yi

)

,

Y At
i = Yi ∩

(

L+ − xEn −
∑

i′: i′ 6=i

Yi′

).So Y At
i is norm-bounded, by the Boundedness Assumption with B = {xEn}. Furthermore,note that

XAt
h = L+ ∩

(

−L+ + xEn +
∑

i

Y At
i

).It follows that this set is also norm-bounded: use [19, 3.2.6 with 3.2.3℄. (This appliesbe
ause L is a normed latti
e, so the 
one L+ is self-allied for the norm topology. Theresult is also given in [30, V.3.1: Corollary 2℄, where the property of L+ is referred to as�normality�.) It follows a fortiori that the attainable sets are also norm-bounded in the
14M
Kenzie [27℄ also shows how to weaken the adequa
y assumption, in another respe
t, byusing the 
on
ept of an irredu
ible e
onomy.
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ase of Xh ⊆ L+ (sin
e they 
an only be smaller than in the 
ase of Xh = L+).So XAt
h and Y At

i are weakly* 
ompa
t relatively to L (by the Bana
h-Alaoglu Theorem).That they are a
tually 
ompa
t (or, equivalently, 
losed) 
an be shown in two ways: one
onsists in using Lemma 2 (below) to show that the sums of the weakly* 
losed setsin (1) and (2) are also 
losed. For an alternative proof, note that the set of all feasibleallo
ations, A, is 
ontained in the Cartesian produ
t of XAt
h and Y At

i (over all h's and
i's); and so A is weakly* 
ompa
t relatively to LHo∪Pr. Sin
e A is also weakly* 
losedin this spa
e, it is weakly* 
ompa
t. It follows that so are XAt

h and Y At
i , sin
e they areweakly* 
ontinuous images of A, viz., its 
oordinate proje
tions.4. Total produ
tion set and its asymptoti
 
one. When the 
ommodity spa
e is�nite-dimensional, the Boundedness Assumption is equivalent to positive semi-indepen-den
e of the asymptoti
 
ones of the produ
tion sets together with the 
one −L+, andit is well known to imply that the total produ
tion set is 
losed and, also, that theasymptoti
 
one operation is additive: see, e.g., [7, p. 23℄ and [29, 9.1.1℄. Both results arenext extended to the 
ase of a dual Bana
h 
ommodity spa
e by using the Krein-SmulianTheorem. The 
losed-sum result (Lemma 2) is the more important of the two,15 sin
ethe additivity result 
an be made super�uous by transforming the produ
tion sets into
ones in the way des
ribed towards the end of Se
tion 2.Lemma 2. The set Y :=

∑

i Yi is w∗-
losed.Proof. Take any bounded and w∗-
losed subset, B, of L. Sin
e Y is 
onvex, it su�
es toshow that Y ∩B is w∗-
losed and apply the Krein-Smulian Theorem: see, e.g., [9, V.7.5℄or [12, 18E℄. For any net (yn) in Y ∩B 
onvergent weakly* to some y ∈ L, de
ompose ea
hof its terms into the sum yn =
∑

i yn

i for some yn

i ∈ Yi. By the Boundedness Assumptionthe net (yn

i ) is bounded; so one 
an assume that it 
onverges weakly* to some yi, for ea
h
i. (If not, repla
e it with a w∗-
onvergent subnet, whi
h exists by the Bana
h-AlaogluTheorem.) Sin
e Yi is w∗-
losed, yi ∈ Yi. It follows that y =

∑

i yi ∈
∑

i Yi.A ve
tor v ∈ L is 
alled a dire
tion of re
ession in a 
onvex set S ⊆ L, at a point
s ∈ S, if s + αv ∈ S for every α ∈ R+. The re
ession 
one recS of S 
onsists of all thosedire
tions of re
ession 
ommon to every point s ∈ S, i.e., recS = {v : v + S ⊆ S}. Theasymptoti
 
one as S is the re
ession 
one of the algebrai
 
losure of S.16 The distin
tionbetween rec S and asS disappears when S is 
losed for any ve
tor topology T on L: the

15For Lemma 2, it su�
es to assume that the set Yi ∩ (−B −
∑

i′: i′ 6=i
Yi′) be norm-bounded(for every bounded B). So Lemma 2 extends, to the 
ase of any (�nite) number of subsets of adual Bana
h spa
e L, the w∗-
losedness result given in [23℄ for the sum of two sets. In the 
aseof a Bana
h spa
e, the equi
ontinuity 
ondition of [23℄ is the same as the above one for two sets,and the hyper
ompleteness assumption holds by the Krein-Smulian Theorem. The 
riterion of[20, Proposition 5℄ for the 
losed sum of two 
ones is similar: �Property (G)� holds if the 
onesare allied; and alliedness 
an be shown to imply the above boundedness 
ondition by using [19,3.2.5℄.

16This is the same as the 
losure of S for TSLC or TSV if the 
ore of S is nonempty: thisfollows from [12, 11A℄, given that cor S is the interior of S for TSLC (when S is 
onvex).
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tions of re
ession are then the same at every s ∈ S, i.e.,
asS = recS =

⋂

α>0

1

α
(S − s) for ea
h s ∈ S.It follows that asS is T -
losed and, also, that if 0 ∈ S then asS is the largest 
one
ontained in S: see, e.g., [3, I.3.5℄, [6, p. 1909℄ or [12, (8.5)℄. Furthermore, if (sn) and (ǫn)are nets in S and R+ with ǫn → 0 and ǫnsn → v for T , then v ∈ asS: see, e.g., [11, 1.1℄or [12, 8C: Lemma (
)℄.Corollary 3. The 
one asY := as(

∑

i Yi) is w∗-
losed.Lemma 4. as(
∑

i Yi) =
∑

i asYi.Proof. Take any v ∈ as(
∑

i Yi); this means that nv ∈
∑

i Yi for ea
h n ∈ N (sin
e 0 ∈ Yi).So
v =

∑

i

yn
i

n
(7)for some yn

i ∈ Yi. By using the Boundedness Assumption as in the proof of Lemma 2,the sequen
e (yn
i /n) is shown to be bounded; so it 
an be assumed to 
onverge weakly*to some vi, for ea
h i.17 Sin
e 1/n → 0 (and yn

i /n → vi), vi ∈ asYi. And v =
∑

i vi bypassage to the limit in (7) as n → ∞. This shows that as(
∑

i Yi) ⊆
∑

i asYi; the reversein
lusion holds obviously.5. Norm-to-weak* 
ontinuity of trun
ated demand. The trun
ated 
onsumptionand produ
tion sets are de�ned as18
XTr

h := (XAt
h + {x : ‖x‖ ≤ 1}) ∩ Xh (8)

Y Tr
i := (Y At

i + {y : ‖y‖ ≤ 1}) ∩ Yi. (9)Sin
e XAt
h , Y At

i and the 
losed unit ball of L are all w∗-
ompa
t, so are the sets XTr
hand Y Tr

i . Also, by 
onstru
tion, XAt
h and Y At

i are 
ontained in the norm-interiors of XTr
hrelative to Xh and of Y Tr

i relative to Yi. For 
ompleteness, the trun
ated supply anddemand 
orresponden
es are next spelt out. At p ∈ L∗ the pro�t of produ
er i is
ΠTr

i (p) := sup{〈p | y〉 : y ∈ Y Tr
i } (10)and his supply 
orresponden
e (the set of optimal input-output bundles) is

Ŷ Tr
i (p) := {y ∈ Y Tr

i : 〈p | y〉 = ΠTr
i (p)}.Household h's in
ome and its budget set are (both at the maximum of its pro�t in
ome)

M̂Tr
h (p) := 〈p |xEn

h 〉 +
∑

i

ςhiΠ
Tr
i (p) (11)

B̂Tr
h (p) := {x ∈ XTr

h : 〈p |x〉 ≤ M̂Tr
h (p)}.

17If it does not 
onverge, repla
e it by a 
onvergent subnet (whi
h does exist, although a
onvergent subsequen
e need not exist unless L′ is norm-separable).
18Our use of a single trun
ation, extending the te
hnique of [7, pp. 87�88℄ to in�nite-dimensional 
ommodity spa
es, simpli�es the arguments of [10℄ and [31℄, whi
h use a sequen
e(or a family) of trun
ations.
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X̂Tr

h (p) := {x ∈ B̂Tr
h (p) : ∀x′ ∈ B̂Tr

h (p) x′
4h x}and so the (trun
ated) ex
ess demand 
orresponden
e is

ÊTr(p) :=
∑

h

(X̂Tr
h (p) − xEn

h ) −
∑

i

Ŷ Tr
i (p).Note that ÊTr(p) 
an be empty at some p ∈ L∗ \ L′: see Example 9. However, ÊTr ise�e
tively de�ned on P ′, i.e., ÊTr(p) 6= ∅ for p ∈ P ′: this is part of Theorem 5 below.Re
all that the polar 
one of asY is

(asY )◦ = {p ∈ L∗ : ∀y ∈ asY 〈p | y〉 ≤ 0}and denote for brevity
P ∗ := (asY )◦ \ {0},

P ′ := P ∗ ∩ L′ = ((asY )◦ ∩ L′) \ {0}.Comment : By de�nition, A◦ is the algebrai
 polar of a 
one A ⊂ L, i.e., A◦ 
onsistsof all the linear fun
tionals that are nonnegative on A. However, A◦ ⊂ L∗ if A has anonempty norm-interior (as is the 
ase with as Y here). Also, A◦ 6= {0} by a separationargument if: (i) A 6= L, (ii) A is 
onvex, and (iii) either corA 6= ∅ or A is TSLC-
losed (orboth, as is the 
ase here).For 
larity, note the distin
tion between hemi
ontinuity (of a 
orresponden
e) andsemi
ontinuity (of an order or a real-valued fun
tion). This is by now standard in math-emati
al e
onomi
s, but usage of these terms has varied, and in [25℄ �semi
ontinuity�means what we mean by hemi
ontinuity.Theorem 5. The trun
ated ex
ess demand, p 7→ ÊTr(p), is a norm-to-weak* upper hemi-
ontinuous 
orresponden
e from P ′ into L, with nonempty, 
onvex and weakly* 
ompa
tvalues.Proof. Ex
ept where other topologies are spe
i�ed, in this proof the spa
e L′ is topolo-gized by its norm ‖ ·‖′, and L by w∗. The real line R 
arries its usual topology. Sin
e Y Tr
iis w∗-
ompa
t (and sin
e the norm topology of L′ is the topology of uniform 
onvergen
eon w∗-
ompa
t subsets of L), the duality form (y, p) 7→ 〈p | y〉 is (jointly) 
ontinuous on

Y Tr
i ×L′ (for ‖ · ‖′×w∗). An appli
ation of Berge's Maximum Theorem [4, p. 115℄ showsthat Ŷ Tr

i : P ′ ։ Y Tr
i is norm-to-w∗ u.h.
. (with nonempty, 
onvex and 
ompa
t values),and that ΠTr

i : P ′ → R is norm-
ontinuous.To prove that X̂Tr
h is norm-to-w∗ u.h.
., note �rst that the budget 
orresponden
ede�ned by
(p, M) 7→ Bh(p, M) := {x ∈ XTr

h : 〈p |x〉 ≤ M}for p ∈ L′ and M ∈ R is u.h.
. (Sin
e XTr
h is 
ompa
t, this is equivalent to the 
losednessof the graph of Bh in L′ × R × XTr

h �see, e.g., [25, 7.1.16℄�and this holds be
ause theduality form is 
ontinuous on XTr
h × L′.)Next, note that the �stri
t� budget 
orresponden
e de�ned by

BS
h(p, M) := {x ∈ XTr

h : 〈p |x〉 < M}
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. What is more, it is w(L∗, L)-l.h.
. on L∗ with any topologywhatsoever on XTr
h , sin
e it has w(L∗, L)-open se
tions (i.e., {(p, M) : x ∈ BS

h(p, M)} isan open set).It follows that Bh is w(L∗, L)-to-TFin l.h.
. at every point (p, M) ∈ L∗ × R with
BS

h(p, M) 6= ∅. To see this, take any x′ ∈ BS
h(p, M); then, as ǫ → 0+, the sequen
e

xǫ := ǫx′+(1−ǫ)x 
onverges to x for TFin; and this shows that the TFin-
losure ofBS
h(p, M)
ontains Bh(p, M). Sin
e Bh(p, M) is w∗-
losed, it equals the 
losure of BS

h(p, M) for anytopology between w∗ and TFin. To 
omplete the proof that Bh is l.h.
. (w(L∗, L)-to-TFin,at every (p, M) with BS
h(p, M) 6= ∅), re
all that the 
orresponden
e whose values are the
losures of an l.h.
. 
orresponden
e is also l.h.
.: see, e.g., [25, 7.3.3℄.Sin
e M̂Tr

h (p) is a norm-
ontinuous fun
tion of p ∈ L′ (be
ause ΠTr
i is), it follows thatthe 
omposition

p 7→ Bh(p, M̂Tr
h (p)) =: B̂Tr

h (p)is ‖ · ‖′-to-w∗ u.h.
. on P ′. To prove that it is w(L∗, L)-to-TFin l.h.
. on P ∗, use theAdequa
y Assumption to sele
t any xS
h ∈ Xh and yS

h ∈ cor asY with xS
h = xEn

h +yS
h. Notethat xS

h ∈ XAt
h ⊆ XTr

h and that
〈p |xS

h〉 < 〈p |xEn
h 〉 ≤ M̂Tr

h (p) (12)for every p ∈ P ∗; so xS
h ∈ BS

h(p, M̂Tr
h (p)) 6= ∅. Given the l.h.
. result for Bh, it followsthat B̂Tr

h is w(L∗, L)-to-TFin l.h.
. on P ∗. A fortiori , it is ‖ · ‖′-to-TFin l.h.
. on P ′.The stri
t inequality of (12) is given in, e.g., [10, Proposition 2℄, but it is also provedhere for 
ompleteness: when A ⊂ L is a 
one and p ∈ A◦ \ {0}, 
hoose any v ∈ L with
〈p | v〉 6= 0. If yS ∈ cor A, then yS + ǫv ∈ A and yS − ǫv ∈ A for some ǫ > 0. Therefore
〈p | yS ± ǫv〉 ≤ 0, and so 〈p | yS〉 ≤ −ǫ |〈p | v〉| < 0, as required.Given the hemi
ontinuity properties of B̂Tr

h , a two-topology version of Berge's Max-imum Theorem [18, Corollary 2.6℄ shows that X̂Tr
h is ‖ · ‖′-to-w∗ u.h.
. with nonemptyand 
ompa
t values. (In this appli
ation, the a
tion set is XTr

h , ordered by 4h and twi
etopologized by TFin and w∗, whilst the 
onstraint 
orresponden
e is B̂Tr
h restri
ted to theparameter spa
e P ′, topologized by ‖ · ‖′.) It follows that ÊTr is also u.h.
. (being thesum of 
ompa
t-valued u.h.
. terms): see, e.g., [25, 7.3.15℄.6. Equilibrium existen
e by dire
t ex
ess-demand approa
h. In this se
tion,we prove the existen
e of an equilibrium (with a pri
e system in L∗) by using demand
ontinuity and Florenzano's [10℄ su

essful extension of the Debreu-Gale-Nikaido Lemma(quoted here in the Appendix), whi
h applies to a demand map de�ned just on the predualpri
e spa
e L′, provided that it is norm-to-weak* 
ontinuous (or even just TFin(L′)-to-weak* 
ontinuous). It therefore applies to the demand map derived from preferen
emaximization: if the pri
e system belongs to L′, then the budget set is w∗-
ompa
t on
ethe 
onsumption set has been trun
ated to make it bounded. So the demand derivedfrom w∗-u.s.
. preferen
es is de�ned e�e
tively on L′.19

19The literature on this topi
 also 
ontains several other extensions of the Debreu-Gale-Nikaido Lemma that do not apply to the demand map derived from the optimizing behaviour.This is be
ause those extensions impose one or both of the following 
onditions: (i) that the



DEMAND CONTINUITY AND EQUILIBRIUM 175The idea of working with a demand map de�ned on the interse
tion of L′
+ with aweakly* 
ompa
t base of the 
one L∗

+ is 
ontained in the setup of Aliprantis and Brown[1, p. 195℄ be
ause their Density Condition holds for any Bana
h latti
e L with a predual
L′. However, their analysis takes the demand map as a primitive 
on
ept for the mostpart, and they themselves point out [1, p. 204℄ that their Continuity Condition fails forthe derived demand (in Bewley's model). In other words, in 
ontrast to the norm-to-
w∗ 
ontinuity established here (Theorem 5), 
onsumer demand 
an be w(L′, L)-to-w∗dis
ontinuous on P ′, as is also shown by Example 10 below. And this is be
ause�unlikethe norm topology we use�the weak topology of the pri
e spa
e is too weak for thepurpose: the budget 
orresponden
e is not 
losed for w(L∗, L)×w(L, L′). Be
ause of thedis
ontinuity, Aliprantis and Brown [1, Example 4.8℄ resort to using �nite-dimensionalpri
e simpli
es in the 
ase of L = L∞. Their arguments are developed by Florenzano[10, Lemma 1 and Proof of Proposition 3℄, who states that derived demand is upperhemi
ontinuous for the �nite topology TFin(L′) on the pri
e spa
e (with w∗ on L).20 Shealso extends the Debreu-Gale-Nikaido Lemma in a 
ompatible way, i.e., with the �nitetopology on L′. This gives a foundation for the dire
t approa
h using the demand map.However, the extreme strength of the �nite topology�whi
h is stri
tly stronger thanevery ve
tor topology, unless dim L′ is �nite�weakens her 
ontinuity result, and keepsher analysis 
lose to the �nite-dimensional approximation approa
h.Definition 6. A 
ompetitive equilibrium 
onsists of a pri
e system, p⋆ ∈ L∗, and anallo
ation, x⋆

h ∈ Xh and y⋆
i ∈ Yi for ea
h household h and produ
er i, that meet the
onditions:1. ∑

h(x⋆
h − xEn

h ) =
∑

i y⋆
i .2. 〈p⋆ | y⋆

i 〉 = supy{〈p
⋆ | y〉 : y ∈ Yi} =: Πi(p

⋆).3. 〈p⋆ |x⋆
h〉 = 〈p⋆ |xEn

h +
∑

i ςhiy
⋆
i 〉 =: M̂h(p⋆).4. For every x ∈ Xh, if 〈p⋆ |x〉 ≤ 〈p⋆ |x⋆

h〉 then x 4h x⋆
h.On
e demand 
ontinuity has been established, the main te
hni
al di�
ulty in using itfor a dire
t proof of equilibrium existen
e is that the duality form is not jointly 
ontinuousfor the two weak* topologies�viz., w(L∗, L) and w(L, L′)�that have to be put, for the�xed-point argument, on the pri
e set ∆∗ and on a 
onsumption set XTr (or a produ
tionset Y Tr). This is why even Florenzano's version of the Debreu-Gale-Nikaido Lemma
annot yield equilibrium existen
e without additional arguments. These are made simplerand more transparent by using a two-topology variant of Berge's Maximum Theorem thatapplies even to a non-
losed 
onstraint 
orresponden
e (the budget here). This is set outnext, with XTr

h abbreviated to XTr, et
. (sin
e h is �xed here).domain of de�nition for the demand map be the norm-dual L∗ of the 
ommodity spa
e, and/or(ii) that the demand map be w(P, L)-to-w∗ 
ontinuous, where the pri
e spa
e P is either L∗ or
L′. Neither 
ondition is met by the derived demand: see Examples 9 and 10. With regard to thedemand's domain, a pri
e system that belongs to L∗ but not to L′ 
an make the (trun
ated)budget set w∗-non
ompa
t�with the result that there may be no optimum for a 
onsumer with
w∗-u.s.
. preferen
es (Example 9).

20The proof in [10, p. 216℄ 
ontains a gap whi
h 
an be �lled by using the two-topologyversion of Berge's Maximum Theorem.



176 A. HORSLEY AND A. J. WROBELLemma 7. Assume that (p, x) is in the w(L∗, L) × w(L, L′)-
losure of the graph gr X̂Trin P ∗ × XTr, and that x ∈ XAt. Then:1. 〈p |x〉 ≥ M̂Tr(p).2. x ∈ X̂Tr(p) if (and only if) 〈p |x〉 = M̂Tr(p).Proof. Sin
e x ∈ XAt, there is an x′ ∈ X with x′ ≻ x (by Nonsatiation). De�ne xǫ

:= ǫx′ +(1− ǫ)x. Then xǫ ∈ XTr for small enough ǫ > 0, sin
e the (norm) interior of XTrrelative to X 
ontains XAt by 
onstru
tion (8). Also, xǫ ≻ x by Preferen
e Convexity.By assumption, there is a net (pn, xn)n∈N in gr X̂Tr with pn → p for w(L∗, L) and
xn → x for w∗ := w(L, L′). By the weak* u.s. 
ontinuity of preferen
es, xǫ ≻ xn for every
n far enough in the dire
ted set N (i.e., from some n′ on). So

〈pn |xǫ〉 > M̂Tr(pn). (13)Furthermore, M̂Tr is an w(L∗, L)-l.s.
. fun
tion on L∗, sin
e ea
h ΠTr
i is by de�nition thesupremum (10) of a family of w(L∗, L)-
ontinuous fun
tions. Therefore (13) implies, bypassage to the limit in n, that

〈p |xǫ〉 ≥ M̂Tr(p).By passage to the limit as ǫ → 0+, this gives that 〈p |x〉 ≥ M̂Tr(p), as is required forPart 1.Part 2 follows dire
tly from an appli
ation of another two-topology version of Berge'sMaximum Theorem [18, Theorem 2.1℄, given that B̂Tr
h is w(L∗, L)-to-TFin l.h.
. on P ∗(as is shown in the proof of Theorem 5). In this 
ase�as distin
t from the Proof ofTheorem 5�the parameter spa
e is P ∗ topologized by w(L∗, L), and this is taken as thedomain of the 
onstraint 
orresponden
e B̂Tr

h . The a
tion set is again XTr, ordered by
4h and topologized by TFin and w∗ as before.Theorem 8. On the assumptions of Se
tion 2, a 
ompetitive equilibrium with a pri
esystem p⋆ ∈ L∗ exists.Proof. Fix any yS ∈ cor asY = intL,‖·‖ asY , and de�ne

∆∗ := {p ∈ (asY )◦ : 〈p | yS〉 = −1}. (14)This is a 
onvex and w(L∗, L)-
ompa
t base for the 
one (asY )◦: see, e.g., [19, 3.8.6℄ or[10, Proposition 2℄. Set
∆′ := ∆∗ ∩ L′.By Theorem 5, ÊTr is a ‖ · ‖′-to-w∗ u.h.
. 
orresponden
e from ∆′ into the w∗-
ompa
tset ∑

h(XTr
h − xEn

h ) −
∑

i Y Tr
i . For every p ∈ ∆′, the set ÊTr(p) is w∗-
losed, 
onvexand nonempty; also, 〈p | e〉 ≤ 0 for every e ∈ ÊTr(p). Furthermore, asY is w∗-
losed byCorollary 3. Therefore, an appli
ation of Florenzano's [10, Lemma 1℄ extension of theDebreu-Gale-Nikaido Lemma21 shows that, on some dire
ted set N, there exist two nets,

(pn)n∈N in ∆′ and (en)n∈N with en ∈ ÊTr(pn), that 
onverge weakly* to some p⋆ ∈ ∆∗and v⋆ ∈ as Y , i.e., pn → p⋆ for w(L∗, L) and en → v⋆ for w(L, L′). (Note that p⋆ need
21Sin
e the extension applies to an ex
ess demand that is merely TFin(L′)-to-w∗ u.h.
., itapplies a fortiori to a demand that is norm-to-weak* u.h.
.



DEMAND CONTINUITY AND EQUILIBRIUM 177not belong to L′, so at this stage it is not 
lear that ÊTr(p⋆) 6= ∅: even this part of theequilibrium result is yet to be established.)By Lemma 4,
v⋆ =

∑

i

v⋆
i (15)for some v⋆

i ∈ asYi. Also, for every n, the ex
ess demand at pn 
an be de
omposed intothe sum
en =

∑

h

(xn

h − xEn
h ) −

∑

i

yn

i (16)for some xn

h ∈ X̂Tr
h (pn) and yn

i ∈ Ŷ Tr
h (pn). Sin
e XTr

h and Y Tr
i are w∗-
ompa
t, it 
anbe assumed (by passage to subnets if ne
essary) that the nets (xn

h) and (yn
i ) 
onvergeweakly* to some x⋆

h ∈ XTr
h and y⋆

i ∈ Y Tr
i with

∑

i

v⋆
i =

∑

h

(x⋆
h − xEn

h ) −
∑

i

y⋆
i (17)from (16) and (15). It remains to show that p⋆ supports the allo
ation (y⋆

i + v⋆
i )i∈Pr and

(x⋆
h)h∈Ho as an equilibrium.Sin
e x⋆

h ∈ XAt
h by (17), Part 1 of Lemma 7 gives that

〈p⋆ |x⋆
h〉 ≥ M̂Tr

h (p⋆)and summation over h gives, with the de�nitions (11) and (10), that
∑

h

〈p⋆ |x⋆
h − xEn

h 〉 ≥
∑

i

ΠTr
i (p⋆) ≥

∑

i

〈p⋆ | y⋆
i 〉. (18)On the other hand, 〈p⋆ | v⋆

i 〉 ≤ 0 for ea
h i be
ause v⋆
i ∈ asYi and p⋆ ∈ (asY )◦ =

(
∑

i asYi)
◦ =

⋂

i(asYi)
◦. So

∑

i

〈p⋆ | y⋆
i 〉 ≥

∑

i

〈p⋆ | v⋆
i + y⋆

i 〉 =
∑

h

〈p⋆ |x⋆
h − xEn

h 〉 (19)where the equality follows from (17). Therefore (18) and (19) a
tually hold as equalities,and so do all the inequalities whi
h have added up to (18) and (19). That is, for ea
h hand i,
〈p⋆ |x⋆

h〉 = M̂Tr
h (p⋆), (20)

ΠTr
i (p⋆) = 〈p⋆ | y⋆

i 〉, (21)
〈p⋆ | v⋆

i 〉 = 0. (22)What (21) means is that 〈p⋆ | y⋆
i 〉 ≥ 〈p⋆ | y〉 for every y ∈ Y Tr

i . To show that this holdsalso for every y ∈ Yi, introdu
e yǫ := ǫy+(1− ǫ)y⋆
i ; then yǫ ∈ Y Tr

i for small enough ǫ > 0(sin
e y⋆
i ∈ Y At

i , whi
h lies in the norm-interior of Y Tr
i relative to Yi, by (9)). Therefore

〈p⋆ | y⋆
i 〉 ≥ 〈p⋆ | yǫ〉; substitute for yǫ, 
an
el out the terms with the 
oe�
ient 1 − ǫ anddivide by ǫ. This shows that y⋆

i maximizes pro�t (at p⋆, on Yi); and so does y⋆
i + v⋆

i inview of (22).It remains only to verify the preferen
e maximization 
ondition of De�nition 6. Given(20), Part 2 of Lemma 7 shows that x⋆
h ∈ X̂Tr

h (p⋆), i.e., that for x ∈ XTr
h

〈p⋆ |x〉 ≤ 〈p⋆ |x⋆
h〉 ⇒ x 4h x⋆

h.



178 A. HORSLEY AND A. J. WROBELTo show that this holds also for every x ∈ Xh, introdu
e xǫ := ǫx + (1 − ǫ)x⋆
h. Supposethat x ≻h x⋆

h; then also xǫ ≻h x⋆
h for ǫ ∈ (0, 1] by Preferen
e Convexity. Also, xǫ ∈ XTr

hfor small enough ǫ > 0 (sin
e x⋆
h ∈ XAt

h , whi
h lies in the norm-interior of XTr
h relativeto Xh, by (8)). So 〈p⋆ |xǫ〉 > 〈p⋆ |x⋆

h〉; substitute for xǫ, 
an
el out the terms with the
oe�
ient 1 − ǫ and divide by ǫ to obtain that 〈p⋆ |x〉 > 〈p⋆ |x⋆
h〉, as required.Comments :

• As has been pointed out, the duality form is not jointly 
ontinuous for the two weak*topologies�viz., w(L∗, L) and w(L, L′)�for whi
h pn and (yn

i , xn

h) 
onverge. (It isneither u.s.
. nor l.s.
.) This is why, although yn

i maximizes pro�t on Y Tr
i at pn, thesame property for their limits y⋆

i and p⋆ does not follow by 
ontinuity. Similarly(20) does not follow dire
tly from the 
orresponding property of (pn, xn

h); anotherobsta
le here is that M̂Tr
h is only l.s.
. for the weak* topology of L∗. (For the normof L′, it is 
ontinuous.) In other words, the topologies that must be put on the pri
eset and the 
onsumption set for the �xed-point argument are too weak to make thebudget 
onstraint 
losed.

• The equilibrium pri
e system p⋆ ∈ ∆∗ is obtained in the proof of Theorem 8 as thelimit of a net of pri
e systems (pn) in ∆′. Su
h an approa
h is impli
itly based onthe weak* denseness of ∆′ in ∆∗, whi
h indeed follows from the w∗-
losedness of
Y and hen
e of asY . In pre
ise terms, if yS ∈ A ⊂ L, A is a w∗-
losed 
one (withthe algebrai
 polar A◦), and

∆∗ = {p ∈ A◦ ∩ L∗ : 〈p | yS〉 = −1} and ∆′ = ∆∗ ∩ L′then ∆′ is w(L∗, L)-dense in ∆∗.22 This ex
ludes, e.g., the 
ase of a Y equal to thehalf-spa
e with a normal ve
tor p ∈ L∗ \ L′ (so that ∆′ = ∅).Proof. It is shown �rst that A◦ ∩ L′ is dense in A◦ ∩ L∗. Suppose it is not. Thena point p0 ∈ A◦ ∩ L∗ 
an be stri
tly separated from A◦ ∩ L′ by a z0 ∈ L, i.e.,
〈p0 | z0〉 > sup{〈p | z0〉 : p ∈ A◦ ∩ L′}: see, e.g., [12, 11.F: Corollary℄ or [30, II.9.2℄.Sin
e A◦ ∩ L′ is a 
one, it follows that the supremum equals zero, and so

〈p0 | z0〉 > 0 ≥ 〈p | z0〉 for every p ∈ A◦ ∩ L′. (23)It only remains to dedu
e from the right-hand inequality that z0 ∈ A: given that
p0 ∈ A◦, this will 
ontradi
t the left-hand inequality. So suppose that z0 /∈ A.Sin
e A is w∗-
losed, another separation argument shows that there exist a p ∈ L′with 〈p | z0〉 > sup{〈p | y〉 : y ∈ A}. Sin
e A is a 
one, this implies that 〈p | z0〉 >

0 ≥ 〈p | y〉 for ea
h y ∈ A, and so p ∈ A◦ ∩ L′. This 
ontradi
ts the right-handinequality of (23), thus 
ompleting the proof that A◦ ∩ L′ is w(L∗, L)-dense in
A◦ ∩ L∗. Therefore, for ea
h p ∈ ∆∗ there exists a net (pn)n∈N in ∆′ with pn → pfor w(L∗, L). In parti
ular 〈pn | yS〉 → 〈p | yS〉 = −1, and so (1/〈pn | yS〉)pn is a netin ∆′ that 
onverges weakly* to p.

22The same holds with L∗ repla
ed by the algebrai
 dual of L, though this adds nothingwhen A◦ ⊂ L∗ (as is the 
ase for A = as Y here).



DEMAND CONTINUITY AND EQUILIBRIUM 1797. Counterexamples. The following are 
ounterexamples to weak-to-weak* 
ontinuityof 
onsumer demand, and to its very existen
e on ∆∗ \ ∆′.23 In both examples, there isone di�erentiated good in addition to a homogeneous numeraire 
ommodity, and (p, 1)and (x, m) play the roles of the p and x of the �abstra
t� model. So the 
ommodityspa
e is L = L∞[0, T ]× R with L′ = L1[0, T ]× R. The 
onsumer's in
ome 
omes whollyfrom an initial endowment mEn of the numeraire. The 
onsumption set is taken to be
L∞

+ × R+, but it 
an be trun
ated to a w∗-
ompa
t without 
hanging the results. Theutility fun
tion has the additively separable form with a 
onstant marginal utility of thenumeraire, i.e.,
U(x, m) := m +

∫ T

0

u(x(t)) dtfor x ∈ L∞
+ [0, T ] and m ∈ R+, where u (known as the feli
ity fun
tion) is in
reasing anddi�erentiable on R+, with u(0) = 0. For simpli
ity, to ensure that 
onsumer demand isuniquely determined (i.e., is a single-valued map), assume also that u is stri
tly 
on
ave,i.e., that its derivative du/dx is a (stri
tly) de
reasing, 
ontinuous fun
tion on R+. Atsu�
iently high in
ome levels, this form of utility results in a 
ross-pri
e independentdemand for the di�erentiated good, with no in
ome e�e
t on it. Given a pri
e fun
tion

p ∈ L1, the demand x̂(p)(t) 
an be determined from the marginal 
ondition
du

dx
(x̂(t)) = p(t) (24)at ea
h t ∈ [0, T ], with

m̂ = mEn −

∫ T

0

p(t)x̂(t) dt (25)as the demand for the numeraire.Our �rst example shows that nonexisten
e of a 
onsumer optimum 
an result from thepresen
e of a nonzero purely �nitely additive term in the Hewitt-Yosida de
omposition ofa p ∈ L∞∗[0, T ]. Re
all that every su
h p 
an be identi�ed with an additive set fun
tion(vanishing on Lebesgue-null sets) whi
h has the de
omposition p = pCA + pFA, where
pCA is the 
ountably additive part (identi�ed with its density by the Radon-NikodymTheorem), whilst pFA is the purely �nitely additive (a.k.a. �singular�) part: see [5℄ or [32℄for details.Example 9 (Nonexisten
e of 
onsumer optimum when pFA 6= 0). Fix any number x >

0, denote p := (du/dx)(x) for brevity, and 
onsider the pri
e system (p, 1) with a 
onstant
pCA(t) := p for every t and with any nonzero pFA ≥ 0 that is 
on
entrated on [t, T ] forea
h t < T . Assume that mEn > T xp. If (x, m) is a 
onsumer optimum at p, then it isalso a 
onsumer optimum at pCA: see [15, Lemma 5℄. At pCA = p1[0,T ], the demand is

x̂(pCA)(t) = xfor (almost) every t, with
m̂(pCA) = mEn − T xp.

23That is why the equilibrium existen
e proof uses a net of approximate equilibrium pri
es
pn ∈ ∆′.



180 A. HORSLEY AND A. J. WROBELAt p, however, this bundle is not in the budget set be
ause it 
osts
mEn − T xp + x

∫ T

0

pCA(t) dt + xpFA[0, T ] = mEn + x‖pFA‖
∗
∞ > mEn.This shows that there is no 
onsumer optimum at p. Finally, note that, without 
hangingthe demand at p or pCA, the 
onsumption set 
an be made w∗-
ompa
t by trun
ating itto

{(x, m) ≥ 0 : x ≤ x + 1[0,T ], m ≤ mEn + 1}.Comment : A utility level arbitrarily 
lose to that of (x̂, m̂)(pCA), in Example 9, 
anbe attained within the budget 
onstraint at p: take a sequen
e tn ր T , and xn := x
′1[0,tn]with mn := mEn − tnx

′
p
′. As n → ∞,

U(xn, mn) ր mEn − T x
′
p
′ + Tu(x′) = U(x̂(pCA), m̂(pCA)).But the point is that this utility limit, the supremum of U on the budget set, is notattained. Sin
e U is Ma
key-
ontinuous and hen
e w∗-u.s.
.�see, e.g., [5, Appendix II℄or [13, Se
tion 3℄�this shows that the budget set is not w∗-
ompa
t. The example 
anbe interpreted in the 
ontext of 
onsumption over time: the 
onsumer should �swit
h o��just before the extremely 
on
entrated 
harge pFA around T�and there is no best timeto swit
h o�: the 
loser to T , the better.Our se
ond example shows that 
onsumer demand 
an be w(L1, L∞)-to-w(L∞, L1)dis
ontinuous.Example 10 (Weak-to-weak* dis
ontinuity of demand). Fix any 
onstant x

′ > 0, anddenote p
′ := (du/dx)(x′) for brevity. There is a number δ > 0 with p := p

′ + δ <

(du/dx)(0) and p := p
′ − δ > limx→∞(du/dx)(x). One 
an assume that δ = 1. Use theRadema
her fun
tion sequen
e

rn(t) := sgn sin(2nπt)to de�ne a sequen
e of pri
e systems (pn, 1) ∈ L1 × R by
pn(t) = p

′ + rn(t)for every t ∈ [0, T ] and n ∈ N. As n → ∞, the pn 
onverges for w(L1, L∞) to the 
onstant
p
′ (i.e., rn → 0 weakly). As in Example 9, mEn is assumed to be high enough for thedemand, x̂(pn) and m̂(pn), to be determined by (24)�(25). Then x̂(pn) 
onverges for

w(L∞, L1) as n → ∞ to the 
onstant
x
′′ :=

x + x

2where
x :=

(

du

dx

)−1

(p) :=

(

du

dx

)−1

(p′ + 1),

x :=

(

du

dx

)−1

(p) :=

(

du

dx

)−1

(p′ − 1).In general x
′′ 6= x

′ (unless du/dx, the demand 
urve, is linear in the relevant region). Forexample, if du/dx is stri
tly 
onvex (and de
reasing), then x
′′ > x

′. In su
h a 
ase, the



DEMAND CONTINUITY AND EQUILIBRIUM 181demand for the di�erentiated good is weak-to-weak* dis
ontinuous, sin
e x̂(p′) = x
′ but

x̂(pn) → x
′′ (or, put formally, x̂(p′1[0,T ]) = x

′1[0,T ] but x̂(pn) → x
′′1[0,T ] as n → ∞).Comments :

• If x
′′ = x

′ in Example 10, then it is the demand for the numeraire that is dis
on-tinuous. To see this, note �rst that in either 
ase (whether x
′′ equals x

′ or not) thevalue of the limit bundle x
′′ at the limit pri
e p

′ is greater than the value of x̂n at
pn, whi
h is a
tually independent of n. That is,

p
′
x
′′ =

(p + p)(x + x)

4
>

px + px

2
=

1

T

∫ T

0

pn(t)x̂(pn)(t) dt. (26)This means that the limit bundle (x′′, mEn − T (px + px)/2) is outside the budgetset at the limit pri
e (p′, 1). (By Part 2 of Lemma 7, this must be the 
ase if thedemand map is to be dis
ontinuous along a pri
e sequen
e for whi
h the demands
onverge.) When x
′ = x

′′, substitution for x
′′ in (26) gives that

mEn − Tp
′
x
′ < mEn −

T

2
(px + px),i.e., that the demand for the numeraire is less at p

′ than at pn (at whi
h it is thesame for ea
h n). So it is dis
ontinuous.
• When demand is multi-valued (at some pri
es), its upper hemi
ontinuity estab-lished in Theorem 5 does not have the same impli
ations as the ordinary 
ontinuity(of a single-valued map): for example, it is easy to exhibit a 
onvergent sequen
e ofpri
e systems for whi
h the demands do not 
onverge. Like Examples 9 and 10, thefollowing example uses a u independent of t, but additionally the pri
e systems andthe demand bundles are 
onstant on [0, T ]: essentially there are just two 
ommodi-ties. Take du/dx to be (stri
tly) de
reasing on R+ ex
ept for being 
onstant on aninterval [x, x] with x < x. Take any two sequen
es x

n ր x with x
n < x and x

n ց xwith x
n > x, and set pn := (du/dx)(xn) for odd n and pn := (du/dx)(xn) for even

n. Then pn (a sequen
e of 
onstants) 
onverges to p := (du/dx)(x) = (du/dx)(x),but the 
orresponding sequen
e of demands diverges (sin
e it alternates between
x
n and x

n). This does not 
ontradi
t Theorem 5, of 
ourse: at the limit p demandequals [x, x], and it is a u.h.
. 
orresponden
e.Appendix A. Florenzano's extension of the Debreu-Gale-Nikaido LemmaLemma 11. Let L be a linear spa
e 
arrying a ve
tor topology T and a lo
ally 
onvextopology W that is weaker than T . Assume that A ⊂ L is a 
onvex 
one with a point ySin its T -interior, so that the polar 
one A◦�whi
h is a nonempty, proper subset of the
T -
ontinuous dual spa
e (L, T )∗�has a w((L, T )∗, L)-
ompa
t base

∆T := {p ∈ A◦ : 〈p | yS〉 = −1}.Assume also that A is W-
losed, so that the 
onvex set
∆W := ∆T ∩ (L,W)∗



182 A. HORSLEY AND A. J. WROBELis w((L, T )∗, L)-dense in ∆T .24 Furthermore, assume that E is a TFin((L,W)∗)-to-Wupper hemi
ontinuous 
orresponden
e from ∆W into a W-
ompa
t subset of L, withnonempty, 
onvex and W-
losed values. If also 〈p | e〉 ≤ 0 for every e ∈ E(p) and p ∈ ∆W ,then ∆T × A interse
ts the w((L, T )∗, L) ×W-
losure, in ∆T × L, of the graph of E.Comment : In the proof of Theorem 8, Lemma 11 is applied with A = asY , W equalto w∗ = w(L, L′) and T given by ‖ · ‖, so that ∆T = ∆∗ ⊂ L∗ and ∆W = ∆′ ⊂ L′.
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