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Abstract. The paper is devoted to the problem of classification of extremal positive linear

maps acting between B(K) and B(H) where K and H are Hilbert spaces. It is shown that

every positive map with the property that rank φ(P ) ≤ 1 for any one-dimensional projection P

is a rank 1 preserver. This allows us to characterize all decomposable extremal maps as those

which satisfy the above condition. Further, we prove that every extremal positive map which is

2-positive turns out to be automatically completely positive. Finally, we get the same conclusion

for extremal positive maps such that rankφ(P ) ≤ 1 for some one-dimensional projection P and

satisfy the condition of local complete positivity. This allows us to give a negative answer to

Robertson’s problem in some special cases.

1. Introduction. Let us start by setting up some notation and terminology. A nonemp-
ty subset K of a real or complex linear space V is called a cone if αv + βw ∈ K for any
v, w ∈ K and numbers α, β ≥ 0. K is said to be pointed if K ∩ (−K) = {0}, and proper if
it is pointed and closed and spans V . A cone K in V induces a partial order if we define
v ≤ w to mean w− v ∈ K. We say that a subset F ⊆ K is a face of K if F is a cone and
for any v, w ∈ K the conditions 0 ≤ v ≤ w and w ∈ F imply v ∈ F . An element v ∈ K
is said to be extremal if {λv : λ ≥ 0} is a face of K. The set of extremal elements of K
will be denoted by ExtK.

If H is a Hilbert space then by B(H) we denote the C∗-algebra of bounded operators
on H. Given a C∗-algebra A and k, l ∈ N we denote by Mk,l(A) the space of all matrices of
size k× l with coefficients from A. If k = l then we will write Mk(A) instead of Mk,k(A).
Note that Mk(A) is canonically isomorphic to the tensor product Mk(C) ⊗ A, so it is
endowed with the structure of a C∗-algebra.
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Assume that φ : A→ B(H) is a bounded linear map. For any k ∈ N we define maps
φk, φ

k : Mk(A) → Mk(B(H)) by φk([Aij ]) = [φ(Aij)] and φk([Aij ]) = [φ(Aji)]. For any
C∗-algebra A let A+ denote the cone of positive elements of A. We say that φ is a positive
map whenever φ(A+) ⊆ B(H)+. We will denote the set of all positive maps from A into
B(H) by P(A,H). If k ∈ N then we say that the map φ is k-positive (resp. k-copositive)
if the map φk (resp. φk) is positive. Whenever a map φ is k-positive (resp. k-copositive)
for any k ∈ N then φ is said to be a completely positive (resp. completely copositive) map.
A map φ is called decomposable if φ = φ1 + φ2 for some completely positive map φ1 and
completely copositive φ2.

In spite of great efforts of many mathematicians the classification of positive linear
maps on C∗-algebras is still a big challenge. Although there are many partial results
included in several papers in mathematics as well as in mathematical physics, it seems
that we are far from full understanding of all features of these objects. For example, no
algebraic formula for a general positive map even in the case of finite dimensional matrix
algebras is known.

One of the most important unsolved problems in this area is the characterization of
extremal elements in the cone of all positive linear maps. The explicit form of extremal
positive unital maps is described fully only for the simplest non-trivial case of 2 × 2
complex matrices ([28]). Let us warn that in our paper we consider a larger class of
all positive (i.e. not necessarily unital) maps. These two classes have a little different
structures. Positive unital maps form a convex subset of the cone of all unital maps but
it is not a base for this cone in the sense of [1]. As it was shown in [22] even in the case
of 2×2 matrices the structure of extremal positive unital maps differs from the structure
of extremal elements in the cone of all positive maps.

On the other hand, let us recall that all extremal elements of the cone of completely
positive linear maps are fully recognized (see [7, 2]). If we consider maps from B(K) into
B(H) where K and H are finite dimensional Hilbert spaces, then a map φ is extremal
in the cone of completely positive maps if and only if φ(X) = AXA∗, X ∈ B(K), where
A ∈ B(K,H). Analogously, extremal maps in the cone of completely copositive maps are
of the form φ(X) = AXTA∗, X ∈ B(K), for some A ∈ B(K,H), where XT denotes a
transposition of the element X. Consequently, the cone of all decomposable maps is the
hull of all maps which have one of the previously mentioned two forms. Coming back to
positive maps, it was proved in [34] that maps of the above two forms are extremal also
in the cone P(B(K),H) of all positive maps.

Further, let us note that in the cones P(B(C2),C2), P(B(C2),C3) and P(B(C3),C2)
there are no extremal elements other than those mentioned above. It follows from the re-
sults of Størmer ([28]) and Woronowicz ([33]) that these cones contain only decomposable
maps. However, some other examples of extremal positive maps between matrix algebras
are known for greater dimensions (see [8, 13, 15]). Obviously, they are necessarily nonde-
composable. The most famous example is that which belongs to P(B(C3),C3) given by
Choi in [8]

φ

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a11 + a33 −a12 −a13

−a21 a22 + a11 −a23

−a31 −a32 a33 + a22

 . (1.1)
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It was the first known example of a nondecomposable map. Let us mention also that in
the literature several examples of nondecomposable maps are described ([6, 9, 13, 15, 25,
26, 31, 32]). Although some conditions equivalent to decomposability are known ([29]),
proving that a positive map is nondecomposable is a difficult task. But it seems that
providing new examples of extremal maps is of extreme difficulty.

Apart from the mentioned above results there is another line of research in the math-
ematical literature which deals with similar problems. It comes from convex analysis
(see [30] and references therein). The main object in this framework is an ordered lin-
ear space, i.e. a pair (V, V +) where V is a finite dimensional linear space while V + is
a pointed cone in V . Having two such objects, say (V, V +) and (W,W+) we can con-
sider maps T : V → W such that T (V +) ⊂ W+. We call them positive maps, and they
form a cone which we will denote by P(V,W ). As in the case of C∗-algebras we try to
describe extremal elements of that cone. Let us invoke an interesting result of Loewy
and Schneider which goes in this direction. To this end we recall that a cone K is inde-
composable if there are no non-empty subsets K1,K2 ⊂ K such that K = K1 + K2 and
spanK1 ∩ spanK2 = {0}.

Theorem 1.1 ([19]). Let V + be a proper cone in V and assume V + = hull(ExtV +).
Then the following conditions are equivalent:

(1) V + is indecomposable.
(2) If T ∈ L(V, V ) is such that kerT = {0} and T (ExtV +) ⊆ ExtV +, then T ∈

ExtP(V, V ).
(3) If T ∈ L(V, V ) is such that kerT = {0} and T (V +) = V +, then T ∈ ExtP(V, V ).
(4) idV ∈ ExtP(V, V ).

Now, let H be a finite dimensional Hilbert space, V = B(H)h be the space of self-
adjoint elements of B(H), and V + = B(H)+. It was proved in [34] that B(H)+ is an
indecomposable cone. Note also that ExtB(H)+ consists of nonnegative multiplicities of
one-dimensional projections on H. Hence, we conclude that if φ : B(H) → B(H) is a
bijective linear mapping such that rank φ(P ) = 1 for any one-dimensional projection P

then φ is extremal in P(B(H),H).

Remark 1.2. We will see later that the implication contained in point (2) of the above
theorem cannot be reversed. The Choi map (1.1) will serve as a counterexample, because it
sends all one-dimensional projections to operators of rank not smaller than 2. But it is still
an open problem whether there exists T ∈ ExtP(V, V ) such that T (ExtV +) 6⊆ ExtV +

but T (ExtV +)∩ExtV + 6= ∅. In the context of operator algebras we will prove in Section 2
that such a map must be nondecomposable. So, we can ask if there is a nondecomposable
extremal positive map such that rank φ(P ) = 1 for some onedimensional projection P .

The last statement before the above remark draws our attention to the theory of
so called linear preservers (for survey see [3]). In particular, we are interested in the
problem of rank 1 preservers, i.e. linear maps T : B(K)→ B(H) such that rank φ(X) = 1
whenever rank X = 1 for X ∈ B(K). They are well described. By the result of Marcus and
Moyls ([24]) we know that each injective rank 1 preserver is of the form T (X) = MXN

or T (X) = MXTN , X ∈ P(K), for some M ∈ B(K,H) and N ∈ B(H,K). Lim ([18])
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proved that the similar form follows from a weaker assumption. Namely, it is enough to
assume that rank φ(X) ≤ 1 for every X ∈ B(K) such that rank X = 1.

Remark 1.3. Observe that if a map φ ∈ P(B(K),H) is of the form φ(X) = AXA∗ or
φ(X) = AXTA∗ then rank φ(P ) ≤ 1 for every one-dimensional projection P on K. Mo-
tivated by the considerations from the above paragraph we can ask whether the converse
is true (cf. [12] and references therein).

The aim of this paper is to present a new approach to the problem of classification
of extremal maps in P(B(K),H) which is based on convex analysis and linear preservers
theory. Our main motivation is to give answers to the questions contained in Remarks
1.2 and 1.3. As concerns our methods, we will use the technique presented in papers
[17, 20, 21, 22, 23].

The paper is organized as follows. In Section 2 we give an ’almost’ positive answer
to the question from Remark 1.3 (Theorem 2.2). It will allow us to characterize decom-
posable extremal maps as those maps which have positive rank 1 nonincreasing property
(Corollary 2.3). In Section 3 we formulate some conditions on a map φ which are equiv-
alent to the property that φ is minorized by some completely positive (or completely
copositive) extremal map (Theorem 3.2). As a consequence we get the result that each
extremal map in P(B(K),H) which is 2-positive (resp. 2-copositive) is automatically
completely positive (resp. completely copositive) (Theorem 3.4). It is a partial negative
answer to the question asked by Robertson in [26]. The aim of Section 4 is to show that
under some continuity assumptions each positive map can be reconstructed from its val-
ues on one-dimensional projections (Theorem 4.3). In the last section we deal with the
problem formulated in Remark 1.2. Firstly, motivated by the results of Section 4, we de-
scribe properties of maps φ such that rank φ(P ) = 1 for some one-dimensional projection
P in terms of some positive functions satisfying the parallelogram identity. We apply the
technique developed in our previous papers ([22, 23]) to consider such maps which are
extremal. We show in Theorem 5.8 that under some additional relatively weak condi-
tion of local complete positivity they are completely positive. This is a partial negative
solution to Robertson’s problem as well as a strong suggestion that the problem from
Remark 1.2 has a negative solution. Finally, in Corollary 5.9 we give a negative answer
to Robertson’s question in the case when H is finite dimensional and dimK = 2.

2. Rank 1 nonincreasing positive maps. Let K and H be Hilbert spaces. For now
we do not formulate any assumptions about the dimensions of these spaces, but in the
sequel it may happen that we will need to work with finite dimensional spaces.

Let us introduce some notations. If ξ, η ∈ K then by ξη∗ we denote the operator on
K which is defined by

(ξη∗)τ = 〈η, τ〉ξ, τ ∈ K.

We assume also that some antilinear selfadjoint involution on K is defined, i.e. a map
K 3 ξ 7→ ξ ∈ K such that

1. aξ + bη = aξ + bη for ξ, η ∈ K and a, b ∈ C,
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2. ξ = ξ for ξ ∈ K,
3. 〈ξ, η〉 = 〈η, ξ〉 for ξ, η ∈ K.

Having such an involution one can define for every X ∈ B(K) its transpose XT (with
respect to the involution) by

XTξ = X∗ξ, ξ ∈ K.

We observe that the transposition is a linear ∗-antimorphism. Moreover, (ξη∗)T = ηξ
∗

for any ξ, η ∈ K.
The main task of this section is to describe all positive maps φ : B(K)→ B(H) which

have the property that rank φ(P ) ≤ 1 for every 1-dimensional projection P acting on K.
Such maps we will call rank-1 nonincreasing positive maps. We start with the following

Lemma 2.1. Let x, y ∈ H. Assume that A ∈ B(H) satisfies

rank(xx∗ + |λ|2yy∗ + λA+ λA∗) ≤ 1

for every λ ∈ C. Then

(i) A = µxy∗ or A = µyx∗ for some µ ∈ C with |µ| = 1 whenever x and y are linearly
independent;

(ii) A = µxx∗ for some µ ∈ C when x 6= 0 and x, y are linearly dependent;
(iii) A = µyy∗ for some µ ∈ C when y 6= 0 and x, y are linearly dependent;
(iv) A is a complex multiple of some one-dimensional projection in B(H) if x = y = 0.

Proof. Let us denote Rλ = xx∗ + |λ|2yy∗ + λA+ λA∗ for any λ ∈ C. Let ξ and η be any
vectors from H. By the assumption Rλ has rank at most one, so the vectors Rλξ and
Rλη are linearly dependent. Hence δ = 0 where δ = 〈ξ,Rλξ〉〈η,Rλη〉 − |〈ξ,Rλη〉|2. We
can calculate that δ = α1(θ)r + α2(θ)r2 + α3(θ)r3 where r ≥ 0 and θ ∈ [0, 2π) are such
that λ = reiθ, and

α1(θ) = 2|〈η, x〉|2Re eiθ〈ξ, Aξ〉+ 2|〈ξ, x〉|2Re eiθ〈η,Aη〉
−2Re eiθ(〈x, ξ〉〈ξ, Aη〉〈η, x〉+ 〈x, η〉〈η,Aξ〉〈ξ, x〉), (2.1)

α2(θ) = |〈ξ, x〉〈η, y〉 − 〈ξ, y〉〈η, x〉|2 + 4(Re eiθ〈ξ, Aξ〉)(Re eiθ〈η,Aη〉)
−|eiθ〈ξ, Aη〉+ e−iθ〈η,Aξ〉|2, (2.2)

α3(θ) = 2|〈η, y〉|2Re eiθ〈ξ, Aξ〉+ 2|〈ξ, y〉|2Re eiθ〈η,Aη〉
−2Re eiθ(〈y, ξ〉〈ξ, Aη〉〈η, y〉+ 〈y, η〉〈η,Aξ〉〈ξ, y〉). (2.3)

Let us fix θ for the moment. Then δ becomes a polynomial of the real variable r. Since
it is zero for any r > 0, each of the three coefficients of this polynomial should vanish for
any θ ∈ [0, 2π).

In order to prove statement (i) we assume that the vectors x and y are linearly
independent. Let us consider the following three special cases of the choice of ξ and η:

1st case: ξ = x and η orthogonal to both x and y. Then formulas (2.1) and (2.2)
reduce to

α1(θ) = 2‖x‖4Re eiθ〈η,Aη〉,
α2(θ) = 4(Re eiθ〈x,Ax〉)(Re eiθ〈η,Aη〉)− |eiθ〈x,Aη〉+ e−iθ〈η,Ax〉|2,
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Since α1(θ) = 0 for any θ, we infer that

〈η,Aη〉 = 0. (2.4)

Next, α2(θ) = 0 implies that eiθ〈x,Aη〉+ e−iθ〈η,Ax〉 = 0 for any θ, and consequently

〈x,Aη〉 = 0 and 〈η,Ax〉 = 0. (2.5)

2nd case: ξ = y and η orthogonal to both x and y. By similar arguments as in the
previous case we obtain

〈y,Aη〉 = 0 and 〈η,Ay〉 = 0. (2.6)

3rd case: ξ = x and η = y. In this case the formulas (2.1), (2.2) and (2.3) take the
form

α1(θ) = 2(|〈x, y〉|2Re eiθ〈x,Ax〉+ ‖x‖4Re eiθ〈y,Ay〉)
−2‖x‖2Re eiθ(〈y, x〉〈x,Ay〉+ 〈x, y〉〈y,Ax〉),

α2(θ) = (‖x‖2‖y‖2 − |〈x, y〉|2)2 + 4(Re eiθ〈x,Ax〉)(Re eiθ〈y,Ay〉) (2.7)

−|eiθ〈x,Ay〉+ e−iθ〈y,Ax〉|2,
α3(θ) = 2(‖y‖4Re eiθ〈x,Ax〉+ |〈x, y〉|2Re eiθ〈y,Ay〉)

−2‖y‖2Re eiθ(〈y, x〉〈x,Ay〉+ 〈x, y〉〈y,Ax〉).

The equalities α1(θ) = 0 and α3(θ) = 0 imply the following conditions

Re eiθ〈x,Ax〉 =
‖x‖2Re eiθ (〈y, x〉〈x,Ay〉+ 〈x, y〉〈y,Ax〉)

‖x‖2‖y‖2 + |〈x, y〉|2
, (2.8)

Re eiθ〈y,Ay〉 =
‖y‖2Re eiθ (〈y, x〉〈x,Ay〉+ 〈x, y〉〈y,Ax〉)

‖x‖2‖y‖2 + |〈x, y〉|2
. (2.9)

If we substitute both these expressions into (2.7) then it turns out that the equation
α2(θ) = 0 is equivalent to

(‖x‖2‖y‖2 − |〈x, y〉|2)2 − (|〈x,Ay〉|2 + |〈y,Ax〉|2)

= 2Re e2iθ〈x,Ay〉〈y,Ax〉 − 4‖x‖2‖y‖2[Re eiθ(〈y, x〉〈x,Ay〉+ 〈x, y〉〈y,Ax〉)]2

(‖x‖2‖y‖2 + |〈x, y〉|2)2
.

From the identity (Rez)2 = 1
2Rez2 + 1

2 |z|
2 for any z ∈ C we infer that the above equality

is equivalent to

β1 = 2Re e2iθβ2, (2.10)

where

β1 =
(
‖x‖4‖y‖4 − |〈x, y〉|4

)2
−
(
|〈x,Ay〉|2 + |〈y,Ax〉|2

) (
‖x‖4‖y‖4 + |〈x, y〉|4

)
+ 4‖x‖2‖y‖2Re〈y, x〉2〈x,Ay〉〈y,Ax〉, (2.11)

β2 =
(
‖x‖2‖y‖2〈y,Ax〉 − 〈y, x〉2〈x,Ay〉

)
×
(
‖x‖2‖y‖2〈x,Ay〉 − 〈x, y〉2〈y,Ax〉

)
. (2.12)



EXTREMAL POSITIVE MAPS 207

Let us observe that the condition (2.10) holds for any θ. It is possible if and only if β1 = 0
and β2 = 0. The last equality implies that

‖x‖2‖y‖2〈y,Ax〉 = 〈y, x〉2〈x,Ay〉 (2.13)

or
‖x‖2‖y‖2〈x,Ay〉 = 〈x, y〉2〈y,Ax〉 (2.14)

Assume that (2.13) is satisfied. Then

〈y,Ax〉 =
〈y, x〉2

‖x‖2‖y‖2
〈x,Ay〉.

Considering the fact that β1 = 0 this leads to the equality(
‖x‖4‖y‖4 − |〈x, y〉|4

)2 (‖x‖4‖y‖4 − |〈x,Ay〉|2) = 0.

which implies
|〈x,Ay〉| = ‖x‖2‖y‖2. (2.15)

As a consequence of (2.13) and (2.15) we get

〈x,Ay〉 = µ‖x‖2‖y‖2 (2.16)

〈y,Ax〉 = µ〈y, x〉2 (2.17)

for some complex number µ such that |µ| = 1.
Since (2.8) and (2.9) hold for any θ, the following conditions must be satisfied:

〈x,Ax〉 =
‖x‖2

‖x‖2‖y‖2 + |〈x, y〉|2
(〈y, x〉〈x,Ay〉+ 〈x, y〉〈y,Ax〉), (2.18)

〈y,Ay〉 =
‖y‖2

‖x‖2‖y‖2 + |〈x, y〉|2
(〈y, x〉〈x,Ay〉+ 〈x, y〉〈y,Ax〉). (2.19)

If we apply (2.16) and (2.17) into (2.18) and (2.19) then we obtain

〈x,Ax〉 = µ‖x‖2〈y, x〉, (2.20)

〈y,Ay〉 = µ‖y‖2〈y, x〉. (2.21)

In the same way one can deduce from (2.14) the set of relations

〈x,Ay〉 = µ〈x, y〉2, (2.22)

〈y,Ax〉 = µ‖x‖2‖y‖2, (2.23)

〈x,Ax〉 = µ‖x‖2〈x, y〉, (2.24)

〈y,Ay〉 = µ‖y‖2〈x, y〉. (2.25)

Let us summarize the results contained in the above three cases. Denote by P the
orthogonal projection onto the subspace of H generated by x and y. Since (2.4) holds for
any η orthogonal to the subspace PH, it follows that

(I− P )A(I− P ) = 0. (2.26)

Further, from the fact that (2.5) and (2.6) are satisfied for any η orthogonal to PH we
conclude that

(I− P )AP = 0 and PA(I− P ) = 0. (2.27)
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Finally, we discovered in the 3rd case that A fulfils one the following two sets of relations:
(2.16), (2.17), (2.20), (2.21) or (2.22), (2.23), (2.24), (2.25). It follows from independence
of x and y that

PAP = µxy∗ or PAP = µyx∗ (2.28)

for some complex number µ such that |µ| = 1. We finish the proof of statement (i) by
the observation that it follows from (2.26), (2.27) and (2.28).

Now, let us assume that x and y are linearly dependent. Then, it is easy to observe
that for any ξ, η ∈ H and θ ∈ [0, 2π) the formula (2.2) has the form

α2(θ) = 4
(
Reeiθ〈ξ, Aξ〉

) (
Reeiθ〈η,Aη〉

)
− |eiθ〈ξ, Aη〉+ e−iθ〈η,Aξ〉|2, (2.29)

If A = 0 then it satisfies each of statements (ii), (iii) and (iv), so without loss of generality
we may assume A 6= 0. Then there exists ξ0 ∈ H such that 〈ξ0, Aξ0〉 6= 0. Let

〈ξ0, Aξ0〉 = aeit (2.30)

for some a > 0 and t ∈ [0, 2π). Let η be an arbitrary vector and ξ = ξ0. As α2(θ) = 0 for
any θ, we observe(

Re eiθ〈ξ0, Aξ0〉
) (

Re eiθ〈η,Aη〉
)

=
1
4
|eiθ〈ξ0, Aη〉+ e−iθ〈η,Aξ0〉|2 ≥ 0.

So, for any θ both real numbers Re eiθ〈ξ0, Aξ0〉 and Re eiθ〈η,Aη〉 are of the same sign. It
is possible in the case when both complex numbers 〈ξ0, Aξ0〉 and 〈η,Aη〉 have the same
argument, i.e.

〈η,Aη〉 = bηe
it (2.31)

for some bη ≥ 0 and the argument t is determined by (2.30). Let B = e−itA. Then it
follows from (2.31) that for any η ∈ H we have 〈η,Bη〉 = bη ≥ 0, hence B is a positive
operator.

In order to prove (ii) let us consider x 6= 0 and y = γx for some γ ∈ C. In the same way
(c.f. the paragraph containing formula (2.4)) as in the 1st case in the proof of statement
(i) we prove that 〈η,Aη〉 = 0 for any η orthogonal to x. This implies that B = cxx∗ for
some c > 0, and consequently A = ceitxx∗.

Statement (iii) follows by a similar argument.
Now, assume x = y = 0, so λA+λA∗ has rank at most one for any λ. But λA+λA∗ =(

2Reλeit
)
B, so B must be a multiple of a one-dimensional projection. This finishes the

proof of (iv).

Now, we are ready to formulate the main result1 of this section

Theorem 2.2. Assume that K and H are finite dimensional Hilbert spaces and φ :
B(K)→ B(H) is a rank 1 non-increasing positive map. Then one of the following three
conditions holds:

(i) there exist a positive functional ω on B(K) and a one-dimensional projection Q on
H such that φ(X) = ω(X)Q for any X ∈ B(K);

(ii) there exists a linear operatorB : K → H such that φ(X) = BXB∗ for anyX ∈ B(K);

1After submitting this paper the author realised that a similar theorem was proved in [10]
(see also [11]). However, in our proof we use a new technique which is based on application of
the results of [18].
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(iii) there exists a linear operator C : K → H such that φ(X) = CXTC∗ for any
X ∈ B(K).

Proof. By the assumption φ maps one-dimensional orthogonal projections into positive
multiples of one-dimensional projections. Hence, for any ξ ∈ K there is a vector xξ
(not uniquely determined) such that φ(ξξ∗) = xξx

∗
ξ . We will prove that rank φ(X) ≤ 1

whenever rank X ≤ 1 for any X ∈ B(K). Let X ∈ B(K) be of rank 1. Then X = ξη∗

for some vectors ξ, η ∈ K. Let A = φ(ξη∗). We must show that rank A ≤ 1. To this end
define for λ ∈ C

Rλ = xξx
∗
ξ + |λ|2xηx∗η + λA+ λA∗.

Observe that Rλ = φ ((ξ + λη)(ξ + λη)∗), so by the assumption rank Rλ ≤ 1 for every
λ ∈ C. Now, we conclude from Lemma 2.1 that rank A ≤ 1.

From Theorem 1 in [18] (see also [24]) we conclude that one of the following conditions
must hold:

(a) φ(B(K)) \ {0} consists entirely of rank one operators;
(b) there exist linear operators B1 : K → H, B2 : H → K such that φ(X) = B1XB2

for all X ∈ B(K);
(c) there exist linear operators C1 : K → H, C2 : H → K such that φ(X) = C1X

TC2

for all X ∈ B(K).

Assume that (a) is valid. Since φ is positive φ(I) = µQ for some µ > 0 and a one-
dimensional projection Q. For any element X ∈ B(K) the inequality X ≤ ‖X‖I holds,
so φ(X) ≤ µ‖X‖Q. Thus, for any X there is a number ω(X) such that φ(X) = ω(X)Q.
Linearity and positivity of φ implies the same properties for ω. So Condition (i) holds.

Now, assume that (b) is fulfilled. Then 0 ≤ φ(ξξ∗) = B1ξξ
∗B2 = (B1ξ)(B∗2ξ)

∗ for any
ξ ∈ K. It follows that B∗2ξ = λξB1ξ for some λξ ≥ 0. But for any ξ, η ∈ K we have

λη(B1ξ)(B1η)∗ = (B1ξ)(B∗2η)∗ = φ(ξη∗)

= φ(ηξ∗)∗ = ((B1η)(B∗2ξ)
∗)∗ = λξ((B1η)(B1ξ)∗)∗ = λξ(B1ξ)(B1ξ)∗.

Thus λη = λξ, so B2 = λB∗1 for some constant λ ≥ 0. If B = λ1/2B1 then φ(X) = BXB∗

for any X ∈ B(K), so (ii) is valid.
By similar arguments we show that the property (c) implies (iii).

The result of [34] asserts that maps of the form φ(X) = BXB∗ and φ(X) = CXTC∗

are extremal in the cone of positive maps between B(K) and B(H) provided that K and
H are finite dimensional. By the above theorem it is possible to characterize these maps
among all extremals in terms of rank properties.

Corollary 2.3. Assume that φ : B(K) → B(H) is an extremal positive linear map.
Then the following conditions are equivalent:

(1) φ is decomposable;
(2) φ is either completely positive or completely copositive;
(3) there is B ∈ B(K,H) such that φ(X) = BXB∗ for all X ∈ B(K) or there is

C ∈ B(K,H) such that φ(X) = CXTC∗ for any X ∈ B(K);
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(4) for any one-dimensional projection P on K there is a one-dimensional projection
Q and a non-negative constant λ such that φ(P ) = λQ.

Proof. (1) ⇒ (2) By the assumption φ = φ1 + φ2 where φ1 is a completely positive
map while φ2 is a completely copositive one. Then we have φ1 ≤ φ and φ2 ≤ φ. The
extremality of φ implies φ1 = λ1φ and φ2 = λ2φ for some λ1, λ2 ≥ 0. Since φ 6= 0, we
have λ1 > 0 or λ2 > 0, and the assertion (2) is proved.

(2)⇒ (3) Assume that φ is a completely positive map. Then, by the result of Choi (cf.
[7, Theorem 1]) φ is of the form φ(X) =

∑k
i AiXA

∗
i for all X ∈ B(K) where k ∈ N and

A1, . . . , Ak ∈ B(K,H). It follows from the extremality of φ that the sum must reduce to a
one term, so φ is of the form φ(X) = AXA∗. Suppose now that φ is completely copositive.
It is equivalent to the fact that the map X 7→ φ(XT) is completely positive. So, it follows
from the theorem of Choi that φ is of the form φ(X) =

∑k
i AiX

TA∗i , and we use the
same argument based on extremality of φ as above to deduce that φ(X) = AXTA∗ for
some A ∈ B(K,H).

(3) ⇒ (1) Obvious.
(3) ⇒ (4) Let P = ξξ∗ for some ξ ∈ K such that ‖ξ‖ = 1. If φ(X) = BXB∗

for X ∈ B(K then φ(ξξ∗) = Bξξ∗B∗ = (Bx)(Bx)∗, so φ(P ) is a multiplicity of some
one-dimensional projection. In the case when φ(X) = CXTC∗ for X ∈ B(K) we have
φ(ξξ∗) = C(ξξ∗)TC∗ = Cξξ

∗
C∗ = (Cξ)(Cξ)∗, so we get the same conclusion.

(4) ⇒ (3) By Theorem 2.2 φ(X) = ω(X)Q or φ(X) = BXB∗ or φ(X) = CXTC∗.
In the last two possibilities we have (3). Assume the first possibility. Extremality of
φ implies that ω is a multiple of some pure state on B(K) i.e. ω(X) = 〈η,Xη〉 for
some η ∈ K. Let x ∈ H be such that Q = xx∗. Then we have φ(X) = 〈η,Xη〉xx∗ =
xη∗Xηx∗ = (xη∗)X(xη∗)∗, so (3) is fulfilled. Note that in a similar way one can show
that φ(X) = (xη∗)XT (xη∗)∗.

From the last result we immediately obtain the following characterization of non-
decomposable extremal maps:

Corollary 2.4. If φ is such an extremal positive map that rank φ(P ) ≥ 2 for some
one-dimensional projection P ∈ B(K) then φ is nondecomposable.

Remark 2.5. Having Corollary 2.4 one can easily prove that the Choi map φ given by
(1.1) is nondecomposable. Indeed it is enough to calculate that in general for a one-
dimensional projection P the map φ takes a value being an invertible matrix. It can be
calculated that the only exceptions are the following possible values of P :

1
3

 1 ei(a−b) ei(a−c)

ei(b−a) 1 ei(b−c)

ei(c−a) ei(c−b) 1

 (a, b, c ∈ R),

 1 0 0
0 0 0
0 0 0

 ,
 0 0 0

0 1 0
0 0 0

 ,
 0 0 0

0 0 0
0 0 1

 ,
for which the values of φ are matrices of rank equal to 2.
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3. General case. We assume that φ : B(K)→ B(H) is a bounded positive map. If φ is
non-zero then we may find unit vectors ξ ∈ K, x ∈ H and a positive number λ such that

φ(ξξ∗)x = λx. (3.1)

Let us fix such ξ, x and λ. Define two bounded operators B,C : K → H by

Bη = λ−1/2φ(ηξ∗)x, (3.2)

Cη = λ−1/2φ(ξη∗)x (3.3)

where η ∈ K and let ψ and χ be maps from B(K) into B(H) determined by

ψ(X) = BXB∗, (3.4)

χ(X) = CXTC∗ (3.5)

for X ∈ B(K) (cf. [27]). Then we have the following

Proposition 3.1. Assume that φ(X) = AXA∗ (resp. φ(X) = AXTA∗) for X ∈ B(K)
where A ∈ B(K,H) is some non-zero operator. Let ξ, x and λ fulfil (3.1). Take the
operator B as in (3.2) (resp. C as in (3.3)) and the map ψ as in (3.4) (resp. χ as in
(3.5)). Then B = eitA (resp. C = eitA) for some t ∈ R and ψ = φ (resp. χ = φ).

Proof. It follows from (3.1) that 〈Aξ, x〉Aξ = λx. Hence Aξ = ax for some a ∈ C such
that |a| = λ1/2. Let η ∈ K. We calculate

Bη = λ−1/2φ(ηξ∗)x = λ−1/2Aηξ∗A∗x = λ−1/2〈Aξ, x〉Aη = eitAη,

where t ∈ R is such that a = λ1/2e−it. Consequently, ψ(X) = BXB∗ = AXA∗ = φ(X).
If φ(X) = AXTA∗ then we observe as above that Aξ = ax for some a ∈ C of the

form a = λ1/2e−it with t ∈ R, and for η ∈ K

Cη = λ−1/2φ(ξη∗)x = λ−1/2A(ξη∗)TA∗x = λ−1/2Aηξ
∗
A∗x =

= λ−1/2〈Aξ, x〉Aη = eitAη.

As previously, χ(X) = CXTC∗ = AXTA∗ = φ(X) for X ∈ B(K).

Motivated by the above result we want to investigate if there are any relations between
arbitrary map φ satisfying (3.1) and maps ψ and η. The answer to this question is
contained in the next result.

Theorem 3.2. Assume that φ : B(K) → B(H) is an arbitrary given positive non-zero
map. Let ξ, x and λ fulfil (3.1). Define the operator B as in (3.2) (resp. C as in (3.3))
and let ψ(X) = BXB∗ (resp. χ(X) = CXTC∗) for X ∈ B(K). Then ψ ≤ φ if and only
if for any η ∈ K and y ∈ H the following inequality holds:

|〈y, φ(ηξ∗)x〉|2 ≤ 〈x, φ(ξξ∗)x〉〈y, φ(ηη∗)y〉. (3.6)

Analogously, χ ≤ φ if and only if for any η ∈ K and y ∈ H the following inequality holds

|〈y, φ(ξη∗)x〉|2 ≤ 〈x, φ(ξξ∗)x〉〈y, φ(ηη∗)y〉. (3.7)

Proof. The condition ψ ≤ φ holds if and only if for any η ∈ K and y ∈ H

〈y, ψ(ηη∗)y〉 ≤ 〈y, φ(ηη∗)y〉. (3.8)
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The left hand side of the above inequality is equal to

〈y, ψ(ηη∗)y〉 = 〈y,Bηη∗B∗y〉 = |〈y,Bη〉|2 = λ−1|〈y, φ(ηξ∗)x〉|2. (3.9)

Taking into account that 〈x, φ(ξξ∗)x〉 = λ (cf. (3.1)) we obtain (3.6). The second part of
the proposition can be proved by similar arguments.

Let us recall that if φ is a unital (i.e. such that φ(I) = I) map then φ is called a Schwarz
map if φ(X∗X) ≥ φ(X∗)φ(X) for any X ∈ B(K). In the context of not necessarily unital
maps we can adopt the concept of local complete positivity investigated in [28].

Remark 3.3. Størmer proved in [28] that a positive map φ : B(K) → B(H) is locally
completely positive if and only if there is a constant γ > 0 such that

(γφ)(X∗X) ≥ (γφ)(X∗)(γφ)(X). (3.10)

Analogously, one can define locally completely copositive maps and can prove that a map
φ is locally completely copositive if and only if there is γ > 0 such that

(γφ)(XX∗) ≥ (γφ)(X∗)(γφ)(X)) (3.11)

for all X ∈ B(K).

Robertson asked in [26] if there exists a Schwarz map between C∗-algebras which
is extreme as a positive unital map, but which is not 2-positive. In the framework of
non-unital maps we can ask the following

Question. Are there any extremal locally completely positive maps which are not 2-
positive?

Robertson showed that if we consider maps acting from M2(C) into M2(C) the answer
to his question is negative. We will extend this result to more cases in the sequel. Now,
we show a somewhat weaker but general result.

Theorem 3.4. Assume that φ is non-zero and extremal in the cone of all positive maps
from B(K) into B(H). If φ is 2-positive (resp. 2-copositive) then it is completely positive
(resp. completely copositive) map.

Proof. If φ is non-zero then there are ξ, x and λ which fulfil (3.1). Let η ∈ K. Consider
the matrix [

ξξ∗ ξη∗

ηξ∗ ηη∗

]
.

One can easily show that it is a positive element of M2(B(K)). Hence, from 2-positivity
of φ we conclude that the matrix [

φ(ξξ∗) φ(ξη∗)
φ(ηξ∗) φ(ηη∗)

]
is a positive element of M2(B(H)). This implies that for any y ∈ H we have∣∣∣∣ 〈x, φ(ξξ∗)x〉 〈x, φ(ξη∗)y〉

〈y, φ(ηξ∗)x〉 〈y, φ(ηη∗)y〉

∣∣∣∣ ≥ 0.
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So, from Theorem 3.2 (cf. (3.6)) we infer that ψ ≤ φ where ψ is the map defined in (3.4).
But φ is extremal, so it is a positive multiplicity of ψ, hence it is completely positive
map. The ”copositive” part of the theorem can be proved by similar arguments.

4. Functions with parallelogram identity. Assume that φ : B(K) → B(H) is a
positive map. Then it is easy to check that for all ξ, η ∈ K

φ((ξ + η)(ξ + η)∗) + φ((ξ − η)(ξ − η)∗) = 2φ(ξξ∗) + 2φ(ηη∗).

This is a motivation for the following

Definition 4.1. Let K and H be (not necessarily finite dimensional) Hilbert spaces. We
say that a function R : K → B(H) fulfils the parallelogram identity if for all ξ, η ∈ K

R(ξ + η) +R(ξ − η) = 2R(ξ) + 2R(η). (4.1)

If additionally R(η) ∈ B(H)+ for any η ∈ K then we say that R is a positive function
with parallelogram identity.

The purpose of this section is to show that under some additional assumptions on a
function with parallelogram identity R it is possible to reconstruct a positive map φ such
that R(η) = φ(ηη∗) for any η ∈ K.

Firstly, we characterize scalar positive functions with parallelogram identity.

Lemma 4.2. Let K be a Hilbert space and assume that µ : K → R is a continuous positive
function with parallelogram identity such that for any ξK

µ(−ξ) = µ(ξ), µ(iξ) = µ(ξ) (4.2)

Then there is a positive operator M on K such that for any ξ ∈ K

µ(ξ) = 〈ξ,Mξ〉. (4.3)

Proof. We apply main arguments from [14]. For the reader’s convenience we give the full
proof. Firstly, define for ξ, η ∈ K

(ξ, η)R =
1
4

(µ(ξ + η)− µ(η − ξ)) . (4.4)

It follows from (4.2) that
(ξ, η)R = (η, ξ)R (4.5)

for any ξ, η ∈ K, so the form (·, ·)R is symmetric. Let x, y, z be arbitrary elements of K.
If we substitute ξ = y + z and η = x then from (4.1) we obtain

µ(y + z + x) + µ(y + z − x) = 2µ(y + z) + 2µ(x). (4.6)

On the other hand, by taking ξ = y − z and η = x we get

µ(y − z + x) + µ(y − z − x) = 2µ(y − z) + 2µ(x). (4.7)

By subtracting (4.7) from (4.6) we obtain

µ(y + x+ z)− µ(y + x− z) + µ(y − x+ z)− µ(y − x− z) = 2[µ(y + z)− µ(y − z)]

which in the context of (4.4) is equivalent to

(z, y + x)R + (z, y − x)R = 2(z, y)R. (4.8)
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By taking y = z we have
(z, 2y)R = 2(z, y)R. (4.9)

Moreover, for any y′, x′ ∈ K we can put in (4.8) y = 1
2 (y′ + x′), x = 1

2 (y′ − x′) to get

(z, y′)R + (z, x′)R = (z, y′ + x′)R. (4.10)

Taking (4.5) into account we conclude that (·, ·)R is additive in both coordinates.
Now, let S = {α ∈ R : (ξ, αη)R = α(ξ, η)R, ξ, η ∈ K}. Obviously, 1 ∈ S. It follows

from (4.10) that α+β ∈ S for α, β ∈ S. Moreover, (4.4) implies (ξ, 0)R = 0 for any ξ ∈ K,
so we infer that −α ∈ S for any α ∈ S. Hence Z ⊂ S. Now assume that α, β ∈ S, β 6= 0.
Then β(ξ, αβ−1η)R = (ξ, αη)R = α(ξ, η)R. Thus αβ−1 ∈ S, and Q ⊂ S. It follows from
continuity of µ that (·, ·)R is continuous in both coordinates. Hence S is a closed subset
of R and consequently S = R.

Now, define
(ξ, η) = (ξ, η)R − i(ξ, iη)R. (4.11)

Additivity of (·, ·)R implies additivity of (·, ·). Moreover, we observe that (ξ, αη) = α(ξ, η)
for α ∈ R. Now, for α, β ∈ R we calculate

(ξ, (α+ iβ)η) = (ξ, (α+ iβ)η)R − i(ξ, (iα− β)η)R

= α(ξ, η)R + β(ξ, iη)R − iα(ξ, iη)R + iβ(ξ, η)R

= (α+ iβ)(ξ, η)R − i(α+ iβ)(ξ, iη)R

= (α+ iβ)(ξ, η).

Hence (·, ·) is linear with respect to the second variable. Moreover, from the second
equality in (4.2) we have (iξ, iη)R = (ξ, η)R for ξ, η ∈ K, so

(ξ, η) = (ξ, η)R − i(ξ, iη)R = (η, ξ)R − i(iη, ξ)R

= (η, ξ)R − i(η,−iξ)R = (η, ξ)R + i(η, iξ)R = (η, ξ).

We proved that (·, ·) is a continuous skew-symmetric form on K. Thus there exists M ∈
B(K) such that (ξ, η) = 〈ξ,Mη〉.

Now, observe that (4.1) for η = 0 takes the form µ(ξ) + µ(ξ) = 2µ(ξ) + 2µ(0) so we
deduce that µ(0) = 0. We check that (ξ, ξ)R = 1

4 [µ(2ξ)− µ(0)] = µ(ξ), and (ξ, iξ)R =
1
4 [µ((1 + i)ξ)− µ((i− 1)ξ)] = 1

4 [µ((1 + i)ξ)− µ(i(1 + i)ξ)] = 0, so we get µ(ξ) = (ξ, ξ) =
〈ξ,Mξ〉. Finally, it follows from the positivity of µ that M is positive.

Theorem 4.3. Let K and H be Hilbert spaces. Assume that R : K → B(H) is a positive
map with parallelogram identity such that

(i) for every η ∈ K.
R(−η) = R(iη) = R(η), (4.12)

(ii) for any ξ, η ∈ K the map R 3 α 7→ R(η + αη ∈ B(H) is continuous at zero,
(iii) for any ε > 0 there exist n ∈ N, ζ1, . . . , ζn ∈ K and δ > 0 such that for any m ∈ N,

ξ1, . . . , ξm, η1, . . . , ηm ∈ K the condition max1≤j≤n ‖
∑m
i=1〈ξi, ζj〉ηi‖ < δ implies

‖
∑m
i=1(R(ηi + ξi)−R(ηi − ξi))‖ < ε.



EXTREMAL POSITIVE MAPS 215

Then there is a positive map φ : B(K)→ B(H) such that φ(ηη∗) = R(η) for each η ∈ K.
Moreover, the map is uniquely determined and continuous with respect to strong topology
in the domain and uniform topology in the predomain.

Proof. As in the proof of the previous theorem we define a map [·, ·] : K×K → B(H) by
the formula

[ξ, η] = [ξ, η]R − i[ξ, iη]R, (4.13)

where

[ξ, η]R =
1
4

[R(η + ξ)−R(η − ξ)] . (4.14)

By the same arguments as in the previous proof we show that [·, ·]R is symmetric and
additive in both coordinates and [ξ, αη]R = α[ξ, η]R for any ξ, η ∈ K and α ∈ Q. It follows
from the continuity assumption that for any ξ, η ∈ K the function R 3 α 7→ [ξ, αη]R ∈
B(H) is continuous. As in the previous proof we conclude that [ξ, αη]R = α[ξ, η]R for
any α ∈ R. Thus we can also show that the map [·, ·] is skew-symmetric form with the
property that [ξ, ξ] ≥ 0 for all ξ ∈ K.

Now, for any ξ, η ∈ K define φ(ηξ∗) = [ξ, η]. This definition can be extended by
linearity onto the subspace Bf(K) of all finite dimensional operators on K provided we
will show that φ is properly defined. In order to show that φ is properly defined one should
prove that for any n ∈ N, ξ1, . . . , ξn, η1, . . . , ηn ∈ K the equality

∑n
i=1 ηiξ

∗
i = 0 implies∑n

i=1[ξi, ηi] = 0. Assume firstly that η1, . . . , ηn are linearly independent. Then for any ζ ∈
K we have

∑n
i=1〈ξi, ζ〉ηi = 0, and consequently 〈ξi, ζ〉 = 0 for any i = 1, . . . , n and ζ ∈ K.

This leads to the conclusion that ξi = 0 for each i = 1, . . . , n. If η1, . . . , ηn are dependent
then let us choose a maximal linearly independent subsystem, say η1, . . . , ηk, of the system
η1, . . . , ηn. Then for any j = k + 1, . . . , n we have ηj =

∑k
i=1 αijηi for some coefficients

αij . Thus
∑n
i=1 ηiξ

∗
i =

∑k
i=1 ηi(ξi+

∑n
j=k+1 αijξj)

∗ and we get ξi+
∑n
j=k+1 αijξj = 0 for

each i = 1, . . . , k. Now, we can calculate
∑n
i=1[ξi, ηi] =

∑k
i=1[ξi +

∑n
j=k+1 αijξj , ηi] = 0.

Now, condition (iii) implies that φ is continuous on the subspace Bf(K) on K with
respect to the strong topology. But Bf(K) is strongly dense in B(K) (cf. [4]), so φ can
be uniquely extended to the whole B(K).

5. Structural results. As it was mentioned if φ is a non-zero map then there always
exists a triple ξ, x and λ such that the condition (3.1) holds. From now on we will assume
much stronger condition. For any unit vectors ξ ∈ K and x ∈ H we define

Gξ,x = {φ ∈ P(B(K),H) : φ(ξξ∗) = λxx∗ for some λ ≥ 0}. (5.1)

One can easily observe that for every ξ and x the set Gξ,x is a face of the cone of all
positive maps. Our goal is to describe all extremal positive maps which lay in faces of
the above form.

Remark 5.1. Note that there are extremal positive maps which are outside of any face
Gξ,x. The map defined in (1.1) can serve as an example (cf. Remark 2.5).

Firstly, we formulate some properties of positive maps which belong to some face Gξ,x
for some unit vectors ξ ∈ K and x ∈ H. To this end we need the following
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Lemma 5.2. Let H be a Hilbert space and fix some unit vector x ∈ H. Then for any
Y ∈ B(H) there are uniquely defined α ∈ C, u, v ∈ H and Z ∈ B(H) such that

(1) 〈x, u〉 = 0 = 〈x, v〉,
(2) 〈x, Zy〉 = 0 = 〈x, Z∗y〉 for any y ∈ H,
(3) Y = αxx∗ + ux∗ + xv∗ + Z.

Moreover, Y ≥ 0 if and only if α ≥ 0, Z ≥ 0, u = v, and

uu∗ ≤ αZ. (5.2)

Proof. We define

α = 〈x, Y x〉,
u = (I− xx∗)Y x,
v = (I− xx∗)Y ∗x,
Z = (I− xx∗)Y (I− xx∗).

One can verify the properties (1)–(3) as well as the uniqueness of α, u, v, Z.
Now, if Y ≥ 0 then Y is selfadjoint and

αxx∗ + ux∗ + xv∗ + Z = Y = Y ∗ = αxx∗ + vx∗ + xu∗ + Z∗.

From the uniqueness it follows that α ∈ R, Z is selfadjoint and u = v. Let y ∈ H 	 Cx.
Since Y ≥ 0 we have 〈ax + y, Y (ax + y)〉 ≥ 0 for any a ∈ C. Hence for any y ∈ H 	 Cx
and a ∈ C the inequality

α|a|2 + 2Re a〈y, u〉+ 〈y, Zy〉 ≥ 0 (5.3)

is satisfied. Considering the case a = 1 and y = 0 we show that α ≥ 0 while taking
a = 0 and y ∈ H 	 Cx shows that Z ≥ 0. Now, let y be fixed and let t ∈ R be such that
eit〈y, u〉 = |〈y, u〉|. For ρ ∈ R we consider a = ρeit and from (5.3) we obtain

αρ2 + 2|〈y, u〉|ρ+ 〈y, Zy〉 ≥ 0

for every ρ ∈ R. This is equivalent to |〈y, u〉|2 ≤ α〈y, Zy〉 and this leads to (5.2).

Proposition 5.3. Assume that φ ∈ Gξ,x, so

φ(ξξ∗) = λxx∗ (5.4)

for some unit vectors ξ ∈ K, x ∈ H and nonnegative constant λ. Then for any η ∈ K
there are β ∈ C and u, v ∈ H such that 〈u, x〉 = 0 = 〈v, x〉 and

φ(ηξ∗) = βxx∗ + ux∗ + xv∗. (5.5)

Proof. For any y ∈ H consider the positive linear functional ωy(Y ) = 〈y, Y y〉, Y ∈ B(H),
on the algebra B(H). Since φ is positive, ωy ◦ φ is a positive functional on the algebra
B(K). But every positive functional is automatically completely positive. This implies
that for any η ∈ K the complex matrix[

〈y, φ(ξξ∗)y〉 〈y, φ(ξη∗)y〉
〈y, φ(ηξ∗)y〉 〈y, φ(ηη∗)y〉

]
is positive, so by applying (5.4) we get |〈y, φ(ηξ∗)y〉|2 ≤ λ|〈y, x〉|2〈y, φ(ηη∗)y〉. This im-
plies that 〈y, φ(ηξ∗)y〉 = 0 for any y which is orthogonal to x. By the polarization formula
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we see that 〈y, φ(ηξ∗)z〉 = 0 for any y, z ∈ H 	 Cx, and finally (I− xx∗)φ(ηξ∗)(I− xx∗)
= 0. We finish the proof by applying Lemma 5.2.

Let Hx = H	Cx. Lemma 5.2 and Proposition 5.3 imply that for any φ ∈ Gξ,x there
are functions β, µ : K → C, u, v, r : K → Hx and R : K → B(Hx) such that

φ(ηξ∗) = β(η)xx∗ + xv(η)∗ + u(η)x∗, (5.6)

φ(ξη∗) = β(η)xx∗ + xu(η)∗ + v(η)x∗, (5.7)

φ(ηη∗) = µ(η)xx∗ + xr(η)∗ + r(η)x∗ +R(η). (5.8)

Let η ∈ K be fixed. We will not write out the arguments of the above functions when
it will not cause confusion. From positivity of φ it follows that φ(ηη∗) ≥ 0, thus by
Lemma 5.2

µ ≥ 0, R ≥ 0, rr∗ ≤ R. (5.9)

We prove some properties of functions which appear in formulas (5.6), (5.7) and (5.8).

Proposition 5.4. Let η ∈ K. Then for any number σ ≥ 0, vector s ∈ Hx and operator
S ∈ B(Hx) such that σ > 0, S ≥ 0, TrS <∞ and ss∗ ≤ σS we have

|σβ + 〈s, u〉+ 〈v, s〉|2 ≤ σλ (σµ+ 2Re〈s, r〉+ Tr(SR)) . (5.10)

Proof. Since φ is a positive map ω ◦φ is a positive functional on B(K) for every positive
normal functional ω on B(H). But a positive functional is automatically a completely
positive map, thus [

ω ◦ φ(ξξ∗) ω ◦ φ(ξη∗)
ω ◦ φ(ηξ∗) ω ◦ φ(ηη∗)

]
is a positive matrix and consequently

|ω ◦ φ(ηξ∗)|2 ≤ ω ◦ φ(ξξ∗) · ω ◦ φ(ηη∗). (5.11)

Now, let σ, s and S fulfil the assumptions of the proposition and

ρ = σxx∗ + xs∗ + sx∗ + S.

It follows from Lemma 5.2 that ρ is a positive trace class operator on H. It determines a
positive normal functional ωρ(Y ) = Tr(ρY ), Y ∈ B(H). Let us calculate

ωρ ◦ φ(ξξ∗) = σλ,

ωρ ◦ φ(ηη∗) = σµ+ 2Re〈s, r〉+ Tr(SR),

ωρ ◦ φ(ξη∗) = σβ + 〈s, u〉+ 〈v, s〉.

If we substitute the above expressions into (5.11) then we obtain (5.10).

Proposition 5.5. Let η ∈ K. Then

|β|2 ≤ λµ. (5.12)

and for any y ∈ Hx the following inequalities hold:

|〈y, u〉+ 〈v, y〉|2 ≤ λ〈y,Ry〉 (5.13)

[
Re〈y, λr − βu− βv〉

]2 ≤ (λµ− |β|2)
(
λ〈y,Ry〉 − |〈y, u〉+ 〈v, y〉|2

)
. (5.14)
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Proof. Let σ be a positive number, s = y, and S = σ−1yy∗. Then σ, s, S fulfil the
assumption of Proposition 5.4, and inequality (5.10) takes the form

|σβ + 〈y, u〉+ 〈v, y〉|2 ≤ λµσ2 + 2λσRe〈y, r〉+ λ〈y,Ry〉.

It can be rewritten in the form

σ2|β|2 + 2σRe
(
β(〈y, u〉+ 〈v, y〉)

)
+ |〈y, u〉+ 〈v, y〉|2 ≤ λµσ2 + 2λσRe〈y, r〉+ λ〈y,Ry〉

and finally

(λµ− |β|2)σ2 + 2σRe〈y, λr − βu− βv〉+ λ〈y,Ry〉 − |〈y, u〉+ 〈v, y〉|2 ≥ 0.

Since the inequality holds for any σ > 0 inequalities (5.12) and (5.13) are evident. By
considering −y instead of y if necessary we conclude that the above inequality holds for
every σ ∈ R. But this statement is equivalent to inequality (5.14).

Proposition 5.6. Let η ∈ K. The inequality (3.6) holds for any y ∈ H if and only if

(λr − βu)(λr − βu)∗ ≤ (λµ− |β|2)(λR− uu∗). (5.15)

Analogously, the inequality (3.7) is equivalent to

(λr − βv)(λr − βv)∗ ≤ (λµ− |β|2)(λR− vv∗). (5.16)

Proof. From (5.6) we have

|〈y, φ(ηξ∗)x〉|2 = |〈y, βx+ u〉|2 = 〈y, (βx+ u)(βx+ u)∗y〉.

So, it follows from (5.8) that (3.6) is equivalent to

(βx+ u)(βx+ u)∗ ≤ λ(µxx∗ + xr∗ + rx∗ +R).

The above inequality can be rewritten as

(λµ− |β|2)xx∗ + x(λr − βu)∗ − (λr − βu)x∗ + λR− uu∗ ≥ 0.

By Lemma 5.2 this is equivalent to (5.15). The second part of the proposition can be
proved by similar arguments.

For any unit vectors η ∈ K and y ∈ H let us define

Fη,y = {φ ∈ P(B(K),H) : φ(ηη∗)y = 0} (5.17)

One can easily check that it is a face of the cone of all positive maps. Let us recall that
Kye ([16]) showed that each maximal face in the cone P(B(K),H) is of the above form
for some η and y provided that K and H are finite dimensional. Observe that for any ξ
and x we have

Gξ,x =
⋂
y⊥x

Fξ,y.

Moreover, φ ∈ Gξ,x ∩ Fξ,x if and only if φ(ξξ∗) = 0.

Theorem 5.7. Let K and H be arbitrary Hilbert spaces, and ξ ∈ K, x ∈ H be unit
vectors. Assume that φ ∈ Gξ,x \ Fξ,x is locally completely positive. Then ψ ≤ φ where ψ
is the completely positive map defined in (3.4).
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Proof. By the assumption φ(ξξ∗) = λxx∗ for some λ > 0. For η ∈ K let X = ηξ∗. Then
the inequality (3.10) (see also (5.6) and (5.7)) leads to

γ2(βxx∗ + xu∗ + vx∗)(βxx∗ + xv∗ + ux∗) ≤ γλxx∗

The left hand side of the above inequality is equal to

γ
(
(|β|2 + ‖u‖2)xx∗ + βxv∗ + βvx∗ + vv∗

)
.

It is majorized by a multiple of the 1-dimensional projection xx∗, so we conclude that
v = 0.

Let y ∈ Hx. Then inequality (5.14) takes the form[
Re〈y, λr − βu〉

]2 ≤ (λµ− |β|2)(λ〈y,Ry〉 − |〈y, u〉|2). (5.18)

Let t ∈ R be a number such that e−it〈y, λr− βu〉 = |〈y, λr− βu〉|. If we put eity instead
of y in (5.18) then we obtain

〈y, (λr − βu)(λr − βu)∗y〉 ≤ (λµ− |β|2)〈y, (λR− uu∗)y〉.

Since the above inequality is valid for any y ∈ Hx the condition (5.15) is satisfied. Now,
we take into account Proposition 5.6 and Theorem 3.2 to conclude that ψ ≤ φ.

Now we are ready to formulate results which give a partial answer to Robertson’s
question.

The first of them establishes a negative answer in the general case if we restrict
ourselves to maps contained in Gξ,x \ Fξ,x.

Theorem 5.8. Assume that a positive map φ : B(K) → B(H) fulfils the following con-
ditions:

1. φ ∈ Gξ,x \ Fξ,x for some unit vectors ξ ∈ K, x ∈ H,
2. φ is extremal in the cone of positive maps,
3. φ is locally completely positive.

Then φ is of the form φ(X) = BXB∗ for some bounded linear operator B ∈ B(K,H).

Proof. It is an immediate consequence of the previous theorem.

Our next result establishes a negative answer to Robertson’s question in some special
cases.

Corollary 5.9. Assume that K is any finite dimensional Hilbert space and dimH = 2.
Then any locally completely positive map which is extremal in the cone of positive maps
between B(K) and B(H) is completely positive.

Proof. We may assume that φ is non-zero. Let K0 = {η ∈ K : φ(ηη∗) = 0}. It is
a subspace of K. Indeed, it follows from Theorem 4.3 that for any η1, η2 ∈ K0 and
α1, α2 ∈ C we have

0 = 2|α1|2φ(η1η∗1) + 2|α2|2φ(η2η∗2)

= φ((α1η1 + α2η2)(α1η1 + α2η2)∗) + φ((α1η1 − α2η2)(α1η1 − α2η2)∗).

Thus, in particular, φ((α1η1 + α2η2)(α1η1 + α2η2)∗) = 0. Let P be the projection onto
K0 and Q = I − P . Then for any X ∈ B(K) we have φ(X) = φ(QXQ). Let φ′ :
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QB(K)Q→ B(H) be the compression of φ onto the algebra QB(K)Q. We show that the
map φ′ is extremal in the cone of all positive maps between QB(K)Q and B(H). Assume
ρ′ ≤ φ′ for some positive map ρ′ : QB(K)Q → B(H) and define ρ : B(K) → B(H) by
ρ(X) = ρ′(QXQ) for X ∈ B(K). Then ρ = αφ for some α ≥ 0 because φ is extremal.
But this implies ρ′ = αφ′.

Since φ′ is extremal it must lie in some maximal face of the cone of all positive maps
between QB(K)Q and B(H). By the result of Kye it follows that there are unit vectors
ξ ∈ K 	 K0 and y ∈ H such that φ′(ξξ∗)y = 0. The condition dimH = 2 implies that
φ′(ξξ∗) = λxx∗ where x ∈ H is a unit vector such that x⊥y. From the definition of
φ′ it follows that φ′(ξξ∗) is non-zero, so λ > 0. Thus we proved φ(ξξ∗) = φ(Qξξ∗Q) =
ψ′(ξξ∗) = λxx∗, and consequently φ ∈ Gξ,x \ Fξ,x. The rest follows from Theorem 5.8.

Remark 5.10. Let us note that Theorem 5.8 gives also a partial solution of the prob-
lem described in Remark 1.2. That problem can be reformulated as follows: Is there an
extremal map in Gξ,x \ Fξ,x such that it is not a positive rank 1 nonincreasing map?
Theorem 5.8 provides a negative answer to this question if we restrict our considerations
to the class of locally completely positive extremal maps.
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