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Abstract. A Čebyšev set in a metric space is one such that every point of the space has a
unique nearest neighbour in the set. In Euclidean spaces, this property is equivalent to being
closed, convex, and nonempty, but in other spaces classification of Čebyšev sets may be sig-
nificantly more difficult. In particular, in hyperspaces over normed linear spaces several quite
different classes of Čebyšev sets are known, with no unifying description. Some new families
of Čebyšev sets in hyperspaces are exhibited, with dimension d + 1 (where d is the dimension
of the underlying space). They are constructed as translational closures of appropriate nested
arcs.

1. Introduction. For any metric space (X, ρ), we define a set A ⊂ X to be a Čebyšev
set (“be Čebyšev” or “have the Čebyšev property”) if for every x ∈ X there is a unique
nearest point in A. This property has been studied extensively for normed linear spaces.
For such spaces, the Čebyšev property is related to convexity. For Minkowski spaces
(finite-dimensional Banach spaces), every Čebyšev set is convex if balls are smooth, while
if the balls are strictly convex, every nonempty closed convex set is Čebyšev [10]. In
particular, in Euclidean spaces, the Čebyšev sets are precisely those that are nonempty,
closed and convex.

As a generalization of the Čebyšev property, we define A to be Čebyšev relative to X0

if every point in X0 has a unique nearest point in A [6]. This generalizes the concept of
“reach”: the reach of a set A can be defined

sup{r | A is Čebyšev relative to (A)r}

(where (A)r is defined in (3) below).
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In this paper, we will consider Čebyšev sets in hyperspaces. A hyperspace H is a
metric space whose points are some class of compact sets in an underlying space |H|.
Here, we will assume throughout that |H| is a Minkowski space (a finite-dimensional
Banach space); that H is closed under Minkowski addition and multiplication by positive
scalars; and that the metric is the Hausdorff metric %H , given by

(1) %H(X,Y ) := max{ ~%H(X,Y ), ~%H(Y,X)},

where the oriented Hausdorff metric ~%H(X,Y ) is defined by the formula

(2) ~%H(X,Y ) := sup
x∈X

inf
y∈Y
‖x− y‖

for compact sets X,Y .
If, for δ > 0, we define the δ-parallel body or δ-hull of X as

(3) (X)δ := X + δB,

where B is the unit ball, this gives a useful alternative way to consider Hausdorff distance:

(4) ~%H(X,Y ) = inf{δ | X ⊆ (Y )δ},

(5) %H(X,Y ) = inf{δ | X ⊆ (Y )δ and Y ⊆ (X)δ}.

We are not assuming or defining multiplication by nonpositive scalars, or any inverse
operation to Minkowski addition; and it can (though we will not do so here) be shown that
except in trivial cases these do not exist in a hyperspace. Creating these formally yields a
Rådström-Hörmander lattice HRH , which is a vector space; H is a cone (not necessarily
closed) within it. This is occasionally important as a source of geometric insights. In this
paper we will consider the following hyperspaces over the real d-dimensional space.

Cd: the hyperspace of nonempty compact sets. While a linear structure can be defined
on this hyperspace, it is rather weak; in particular, there is no cancellation law for
Minkowski addition. An example of a Čebyšev set in Cd is the set of all singletons;
another is of course Cd itself.

Kd: the hyperspace of nonempty compact convex sets. In Kd, the set of all balls and
singletons is Čebyšev; this was proved by Bogdewicz and Moszyńska [4], based
closely on a result about minimal rings in the plane by Bonnessen [5] and generalized
to higher dimensions by Bárány [2]. Other examples in the literature include strictly
affine convex sets (necessarily singletons or infinite-dimensional, for d > 1)[4] and
strongly nested arcs (see below.) The hyperspace Kd0 of convex bodies is closely
related to Kd, and has similar properties.

Od: the hyperspace of strictly convex elements of Kd; Od0 is defined analogously (and
differs from Od only in the omission of singletons; all other strictly convex sets
are bodies.) It was shown in [6] that families of translates {A + x | x ∈ Rd} are
Čebyšev in Od. The translations may also be restricted to an arbitrary convex set
K of vectors, giving additional finite-dimensional Čebyšev sets {A+ x | x ∈ K}.

Zd: the hyperspace of centrally symmetric elements of Od; we will construct Čebyšev
sets in this hyperspace in the next section.



ČEBYŠEV SETS IN HYPERSPACES 91

These represent hyperspaces over Euclidean spaces. We will occasionally wish to refer
to a hyperspace constructed over a space with unit ball B; this will be represented by
(e.g.) KB .

The concept of a Čebyšev set in a hyperspace is closely related to that of an optimal
isometry or translation. For two sets A, X in the hyperspace, an isometry φ is optimal
for the pair (A,X) if ρ(φ(A), X) ≤ ρ(φ′(A), X) for every φ′. Optimal translations (etc.)
are defined analogously. If one of these is unique, then the class of isometric images (resp.
translates) of A is Čebyšev.

A selector is a function from a hyperspace to its underlying vector space such that
s(A) ∈ A. Herburt and Moszyńska [9] define a selector, assumed invariant under Euclidean
isometries, to be associated with the metric ρ on a hyperspaceH if for A,X ∈ H, whenever
f0 is optimal for (A,X) with respect to ρ, s(f0(A)) = s(B). Such a selector is unique up
to translation, and hence (as we assume the hyperspace to contain elements of arbitrarily
small diameter) unique. Arnold [1] showed that the L2 metric has the Steiner point as
associated selector.

We can define a selector to be translationally associated with a metric if it performs
the same role for optimal translations. These selectors are also unique; and the existence
of such a selector implies that every family (A + x | x ∈ Rd) is Čebyšev. Note that if
the unit ball B is a body with only central symmetry, the concepts of “associated” and
“translationally associated” coincide for the hyperspace ZB .

In [6], a family of compact sets was defined to be strongly nested if it has the property
that, for any two distinct elements, one is in the interior of the other. It was shown
there that any strongly nested, continuously indexed family (Ai | i ∈ [0, 1]) in Kd is
Čebyšev; indeed, such a family in Cd is Čebyšev relative to Kd. This can be extended to
families indexed by [0,∞), provided that diam (Ai) is unbounded; and in Kd0 the index
set may be open below provided that ∩Ai is a singleton. These classes of Čebyšev sets are
“nonparametric” in the sense that, within the class, no finite set of members determines
a particular set.

This paper is motivated by the observation that the example of the family of balls
and singletons can be thought of as the translational closure of a strongly nested set of
strictly convex bodies, thereby combining two ideas each of which gives rise to Čebyšev
sets on its own. It is thus natural to investigate other families of this type to look for
other Čebyšev sets of dimension d+ 1.

The most obvious conjectures do not turn out to be true; the translational closure of a
strongly nested family is not necessarily Čebyšev inKd or even inOd; and even homothetic
families are not always Čebyšev in Kd. However, we exhibit additional conditions that
are sufficient to imply the Čebyšev property. In section 2, we show that in the hyperspace
Zd of centrally symmetric strictly convex bodies the translational closure of a strongly
nested family is Čebyšev. In the remaining sections we examine some stricter orderings
on Kd related to the Minkowski sum, and find one such that translational closures of
continuous chains are Čebyšev.
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2. Čebyšev sets in Zd. Our first result concerns Zd, the hyperspace consisting of all
centrally symmetric elements of Od. For any family of bodies A, let AT be the family
{A+ x | A ∈ A,x ∈ Rd}

Lemma 2.1. If A and A′ are convex and centrally symmetric with respect to the origin,
and A+ x ⊂ A′, then also A ⊂ A′.

Proof. By symmetry, A−x ⊂ A′ also; as A′ is convex and contains both A+x and A−x,
it contains A.

Observation 2.2. Without the assumption of convexity for at least the larger body, the
lemma fails (see Fig. 1).

Fig. 1. The smaller body cannot be centered within the larger one

Theorem 1. If A = {Ai | i ∈ [0, 1]} is a continuously indexed, strongly nested family
in Zd, then AT is Čebyšev.

Proof. Let X ∈ Zd, and assume without loss of generality that its center of symmetry is
the origin. By Theorem 3.3 of [6], each Ai ∈ A has a unique translate Ai +xi minimizing
the Hausdorff distance to X. By Lemma 2.1, if Ai + xi ⊂ (X)ε and X ⊂ (Ai)ε + xi, we
also have Ai ⊂ (X)ε and X ⊂ (Ai)ε; thus each translate Ai + xi has the same center
of symmetry as X. Another application of the lemma shows that the family of nearest
translates is itself strongly nested, and by Theorem 2.8 of [6], it has a unique element
minimizing the Hausdorff distance to X.

Corollary 2.2.1. The center of symmetry selector is associated with the Hausdorff
metric in Zd.

Observation 2.3. These results hold also in ZB whenever the unit ball B is strictly
convex; Theorem 2.5 of [3] takes the place of Theorem 3.3 of [6].

Remark 2.4. I conjecture that a situation such as that in Figure 1 cannot arise within
a continuously indexed and strongly nested family. However, convexity is nonetheless
essential to the theorem. In Figure 2, the body A consists of two discs of radius 1, with
centers 5 units apart, joined by a nonconvex “waist", while C is a disc of radius 4. The
Hausdorff distance betweeen them is minimized when C is centered on one of the “ends”
of A.

Moreover, either can be embedded in a nest (At | t ∈ [−1, 1]) or (Ct | t ∈ [−1, 1]) such
that no other body in the nest can be translated to so close a fit, as shown to the right.
Thus neither family is Čebyšev, and convexity is essential for all bodies involved.
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A

(A)d

(C)d

C

At

Ct

Fig. 2. Counterexample showing that convexity is essential

Observation 2.5. Theorem 1 and the associated lemma may be generalized to any
other symmetry that fixes a unique point (e.g., threefold rotational symmetry in the
plane). It does not generalize to other symmetries; for instance, it is not hard to find
counterexamples with reflectional symmetry.

3. Stronger nesting conditions. It is not hard to show that the set of translates of a
continuously indexed and strongly nested family of bodies, (At + x | t ∈ [0, 1], x ∈ Rd) is
not in general Čebyšev (see, for instance Fig. 3 below). We may consider stronger nesting
conditions, such as the additive ordering� induced by the Minkowski sum. By definition,
Ai � Aj whenever Ai is a summand and a subset of Aj ; that is, when there exists some
Di
j containing the origin such that Aj = Ai +Di

j .
The author conjectured in Będlewo in May, 2007 that every nest of bodies in Kd0

ordered by � has the Čebyšev property. In the remainder of this paper we disprove this
conjecture, study related ordering properties closely, and prove the result that probably
should have been conjectured.

Example 3.1. Figure 3a shows a nest of strictly convex bodies (Ai), all equidistant
from a common body X. It may be verified that each of the bodies shown minimizes the
distance to X over the set of all of its translates; thus the set {Ai+x | i ⊂ [0, 1], x ⊂ R2}
is not Čebyšev. However, it is clear that these bodies form a �-chain. Figure 3b shows a
typical pair of bodies and their difference body.

(A )i

X

Ai

Aj

D
i

j

a b

Fig. 3. Counterexample showing that additivity is not sufficient

Nonetheless, the counterexample does suggest an important principle. The family
shown fails to have the Čebyšev property because bodies “of different sizes” can have
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multiple boundary points in common and thus appear “the same size” to some other
body. This leads us to consider the following condition on an ordered pair of sets (A,C).

Definition 3.2. Let A,C ∈ Kd0, where A ⊂ C, and let p ∈ A ∩ bd C. We will say A
grazes C at p if p ∈ A ∩ bd C ⊂ H for some supporting hyperplane H of C.

Definition 3.3. If, for all c ∈ bd C, there exists a vector x such that A + x grazes C
at c, we will write A @ C. (Note that this relation is transitive.) The next proposition
shows how this relates to other containment conditions.

Proposition 3.4. If A @ C, then:

(i). For every a ∈ bd A there exists a vector x(a) such that A+x(a) grazes C at a+x(a);
(ii). A is a summand and a subset of C.

Proof. (i) For a ∈ bd A, there exists at least one functional f maximized over A at a,
which is also maximized over C at at least one point c. By hypothesis there exists x(c)
such that c ∈ A+ x(c) ⊂ C with A+ x(c) ∩ bd C contained in a supporting hyperplane
H of C; take x = x(c). But then

f(a+ x) = max
y∈A

f(y) + f(x) ≥ f(c− x) + f(x) = f(c)

so a+ x ∈ bd C.
(ii) The set (C	A) +A is convex and closed and by hypothesis contains all of bd C -

so it is C. If A+x∩bd C is contained in a supporting hyperplane, moving A+x slightly
away from the hyperplane brings it into int C, so C 	A ∈ Kd0.

Neither converse holds, and neither of (i) nor (ii) implies the other.

Example 3.5. In K3, (i) 6⇒ (ii).
Let A be the “lens” obtained by intersecting the spheres x2 + y2 + (z± 0.8)2 = 1, and

let C be a “North American football” obtained by rotating the arc x2 + (y + 3)2 = 25,
y ≥ 0, about its chord. These bodies obey (i) but no translate of the lens grazes the
football at the “points” of the latter (Figure 4a). Indeed, the points of the football may
be rounded to yield a smooth “Rugby football” with similar properties.

a b c

Fig. 4. Examples illustrating non-implications among containment properties

Remark 3.6. The example above also shows that (i) 6⇒ (A @ C). However, it seems
plausible that (i) and (ii) are equivalent in K2, whereas the following counterexample can
be modified to work in any dimension.
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Example 3.7. (i) 6⇒ (A @ C).
Let Q1 be the square with vertices (±1,±1), and Q2 = 2Q1. Then for a boundary

point c of Q1, without loss of generality on the edge with vertices (1,±1), Q1 + (1, 0)
grazes Q2 at c+ (1, 0). But no translate of Q1 grazes Q2 at (2, 2) (Figure 4b).

Example 3.8. (ii) 6⇒ (i), (A @ C).
Let Q be the square with vertices (±1,±1) and A the unit disc; then no translate of

A grazes A+Q at the point (1 +
√

2
2 , 1 +

√
2

2 ) (Figure 4c).

However, with additional conditions on the bodies, we can say more. If C = A + D

and D is smooth, write A b C.

Proposition 3.9. A b C ⇒ A @ C.

Proof. Let A + D = C. For any c ∈ bd C, c = a + d for some a ∈ bd A, d ∈ bd D.
By assumption, D is smooth, so there is a unique f supporting D at d. But then for
c′ ∈ (A+ d ∩ bd C), f must also support C at c′, and A @ C.

Proposition 3.10. If A is smooth and C is strictly convex, the following are equivalent:

(i). For all a ∈ bd A there exists a vector x(a) such that A+x(a) grazes C at a+x(a);
(ii). A @ C;
(iii). A b C.

Proof. (i ⇒ ii): If C is strictly convex, then for any c ∈ bd C there is a functional f that
is maximized over C at c and nowhere else. If A is smooth, f is the unique functional
that is maximized over A at some boundary point a. By hypothesis there exists x(a) such
that A + x(a) grazes C at a + x(a); but f supports A + x(a) and thus C at x + a, so
x+ a = c.

(ii ⇒ iii): Let D = C 	 A. If A @ C, then bd C ⊂ D + A ⊂ C and by convexity
D +A = C. Suppose, for a contradiction, that D is not smooth, i.e., there exist distinct
functionals f1, f2 that are maximized over D at some point d0. These functionals are
maximized over A (which is smooth) at distinct points a1 and a2; and are maximized
over C (which is strictly convex) at a1 + d0 and a2 + d0 respectively, and nowhere else.
But then the two points a1 +d0 and a2 +d0 of bd C are covered by the same translate of
A, but not (by strict convexity) by the same supporting hyperplane, contradicting (ii).

(iii ⇒ i): If D is smooth, A+D must be smooth; and if C is strictly convex so are A
and D. Thus for each of A,C, and D there is a bijection between boundary points and
supporting hyperplanes, and (i) follows.

Definition 3.11. A continuously indexed arc A = (Ai | i ∈ I) will be called sharply
nested if Ai b Aj whenever i < j; equivalently, there exists a smooth body Di

j with
Ai +Di

j = Aj .

As we are interested only in the translational closure AT of this nest, we may assume
without loss of generality that the origin is on the interior of Di

j , so that a sharply nested
family is strongly nested. Note that any nonminimal element in a sharply-nested arc
must be a smooth body. By Prop. 3.10, any continuous @-chain of smooth bodies in On
is sharply nested.
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4. Lengths of nested arcs

Definition 4.1. The length of an arc (Ai | i ∈ I) is defined to be

sup
A

N∑
n=1

%H(Ai(n−1), Ai(n))

where the supremum runs over all finite sequences of bodies A = (Ai(0), Ai(1), . . . , Ai(N))
with i(0) < i(1) < · · · < i(N). Should the supremum fail to exist we will say the length
of the arc is infinite.

Proposition 4.2. There exists a compact strongly nested arc in K2 with infinite length.

First, we note that between two concentric discs of radius r and R, for any d such
that

(6) d < R− r

we can nest k bodies, each at Hausdorff distance d from the others, provided that

(7) 1 + d/r < sec(2π/k)

as shown in Fig. 5b.

a b c

Fig. 5. A b-nested arc with infinite length

Using the Taylor expansion for a lower bound on the secant, we see that (7) is satisfied
if

(8)
d

r
<

2π2

k2
.

Consider a sequence of concentric discs (An | n = 2, 3, . . .), with radii 1− 1
n (Fig. 5a).

For every n ≥ 3, we construct a nested sequence of bodies (An−1,j) between An−1 and
An (Fig. 5b) such that

d = %H(An−1,i−1, An−1,i) =
1
n2

<
1

n− 1
− 1
n
.

(We note that 1/n2 < 1/(n−1)−1/n, so (6) is satisfied.) As the radius of Ai−1 is always
at least 1

2 , (8) gives
d

r
=

2
n2

<
2π2

k2
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whence the nest can contain k(n) bodies, each at distance at least 1
n2 from the others,

where
k(n) = bπnc ≥ 3n.

Finally, we interpolate bodies continuously between An and An,1, between An,j and
An,j+1, and between An,k(n) and An+1 (Fig. 5c); and let A∞ have radius 1. The arc from
A2 to A∞ is compact, but is easily verified to have infinite length, as the subarc from An
to An+1 has an inscribed polygon AnAn,1 · · ·An,k(n)An+1 of length at least 3/(n+ 1).

Remark 4.3. This construction does not depend on the dimension (≥ 2) or metric
structure of the underlying space, or on the presence of very specific bodies; thus it may
be modified for hyperspaces over any Minkowski space of dimension greater than 1.

Observation 4.4. We recall that analogous situations occur in more familiar spaces. For
example, define

f(x) :=

{
x sin(1/x), if x 6= 0;
0, if x = 0.

Then the graph of f for x ∈ [0, 1] is an ordered arc under the lexicographic ordering
of E2, but has infinite length (see [8], chapter 10, example 16.)

However, the situation is different for �-nested arcs (and hence for b-nested arcs.)
While such an arc need not be straight in a metric sense, its length cannot exceed a fixed
multiple of its chord length. Recall that, for a compact convex set A, its mean width b(A)
is defined to be

1
dωd

∫
Sd−1

b(A)ds

where ωd = πn/2/Γ(n2 +1) is the volume of the unit d-ball (and dωd the (d−1)-dimensional
measure of the unit sphere Sd−1), and ds the element of surface measure. In particular,
the mean width (in Rd, d > 1) of a segment of length 1 is

bd :=
2(d− 1)ωd−1

dωd

∫ π/2

0

cos(θ) sind−1(θ)dθ =
2Γ(d+2

2 )(d− 1)
Γ(d+1

2 )
√
πd2

.

Theorem 2. A compact �-nested arc in Kd0 with endpoints A0, A1 must have length at
most

b(A1)− b(A0)
bd

.

Proof. Mean width is additive: b(P + Q) = b(P ) + b(Q). If A b C, then by definition
C = A + D for some smooth body D containing the origin. It follows that %H(A,C) =
~%H(C,A) = rmax, the radius of the smallest disc centered at the origin containing D.
There exists a segment R of length rmax, with one endpoint at the origin, contained in D.
Then

b(A+D) > b(A+R) = b(A) + b(R) = b(A) + rmaxbd.

Thus

%H(A,C) = rmax <
b(C)− b(A)

bd
.
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If we apply this to any finite subset A = (Ai(0) � Ai(1) � · · · � Ai(N(A))) of a b-nested
arc, we find that

N(A)∑
n=1

%H(Ai(n−1), Ai(n)) <
N(A)∑
n=1

b(Ai(n−1))− b(Ai(n))

bd
=
b(Ai(N(A)))− b(Ai(0))

bd
.

It follows that

sup
A

N(A)∑
n=1

%H(Ai(n−1), Ai(n)) ≤
b(A1)− b(A0)

bd
.

which was the desired bound.

Observation 4.5. In K2, if we consider arcs of the form (A + tD | t ∈ [0, 1]) where D
is an ellipse of very high eccentricity with the origin at one focus, we see that the bound
achieved above is the best possible.

Observation 4.6. It is perhaps more natural to ask how the arc length relates to the
Hausdorff distance between the endpoints. As the difference in mean width between two
bodies is less than or equal to twice their Hausdorff distance, the length L of a compact
sharply nested arc in Kd with endpoints A0, A1 must satisfy

L ≤ 2%H(A0, A1)
bd

.

This latter bound, however, does not appear ever to be optimal. It is an open problem
to determine optimal bounds, either for the general case or for specific endpoints.

Example 4.7. We have b2 = 2Γ(2)/(4Γ( 3
2 )
√
π) = 1

π ; thus in K2, Hausdorff arc length
cannot exceed π(b(A1)− b(A0)), which in turn cannot exceed 2π%H(A0, A1).

Observation 4.8. There is again an analogous situation in E2. Consider any arc whose
points (in Cartesian coordinates) are ordered with the product ordering (in which (x, y) <
(x′, y′) if x < x′ and y < y′). Such an arc is not in general a metric segment, but if the
endpoints are P and Q, the arc length must be strictly less than

√
2 d(P,Q).

5. Translational closures of sharply nested arcs We shall show that, subject to
certain conditions, if A is sharply nested in K2, K2

0, O2, or O2, then AT is Čebyšev. Note
that the results of this section, while stated for hyperspaces over Euclidean spaces, use
no special properties of the Euclidean metric except for the strict convexity of balls; they
are therefore also valid in hyperspaces over any other two-dimensional Minkowski space
in which the balls are strictly convex.

Lemma 5.1. A strongly nested arc (Ai | i ∈ I) in a hyperspace H is closed if both of the
following conditions are satisfied:

i. if I is open above, then ∪i∈IAi 6∈ H;
ii. if I is open below, then ∩i∈IAi 6∈ H.

In particular, (Ai | i ∈ [a, b]) is closed in any of the hyperspaces we have considered,
and (Ai | i ∈ [a, b)) is closed if the arc is unbounded. Moreover, (Ai | i ∈ (a, b]) is closed
in Kn0 or On0 if ∩i∈IAi is a singleton, though it is never closed in Kn or On because of
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the missing lower bound. Again, an arc in On, indexed by an open or half-open I, may
be closed if its intersection and/or union are not strictly convex.

For a fixed compact convex X and a strongly nested arc (Ai : i ∈ I), let

ρ = inf
i∈I,s∈Rd

%H(Ai + s,X).

Lemma 5.2. If a strongly nested arc (Ai | i ∈ I) is closed in H, then for any X ∈ H,
{Ai + s | %H(Ai + s,X) = ρ} is nonempty and compact.

Proof. This follows immediately from the continuity of the functions involved.

We can thus define Am to be the smallest element of A with a translate at minimal
distance from X; without loss of generality, we may assume Am itself to be such a
translate. The following is true for Kd and Od (and vacuously true for Kd0 and Od0 .)

Lemma 5.3. If X is not a singleton, neither is Am.

Proof. The distance %H(X, {a}) is minimized over all a ∈ Rd when a is the Čebyšev
point of X, čX; this is always within X (see [4]). But then ~%H({č(X)}, X) = 0, and by
continuity there exists a body Ai+ č(X), i > 0, which is contained in a ball of radius less
than ρ/2 about č(X) and contains a ball of radius ε about the same point. Therefore,
~%H(Ai + č(X), X) < ρ/2 while ~%H(X,Ai + č(X)) < ρ− ε; thus Ai + č(X) is closer to X
than any singleton.

Definition 5.4. ∆ := (X)ρ 	 Am; and ∇ := −((Am)ρ 	 X). That is, ∆ is the set of
vectors by which we may translate Am while keeping ~%H(Am, X) ≤ ρ, while ∇ is the set
of vectors by which we may translate Am while keeping ~%H(X,Am) ≤ ρ.

Proposition 5.5. Suppose that a strongly nested arc (Ai | i ∈ I) is unbounded and
∩i∈IAi is a singleton; then both ∆ ∩ int ∇ and ∇∩ int ∆ are empty.

Proof. We first note that if X is a singleton in Kd, then Am = A0 which is also a
singleton, as are both ∆ and∇, and the result is trivial. Suppose thatX is not a singleton,
and let t ∈ ∆ ∩ int ∇. Then X ⊂ int (Am + t)ρ, and there exists ε > 0 such that
X ⊂ int (Am + t)ρ−ε. By Lemma 5.3, m > 0; so let Ak ( Am with (Ak)δ ⊂ Am ⊂ (Ak)ε
for some δ > 0; then

(9) X ⊂ int (Ak + t)ρ.

But we also have (Ak + t)δ ⊂ Am + t ⊂ (X)ρ, so

(10) Ak + t ⊂ int (X)ρ.

It follows that there is a smaller d that leaves both (9) and (10) satisfied, again contra-
dicting our definition of d as the minimal distance and proving ∆ ∩ int ∇ to be empty.
The proof that ∇∩ int ∆ is empty is similar, but substitutes a larger nest element rather
than a smaller one to obtain the contradiction.

Corollary 5.5.1. 0 is on the boundaries of both ∆ and ∇.

Proof. Obviously, 0 ∈ ∆ ∩ ∇; but, by Prop. 5.5, it cannot be in the interior of either
set.
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The next result, which is essentially planar, shows that no other translate of Am can
come as close to X as Am itself does.

Proposition 5.6. Suppose that a strongly nested arc (Ai | i ∈ I) in K2 or K2
0 is un-

bounded, and ∩i∈IAi is a singleton. Then ∆ ∩∇ = {0}.

Proof. We have shown that neither ∆ nor ∇ intersects the interior of the other. By
Proposition 5.5, if their intersection is not a singleton, it is a line segment `, containing the
origin, and of length L > 0. Let {x | f(x) = 0} = aff `; by the same proposition, without
loss of generality, maxx∈∆ f(x) = 0. Moreover, minx∈∇ f(x) = maxx∈−∇ f(x) = 0.

For any compact convex set K, define L(K) to be the linear measure of {k | f(k) =
maxx∈K fL(x)}. Clearly L(K + M) = L(K) + L(M); and as balls are strictly convex,
L((K)d) = L(K). Moreover, if L(K 	M) > 0, then L(K) = L(M) + L(K 	M). Both
L(∆) and L(−∇) are greater than or equal to L.

But this leads to a contradiction, for

(11) L(X) = L((X)ρ) = L(Am) + L(∆) ≥ L(Am) + L

but

(12) L(Am) = L((Am)ρ) = L(X) + L(−∇) ≥ L(X) + L

so we conclude that the intersection is a singleton.

As an imediate corollary, we get the following result.

Theorem 3. Suppose that a strongly nested arc (Ai | i ∈ I) in K2 or K2
0 is unbounded,

and ∩i∈IAi is a singleton. Then the minimal distance from a compact convex X to AT
cannot be achieved by two translates of the same Am.

Remark 5.7. For the hyperspace Od of strictly convex bodies, the uniqueness of closest
translates was proved, with no assumptions about nesting, as Theorem 3.3 of [6].

Example 5.8. Without strict convexity, Theorem 3 cannot be extended to Kd or Kd0 for
d > 2. Let

(13) X := conv {(±1,±1,±1), (0, 0,±2)} ;

(14) P = conv {(±0.9,±0.9,±0.9), (0,±1.9, 0)} ;

and

(15) Aλ = λ((P )0.1)

(see Figure 6).
Then ~%H(X,Aλ+s) ≥ 2−λ with equality only if s2 = 0, while ~%H(Aλ+s,X) ≥ 2λ−1

with equality only if s3 = 0. The maximum of the two distances is always greater than
or equal to 1, and this can only be attained for s2 = s3 = 0, λ = 1. However, this
minimum distance may be achieved for any s = (s1, 0, 0), with s1 < 0.5; so the family is
not Čebyšev. Note that the family Aλ is b-ordered.

The requirement that the smallest element, if any, be a singleton is essential.
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A s
1
+

X

Fig. 6. Strict convexity is necessary in more than two dimensions

Proposition 5.9. In K2 or K2
0, if a nested family A has a nonsingleton smallest element

A0, then there exists a body X equidistant from multiple translates of A0 and more distant
from any translate of any other Ai.

Proof. The body X is constructed from A0 as in Prop. 3.5 of [6] (see Figure 7), by
truncating normal to a line joining two points at maximum distance.

A
0

X X

A +s
0

Fig. 7. A body equidistant from various translates of A0

Proposition 5.10. Suppose A in K2 is strongly nested and continuously indexed by [0, 1],
int ∆ = ∅, A0 is a singleton, and A1 is strictly convex. Then the minimal distance from
a compact convex X to AT cannot be achieved by two translates of the same Am.

Proof. If m < 1 this proceeds as above. If m = 1, if we had ~%H(X,A1 + s) < ρ for
any s, we could find ε > 0 such that ~%H(X,A1−ε + s) < ρ and ~%H(A1−ε + s,X) < ρ, a
contradiction. Thus we conclude that

(16) ~%H(X,A1 + s) ≥ ρ

for every s.
By assumption we have equality for s = 0; suppose we have it for another s as well.

Then X ⊂ (A1)ρ∩(Am+s)ρ = (A1)ρ∩((A1)ρ+s). Suppose x ∈ X; then x, x−s ∈ (A1)ρ,
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and by strict convexity x− s/2 ∈ int (A1)ρ. It follows that X ⊂ int (A1 + s/2)ρ, and by
compactness ~%H(X,A1 + s/2) < ρ, contradicting (16).

Observation 5.11. Interchanging the roles of the bodies in Figure 7 shows that we
cannot entirely drop the strict convexity requirement on the largest body. (A similar
observation was made in [6].) However, some relaxation is possible; for instance, a “D-
shaped” largest body will work.

Observation 5.12. This proposition uses the assumption that the Minkowski space is
strictly convex; the reader may verify, using an example similar to that in Figure 7, that
this assumption cannot be dropped.

We now consider the question of when translates of two different bodies in a sharply
nested family can both attain the minimal distance (recall that we have chosen Am so
that no smaller body does so). Let P := Am ∩ bd (X)ρ, and Q := X ∩ bd (Am)ρ. For
any smooth body K and any x ∈ bd K, let nK(x) be the outward-directed unit normal
vector to K at x. Define M := {n(X)ρ(p) | p ∈ P}, and N := {n(Am)ρ(q) | q ∈ Q}.

Lemma 5.13. For X ∈ Kn and (Ai | i ∈ I) strongly nested and unbounded in Kn, let Am,
P , Q, M ,and N be as defined above; then M and N are nonempty, closed and disjoint.

Proof. Closure follows immediately from the definition.
If (for instance) M were empty, this would imply that P = ∅ and ~%H(Am, X) < ρ;

replacing Am by a slightly larger Aj would make both ~%H(Aj , X) and ~%H(X,Aj) less
than ρ, a contradiction. The proof for N is more or less identical.

If a vector u were common to M and N , we would have (X and Am being convex):

max
a∈Am

u · a = max
x∈(X)ρ

u · x = max
x∈X

u · x+ ρ

but also
max
x∈X

u · x = max
a∈(Am)ρ

u · a = max
a∈(Am)

u · a+ ρ,

which is impossible.

Our goal is to examine the structure of M , N , ∆, and ∇, when (Ai | i ∈ I) is sharply
nested in the plane. We will show that some configurations would imply the existence of
a body Aj + s that was closer to X, and are thus impossible under our supposition that
Am is at minimal distance. With the remaining configurations, however, no other body
Aj + s can be as close.

Lemma 5.14. Let X, (Ai), ρ and m be as defined above, with (Ai) sharply nested. Then
if ~%H(Aj + s,X) = ρ, Dm

j + s ⊂ ∆, but Dm
j + s 6⊂ int ∆.

Proof. If ~%H(Aj + s,X) = ρ, then Aj + s ⊂ (X)ρ and Dm
j + s ⊂ ∆. However, if Di

j + s ⊂
int ∆, then Aj + s ⊂ int (X)ρ and ~%H(Aj + s,X) < ρ.

Corollary 5.14.1. Let X, (Ai),and ρ be as defined above, with (Ai) sharply nested. If
~%H(Aj + s,X) = ρ for some j > m, then int ∆ 6= ∅.

Lemma 5.15. The hyperplanes {x | n·x = 0}, n ∈M , support ∆ at 0; and the hyperplanes
{x | n · x = 0}, n ∈ N , support ∇ at 0.
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The next proposition allows us to deduce the short-range mobility of Am within (X)d
from local conditions. It has some resemblance to lemmas 1.2 and 1.3 of [7].

Proposition 5.16. Given a smooth compact convex set C ∈ Kd, d > 0, and a compact
set A ⊂ C, let ∆ := C 	 A and P := A ∩ bd C. For y ∈ Rd, there exists λ > 0 with
λy ∈ int ∆ if and only if y · nC(p) < 0 for all p ∈ P .

Proof. Clearly if y · nC(p) ≥ 0, for all λ > 0 we have p+ λy 6∈ int C, hence A+ λy 6⊂ C

and λy 6∈ ∆.
We now prove the converse. Suppose for some p,

(17) y · nC(p) < 0.

Let

(18) a :=
−y · nC(p)
‖y‖

.

As C is smooth, there exists ε > 0 such that for b ∈ (bd (C) ∩B(p, ε)) we have both

(19)
|nC(p) · (b− p)|
‖b− p‖

≤ a/4

and

(20) ‖nC(b)− nC(p)‖ ≤ a/4.

If we select any λ satisfying

(21) 0 < λ <
ε

2‖y‖
define b to be any point in bd (X)d at minimal distance from p+ λy. Then

(22) d(b, p+ λy) ≤ d(p, p+ λy) = λ‖y‖

and

(23) ‖b− p‖ ≤ 2λ‖y‖ < ε,

so that b satisfies both (19) and (20).
From (19) and (23) we obtain

(24) |nC(p) · (b− p)| < a

4
‖b− p‖ < a

2
λ‖y‖.

Combining (20) and (22) we also get

(25) |(nC(b)− nC(p)) · (b− p− λy)| ≤ a

4
λ‖y‖.

As nC(b) is a unit normal vector to C at b, the distance from p+ λy to b (and hence,
by definition, to the complement of C) is given by

(26) |b− p− λy| = nC(b) · (b− p− λy).

But

(27) nC(b) · (b− p− λy) = (nC(b)− nC(p)) · (b− p− λy) + nC(p) · (b− p)− nC(p) · λy.
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Substituting (25), (24), and (18) respectively into the right-hand side of (27), and
using the triangle inequality, we get

(28) nC(b) · (b− p− λy) ≥ a

4
λ‖y‖ > 0.

Thus, for any y satisfying (17) for p ∈ P , and any λ satisfying (21), p+ λy ∈ int C.
But, by our original assumption, y satisfies (17) for every p ∈ P . Moreover, if a is a

point of A not in P , it may be translated some distance in any direction while remaining in
int C. So, for this fixed y and any a ∈ A, there exists λ(a) > 0 such that for 0 < λ < λ(a)
we have a + λy ∈ int C. This may be chosen continuously as a function of a. Define
λmin := mina∈A λ(a); this is positive by the compactness of A, and λminy ∈ int ∆.

Proposition 5.17. Given a sharply nested family A in K2, with Am minimizing the
Hausdorff distance to some X over AT , and with ∆, ∇, M , and N as above, some line
of N⊥ does not intersect int ∆.

Proof. We note first that the elements of M must lie within an angle less than 180◦, as
otherwise int ∆ would be empty. It follows that there exist m0,m1 ∈M such that every
other element of M is of the form a0m0 + a1m1 for a0, a1 > 0.

Let
−→
0u0 = {x | x ·m0 = 0, x ·m1 ≤ 0} and

−→
0u1 = {x | x ·m1 = 0, x ·m0 ≤ 0}. By

Proposition 5.16 no point on these rays is in int ∆. However, for p ∈ −→0u0 and any ε > 0
there exists q ∈ B(p, ε) such that q · m0 < 0 and q · m1 < 0, so that for some λ > 0,
λq ∈ int ∆. The same is obviously true for

−→
0u1; thus these rays are the limits of sequences

of rays intersecting int ∆.
Suppose now that every line of N⊥ does intersect int ∆. Intersecting each of these

lines with the halfplane {x | m0 · x ≤ 0} gives a ray
−→
0v with v ∈ ∆. This set of rays is

linearly ordered and (Lemma 5.13) closed, so it has first and last elements
−→
0v0 and

−→
0v1.

D

n(qi ).x=0

m(pi ).x=0

q

D

r

a b

0

w0

v0

w1

v1

q/2

v0 v1

c

0

w0q/2

(N)q/4

D +s
i

j D +s
i

j

D

w1

Fig. 8. The case in which every line of N⊥ intersects int ∆

Because M and N are closed and disjoint, there is a positive angular separation
between them in S1, let us say θ (see Figure 8a). We define

−−→
0w0 to be the ray making

an angle of θ/2 with
−→
0v0 on the opposite side from

−→
0v1, and

−−→
0w1 to be the ray making

an angle of θ/2 with
−→
0v1 on the opposite side from

−→
0v0 (Figure 8b). As all of these rays

intersect int ∆ and represent a closed set in S1, there exists r > 0 such that for every
−→
0x

lying between
−−→
0w0 and

−−→
0w1, we have

−→
0x ∩ B(0, r) ⊂ int ∆. Let S be the circular sector

obtained as the union of these segments.
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By taking j greater than but close enough to m, we may make the diameter of Dm
j

arbitrarily small, so that S 	Dm
j 6= ∅. For any s ∈ (S 	Dm

j ) we have

(29) Dm
j + s ⊂ int ∆.

From this last, we get

(30) Aj + s = Am +Dm
j + s ⊂ int Am + ∆ ⊂ int (X)ρ,

from which it follows immediately that

(31) ~%H(Aj + s,X) < ~%H(Am, X).

Proving that the other directed distance is also reduced is a little more difficult; the
problem is that while Aj contains Am, Aj + s does not necessarily do so, so that some
points in X may be further from Aj + s than they are from Am. However, we will show
that the points at which this happens are bounded away from Q, so that they are not
the points at which the maximum distance is achieved.

As Dm
j is smooth and S is not smooth at 0, 0 6∈ S 	 Dm

j . But S 	 Dm
j is compact,

so the infimum of the norm over S 	 Dm
j is positive, and is achieved at some vector s.

Evidently Dm
j + s intersects both

−−→
0w0 and

−−→
0w1.

Define (N)θ/4 to be the set of unit vectors making an angle of θ/4 or less with some
vector in N . It is clear that not only every line in N⊥ but every line in (N)⊥θ/4intersects
int (Dm

j + s), and so

(32) (∀n ∈ (N)θ/4)(∃x ∈ Dm
j + s)(n · x > 0).

It follows that

(33) (∀n ∈ (N)θ/4)( max
y∈Aj+s

n · y > max
y∈Am

n · y).

q/4 q/4

Am

X

(A )m -r d

(A )m r

Aj+s

N

Q

Fig. 9. The configuration near Q

Let ξAm : (R2 \ Am) → bd Am be the metric projection (“nearest neighbour”) map,
and let nAm : bd Am → S1 be the normal map. These are both continuous, whence so is
the composite nAmξAm ; note that for x outside of Am,

(34) nAmξAmx =
x− ξ(x))
‖x− ξ(x)‖

.
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Moreover, nAmξAmQ = N ; so

(35) (∃ε > 0)(nAmξAm(Q)ε ⊂ (N)θ/4).

But the function x 7→ ~%H(x,Am) is Lipschitz; so

(36) (∃δ > 0)(∀x ∈ X)(d− ~%H(x,Am) < δ ⇒ x ∈ (Q)ε)

(we may put the quantifiers in this order because X is compact.) Combining (34-36) we
conclude that there exists δ > 0 such that for x ∈ X,

(37) x ∈ (Am)ρ−δ or
x− ξAm(x))
‖x− ξAm(x)‖

∈ (N)θ/4.

If now we select Dm
j + s to lie within δ/2 of the origin, while touching both bounding

radii of the sector S, then for every point x ∈ X, one of the two alternatives given by (37)
holds. If x ∈ (Am)ρ−δ, then x ∈ (Aj + s)ρ−δ/2. Otherwise, the line {y | y · (x− ξAm(x))}
of (N)⊥θ/4 intersects the interior of Dm

j + s, ξAm(x) is an interior point of Aj + s, and we
conclude again that the distance from Aj + s to x is less than ρ. By the compactness of
(N)θ/4 we conclude that

(38) ~%H(X,Aj + s) < ~%H(X,Am)

which in combination with (31) contradicts our assumption that Am was at minimal
Hausdorff distance from X among all elements of AT .

Proposition 5.18. Given a sharply nested family A in K2, and a compact convex set X,
the minimum Hausdorff distance from X to AT cannot be attained by translates of two
distinct nest elements Am and Aj.

Proof. If Am is at minimal distance d from X, and no smaller nest element has an equally
close translate, then by Prop. 5.17, the set N⊥ contains a line `n := {x | n ·x = 0} which
does not intersect int ∆ except at 0. (Recall that n = n(q) for some q ∈ Q = X ∩ (Am)ρ.)

This line cannot contain other boundary points of ∆ because (as shown in the proof of
Prop. 5.17) the lines bounding the cone generated by ∆ are in M⊥, and by Lemma 5.13
M and N are disjoint. Note that ∆ cannot be smooth at 0, as then M⊥, nonempty by
Lemma 5.13, would have to contain the unique tangent line (see Fig. 10a). This would
force all lines of N⊥ (which is again nonempty) to intersect int ∆.

Consider now any body Aj + s with j > i. By supposition, Dmj + s is smooth; and
by Lemma 5.14 it must be a subset of ∆. Thus Dm

j + s cannot contain 0 (Fig. 10b), and
thus has empty intersection with `n. It follows that

(39) max
a∈Aj+s

a · n < max
a∈Am

a · n = (q · n)− ρ

so that ~%H(q, Aj + s) > ρ.

Combining Prop. 5.18 with Theorem 3, we obtain the following results:

Theorem 4. If A = {Ai | i ∈ I} is sharply nested and closed in K2 or K2
0, ∩Ai is a

singleton and ∪Ai is unbounded, then AT is Čebyšev.
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Fig. 10. The case in which some line of N⊥ does not intersect int ∆

Proof. By Prop. 5.18 the minimum distance from any compact convex set X is attained
by translates of at most one nest element. By Lemma 5.2, as the nest is closed, the
minimum distance is attained; and by Theorem 3 it is attained exactly once.

The following result was proved in [6]:

Proposition 5.19. For every A ∈ Od, the family {A}T of all translates of A is Čebyšev
in Od.

Combining this with Proposition 5.18, we get:

Theorem 5. Suppose A = {Ai | i ∈ I} is sharply nested and closed in O2 or O2
0. Then

AT is Čebyšev.

Example 5.20. Families of homothets of smooth bodies are Čebyšev in K2
0; and families

of the form {λA + s | λ ∈ [0,∞), s ∈ R2}, A smooth, are Čebyšev in K2. Figure 11
shows that smoothness is essential; the triangles are homothetic but equidistant from the
body X.

A
i

X

Fig. 11. A non-Čebyšev family of homothets

Note that both this example and the next one generalize the result [4, 5] that the
family of balls is Čebyšev in K2

0.

Example 5.21. Families of translates of parallel bodies, of the form {(A)d + s | d ∈
[0,∞), s ∈ R2} are Čebyšev in O2. This does not hold in K2 (except for the special case
in which A is a point and the other bodies are balls) because any other such family has
a least element, so that Prop. 5.9 applies.

However, the result is “morally true” in K2 as well, and if we can extend the nest from
A down to a point in an appropriate fashion, the translational closure of the resulting
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family is Čebyšev. For instance, if A is smooth,

(40) {λA | λ ∈ [0, 1]} ∪ {(A)λ + s | λ ∈ [0,∞), s ∈ R2}

is Čebyšev in K2.

Example 5.22. For I = [0, 1] or [0,∞), translational closures of affine segments and
rays, of the form

(41) {C + λD + x | λ ∈ I, x ∈ R2},

are Čebyšev in O2 provided that D is smooth. This generalizes both Example 5.20 and
Example 5.21.

Theorem 5 applies to nests that may be bounded above or below (or both) in O2,
whereas the nest in Theorem 4 must contain arbitrarily large and small elements. It is
natural to ask whether Prop. 5.10 could be used to obtain corresponding results in K2

for nests bounded above.
Recall that the “top” body A1 in Prop. 5.10 is required to be strictly convex. In the

context of that proposition, this implies nothing about the other bodies; but later results
refer to sharply nested families, in which any Ai, i < 1, is a Minkowski summand of A1,
thus strictly convex if A1 is. Thus by requiring A1 to be strictly convex we in fact force
the entire nest to be so.

Theorem 6. If A = {Ai | i ∈ I} is a sharply nested closed arc of strictly convex sets in
K2 or K2

0, and ∩Ai is a singleton, then AT is Čebyšev.

Example 5.23. In K2, if C is smooth and strictly convex, the set

(42) {λC + x | λ ∈ [0, 1], x ∈ R2}

is Čebyšev. Again, in K2
0,

(43) {λC + x | λ ∈ (0, 1], x ∈ R2}

is Čebyšev. In particular, the set of all “small enough” balls (with radius less than some
R) is Čebyšev in K2

0, and in K2 with the addition of singletons.

Observation 5.24. In Kd, d > 2, it is possible for the minimum distance from a body X
to a family AT to be achieved at two translates equidistant from X; see for instance Fig.
6 above. Moreover, it may be achieved by equidistant strictly convex bodies of different
sizes, so Prop. 5.18, Theorem 5 and Theorem 6 do not generalize to higher dimensions
either.

Example 5.25. Consider the two bodies

P := conv {(±1,±1, 0), (0,±1, 1)}

and

Q := conv
{

(±1,±1, 0), (±1, 0, 1),
(

0, 0,−2 + 11
√

2
20

)}
(see Figure 12).
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Fig. 12. A family of parallel bodies with non-Čebyšev translates

We now define a family {Ai | 0 ≤ i <∞} as follows:

(44) Ai =

{
(10i)(P )1/10 if 0 ≤ i ≤ 1/10;
(P )i if i ≥ 1/10.

It may be verified that this family is sharply nested, and that for 1
10 ≤ i ≤ (2−

√
2)/2,

bodies of the form Ai+(0, 0,−
√

2i) are equidistant from Q (specifically at distance 1/
√

2),
while any other set of the form Ai + x is more distant.

As every face is a triangle or a rectangle, hence cyclic, we may replace each of P and
Q by the intersections of all balls of some large radius R containing the polyhedron. The
resulting Ai are strictly convex and appropriate translates are again equidistant from Q.

The family Bd of all balls and singletons is an example of a translational closure of a
nest in Kd, d > 2, with the Čebyšev property. While at the moment no others are known,
it seems likely that more exist. One plausible conjecture is that families such as that of
Example 5.25 are fairly uncommon, and that AT is Čebyšev for almost all sharply nested
families A. On the other hand, it is also plausible that every body belongs to a sharply
nested family A for which AT is not Čebyšev.

6. General Minkowski spaces and Sim-invariant Čebyšev sets In [3], various
results from [4] and [6] were generalized to hyperspaces KB and OB over Minkowski
spaces with unit ball B. Some classes of Čebyšev set, such as singletons {A} and strongly
nested sets, carried over in all cases; others, such as convex sets of singletons in KB and
families of translates in OB , did so if and only if B was strictly convex.

As observed at the beginning of the previous section, no specific properties of the
Euclidean ball apart from strict convexity were used in the proofs of Theorem 1 or Theo-
rems 4–6. Thus, the Čebyšev sets constructed in this paper likewise have counterparts in
any smooth and strictly convex Minkowski space of appropriate dimension. This permits
us to answer a question of Bogdewicz and Moszyńska, who noted [4] that Bn and Kn0
were Sim-invariant Čebyšev sets in Kn0 , while [Rn], [Rn]∪Bn, and Kn were Sim-invariant
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Čebyšev sets in Kn. They asked whether other such sets exist. We answer this in the
affirmative, for appropriate hyperspaces.

Example 6.1. Let B ⊂ R2 be a strictly convex body, centrally symmetric but with no
other linear automorphisms. Then SimB consists precisely of the automorphisms x 7→
λx + t for λ 6= 0 and t ∈ R2. Let Z ∈ KB be smooth, centrally symmetric, and not
homothetic to B. As shown in Example 5.20), the family of homothets of Z is Čebyšev
in KB0 , while {λZ + t | λ ∈ [0,∞), t ∈ R2} is Čebyšev in KB .
Acknowledgements. The author would like to thank M. Moszyńska and the anonymous
referee for helpful comments.
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