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Abstract. Since the geometry of star bodies can be considered as a part of convex geometry, it

is natural to think of fractal star bodies (that is, star bodies with fractal boundaries) as objects

on the border of convex and fractal geometry.

We introduce the notion of fractal star body and study some of its basic properties. We

study several operations on star bodies which preserve the family of fractal star bodies.

Finally we show how the requirement that the boundary of the star body be fractal limits

the possible values of the topological dimension of its kernel.

Introduction. Convex geometry and fractal geometry study objects of a fairly differ-
ent nature. Generally, convex sets and their relatives are characterized by their nice
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properties, whereas fractals are characterized by their complicated nature. However, the
techniques that one uses to study these objects have a significant amount of overlap.
Both streams of geometry have made extensive use of notions from measure theory and
topology. The role of the measure theory in fractal geometry is obvious (see for example
[5]), we just mention its role in the determination of the dimension of a fractal set and in
the description of its local structure. The interaction of measure theory with convex ge-
ometry can be seen, for example, in Sections 2.2 and 2.3 of [18] concerning the boundary
structure of convex bodies and in the article [19] on curvature and surface area measures.

The role of topology in convex geometry can be seen, for example, in the survey [22]
and in the article [8] on Baire categories in convexity. In recent work on fractals various
authors ([16] and [21] among others) have used ε-neighbourhoods to study their persistent
homology groups and obtain new fractal invariants.

These observations have led us to ask whether there are any geometric objects that
would be of interest to both fractal and convex geometers. In the study of these objects
there would be natural questions coming from both types of geometry, and hopefully,
the answers to these questions may lead to new constructions that could be beneficial to
either or both branches of geometry.

Convex bodies would obviously not fit this description since the fact that they are
convex implies that they are not fractal by any of the obvious definitions. However,
star-shaped sets form a natural extension of the class of convex sets and can be required
to have a fractal boundary, which would make them of interest both to people working
in convex geometry and to people working in fractal geometry.

In this paper, we introduce the notion of fractal star body as a star body with a fractal
boundary. For our notion of fractal we will use the dimension criterion, namely that the
fractal dimension of an object is greater than its topological dimension, for some notion
of fractal dimension. There are other criterions one may choose to define the notion of
being fractal as mentioned for example in [5], nowhere-differentiability being one of them.
However, the dimension criterion singles out a more distinctive class of objects, as was
shown for example in [1], where the author uses the Baire Category Theorem to show
that for a continuous n-dimensional manifold M with boundary, a typical element of the
space of deformations of the boundary is nowhere-differentiable with Hausdorff dimension
n− 1.

One may ask whether star bodies with a fractal boundary exist, so we begin by
introducing various examples of constructions that give us fractal star bodies, and we
describe several operations on fractal star bodies, such as the star dual and suspension.

This paper shows also how the concepts from the two distinct streams of geometry
interact for fractal star bodies. An important concept of convex geometry is the kernel of
a star body. We show that the dimension of the kernel of a star body in Rn with fractal
boundary must be less than or equal to n − 1 or n − 2 depending on the chosen fractal
dimension.

This paper is only an introduction to the topic of fractal star bodies to obtain an idea
of the questions surrounding them. There are some interesting open questions related
to the idea of self-similarity and how this could be used to create fractal star bodies
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with a boundary of a prescribed dimension. Although the boundary of a star body could
never be strictly self-similar, there are notions of generalized self-similarity that would
be applicable to fractal star bodies. We will discuss these in forthcoming research.

Section 1 gives an axiomatic definition of fractal dimension and explains what we
mean by a fractal set.

In Section 2 we define the notion of fractal star body and discuss some of its basic
properties.

In Section 3 we introduce some families of star bodies that are fractal with respect to
a given fractal dimension. We show how such objects can be constructed starting with
real-valued functions defined on a subset of Euclidean space, for which the graph is a
fractal set.

Sections 4 and 5 discuss various operations on the family of fractal star bodies.
In Section 6 we give an upper bound for the topological dimension of the kernel of a

fractal star body.

1. Fractals and locally fractal sets. Since there is no generally accepted definition of
fractal, we shall begin with terminology and notation to be used in this paper.

All the metric spaces considered are assumed to be separable and ‘dim’ will denote
the topological dimension (see [4]). (In fact, for this paper, it is sufficient to consider only
subspaces of Rn.) In [5], p. 29, Falconer lists certain properties of the Hausdorff dimension
(defined in Section 2.2, op. cit.), which he suggests should be taken as conditions for any
reasonable definition of dimension.

Based on this, we define a fractal dimension to be any function dimF which assigns
to a nonempty metric space (X, d) a non-negative real number dimF (X, d), also written
as dimF X if this does not lead to confusion, such that the following axioms are satisfied:

F.0. dimF X ≥ dimX;
F.1. (Lipschitz Subinvariance) If f : X → Y is Lipschitz with respect to dX and dY ,

then
dimF (f(X), dY ) ≤ dimF (X, dX);

F.2. (Finite Stability) If X = X1 ∪X2, then

dimF X = max{dimF X1,dimF X2};

F.3. If X is a singleton or a relatively open k-dimensional Euclidean ball for some
natural number k, then dimF X = dimX.

The fractal dimension dimF is called σ-stable whenever it satisfies the axiom

F.2′. (σ-Stability) If X =
⋃∞
i=1Xi, then

dimF X = sup
i∈N

dimF Xi.

We have added Axiom F.0 (compare with [10], p. 107), we have omitted monotonicity,
since it is implied by the Finite Stability Axiom F.2, and we have replaced the conditions
concerning the dimensions of open subsets of Rn and smooth manifolds by Axiom F.3. The
Hausdorff dimension satisfies this new set of axioms (a proof for Axiom F.0 can be found
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in [10], p. 107). Aside from the Hausdorff dimension, the most commonly used fractal
dimension is the Minkowski dimension dimM , also called the box dimension, and denoted
by dimB in [5]. There are various equivalent descriptions of the Minkowski dimension
(see for example Section 3.1 of [5]), some of which are only applicable to subspaces of
Rn, n-dimensional Euclidean space. The Hausdorff dimension is σ-stable, whereas the
box dimension is only finitely stable, and dimM ≥ dimH (see [5]). The fact that dimM

satisfies these axioms, is mentioned on page 44 of [5].
For self-similar fractals which satisfy the open set condition these two dimensions

coincide. This is in particular true for many IFS-fractals. Moreover, for such self-similar
fractals these dimensions also agree with the similarity dimension as introduced on p. 64
and 65 of [12]. This provides us with a quick way to calculate the fractal dimension of such
fractals. However, note that although the similarity dimension is most easily understood
and therefore also most well-advertised, this dimension does not satisfy the conditions
above (in particular, Axiom F.2) for arbitrary self-similar sets.

Definition 1.1. Let A be a subset of (X, d).

(i) The set A is a fractal provided that for some fractal dimension dimF

dimF A > dimA.

(ii) The set A is locally fractal at x ∈ A if for every neighbourhood U of x in A there
exists a neighbourhood U0 ⊆ U of x in A such that U0 is a fractal.

(iii) The set A is locally fractal if A is locally fractal at x for every x ∈ A.

The reader will recognize the first part of this definition as one of the common ways
to define the notion of fractal. However, if one also likes to think of fractals as spaces
with arbitrary fine structure at all levels, this does not fully capture that, as one might
take a union of a fractal with a space which is not fractal, but of a lower dimension. This
will still be a fractal by this definition. To distinguish this from spaces for which every
open subset is fractal, we introduce the notion of being locally fractal (where the word
“locally” is used as in “locally connected”).

Sometimes it is convenient to say (in the obvious sense) that A is a fractal, locally
fractal at x, or locally fractal, with respect to dimF .

Proposition 1.2. If A is a compact fractal, there exists a point x ∈ A such that A is
locally fractal at x.

Proof. We will prove the following slightly stronger statement: Let dimF be a fractal
dimension. For every compact space A which is fractal with respect to dimF there is a
point x ∈ A, such that A is locally fractal at x with respect to dimF .

So let A be a compact fractal with respect to dimF , and suppose, to the contrary, that
for every x ∈ A there is a neighbourhood Ux of x such that there is no neighbourhood
Vx ⊆ Ux of x which is fractal with respect to dimF . Since A is compact, this implies that
A is a finite union of subsets Ux1 , . . . , Uxk

with dimF Uxi
≤ dimUxi

for i = 1, . . . , k.
Thus, by Axiom F.2, dimF A ≤ dimA for every dimF . This contradicts the fact that

A is fractal with respect to dimF .



FRACTAL STAR BODIES 153

The converse of this proposition is not true since one may have A = A0 ∪A1 with A0

locally fractal and dimF A1 = dimA1 ≥ dimF A0, so that dimF A = dimA. However, the
following result is evident.

Proposition 1.3. Every compact set which is locally fractal is a fractal.

It is obvious that generally the converse implication does not hold. However, it is easy
to verify the following.

Example 1.4. Every fractal in Rn which is the attractor of some set of contractions is
a local fractal.

By Axiom F.1 and Definition 1.1, we obtain

Proposition 1.5. Both the notion of fractal set and that of locally fractal set are invari-
ant under bilipschitz maps.

2. Fractal star bodies and their basic properties. Let a0, a1, . . . , ak be points in Rn.
In what follows we shall use the symbol ∆(a0, . . . , ak) to denote the k-simplex in Rn with
vertices a0, . . . , ak; in particular, ∆(a0, a1) is the segment with endpoints a0, and a1,
where a0 6= a1. Note that the k-simplex is k-dimensional when the points a0, . . . , ak are
affinely independent. When this is not the case, we call it degenerate.

We shall refer to a subset A of Rn as a star body if A is compact, A = cl intA and
there is an a ∈ A such that the segment ∆(a, x) is contained in A whenever x ∈ A; that
is, intuitively, every point x of A is visible from a. The kernel of A is the set kerA of all
points of A from which every point of A is “visible”.

For any star body A in Rn with 0 ∈ kerA, let ρA : Sn−1 → R+ be the radial function
of A:

ρA(u) := sup{λ ≥ 0|λu ∈ A}.

We shall consider two families Sn and S̃n defined as follows:

Definition 2.1. A star body A in Rn belongs to the family Sn if and only if 0 ∈ kerA
and ρA is positive and continuous. Furthermore, A ∈ S̃n if and only if 0 ∈ kerA and ρA
is continuous.

It is easy to see that

• if A ∈ Sn then 0 does not separate A, because 0 ∈ intA;
• if A ∈ S̃n, then 0 may separate A and, if it does, then for each connected component
C of A \ {0}, the star body C ∪{0} (that is, the closure of C) belongs again to S̃n.
An easy example is the star body A := (a + Bn) ∪ (−a + Bn), the union of two
translates of the unit ball Bn, for any a ∈ Rn with ‖a‖ = 1.

We say that two metrics d′ and d′′ on a set X are geometrically equivalent if idX is
a bilipschitz map from (X, d′) to (X, d′′). In particular, this means that dimF (X, d′) =
dimF (X, d′′), for all fractal dimensions dimF . For fractal star bodies the metrics in the
following lemma will be relevant.
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Lemma 2.2. For arbitrary metric spaces (Xi, di), i = 1, 2, the following three metrics on
X1 ×X2 are geometrically equivalent: for x = (x1, x2) and y = (y1, y2),

d(x, y) :=
√

(d1(x1, y1))2 + (d2(x2, y2))2;

d̄(x, y) := d1(x1, y1) + d2(x2, y2);

dmax(x, y) := max{d1(x1, y1), d2(x2, y2)}.
Proof. It is easy to see that

d ≤ d1 + d2 ≤ 2d and dmax ≤ d1 + d2 ≤ 2dmax.

Theorem 2.3. For every A ∈ Sn, the function f : graph (ρA)→ bdA defined by

f(u, ρA(u)) = uρA(u) (1)

is bilipschitz.

Proof. Let
α := max{1, sup ρA} and β := min{1, inf ρA}.

It is clear that α ≥ 1 > 0, and the condition that A ∈ Sn implies that β > 0.
Note that graph (ρA) ⊆ Sn−1 × R+, and its metric is the product metric induced

by the Euclidean metrics on Sn−1 and R+. (Note that we take Sn−1 with the subspace
metric, not with the intrinsic metric, which would have been the spherical metric.) By
Lemma 2.2, we may replace this product metric d on Sn−1 × R+ by d̄ or by dmax. So it
suffices to show that

d(f(u, ρA(u)), f(v, ρA(v))) ≤ αd̄((u, ρA(u)), (v, ρA(v))) (2)

and
d(f(u, ρA(u)), f(v, ρA(v))) ≥ βmax{‖u− v‖, |ρA(u)− ρA(v)|}. (3)

Evidently,

d(f(u, ρA(u)), f(v, ρA(v))) = ‖uρA(u)− vρA(v)‖
= ‖u(ρA(u)− ρA(v)) + (u− v)ρA(v)‖
≤ |ρA(u)− ρA(v)|+ ‖u− v‖ρA(v)

≤ αd̄((u, ρA(u)), (v, ρA(v)));

thus, (2) holds.
To prove (3), without loss of generality we may assume that ρA(u) ≤ ρA(v). Let us

consider the triangle ∆(0, uρA(u), vρA(u)) (which is degenerate when u = ±v). Note that
its external angle at the vertex vρA(u) is greater than or equal to π

2 . Therefore,

d(f(u, ρA(u)), f(v, ρA(v))) ≥ max{|ρA(u)− ρA(v)|, ‖u− v‖ρA(u)}
≥ βmax{‖u− v‖, |ρA(u)− ρA(v)|};

thus, (3) holds. We conclude that f in (1) is bilipschitz.

Remark 2.4. (a) The assumption 0 ∈ intA (or, equivalently, ρA is positive) is essential
in Theorem 2.3. Indeed, let A be the union of two discs B1, B2 in R2 with B1∩B2 = {0}.
Then A is a star body with 0 ∈ kerA and ρA is continuous, but bdA is the union of two
circles while graph ρA is homeomorphic to a circle.
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(b) The result of Theorem 2.3 does apply to A ∈ S̃n with the restricted function
f : graph (ρA|C) → {u · ρA(u) | u ∈ C}, for any nonempty compact subset C of Sn−1 \
ρ−1
A (0).

Corollary 2.5. (i) If A ∈ Sn, then

dimF graph (ρA) = dimF bdA

for every fractal dimension dimF .
(ii) If A ∈ S̃n and dimF is σ-stable, then again

dimF graph (ρA) = dimF bdA. (4)

Proof. Part (i) is a direct consequence of Theorem 2.3 combined with Axiom F.1.
For Part (ii), note that since (0,∞) =

⋃∞
k=1[1/k,∞), it follows that

Sn−1 \ ρ−1
A (0) =

∞⋃
k=1

ρ−1
A [1/k,∞).

Let Ck := ρ−1
A [1/k,∞) for every k. Since ρA is continuous, each Ck is compact and

thus by Remark 2.4 (b), the map (u, ρA(u)) 7→ u ·ρA(u) for u ∈ Ck is bilipschitz, whence,
by Axioms F.2′ and F.1,

dimF {(u, ρA(u)) | ρA(u) 6= 0} = dimF graph
(
ρA

∣∣∣ n⋃
k=1

Ck

)
= sup

k∈N
dimF graph (ρA|Ck)

= dimF (bdA \ {0}).

Further, the remaining part of graph ρA is a subset of Sn−1. So Axiom F.3 with Axiom F.1
implies that its fractal dimension is less than or equal to n− 1; thus,

dimF graph ρA = max{n− 1,dimF (bdA \ {0})}.

Let us now look at the right hand side of the required equality (4). By Axiom F.0,

dimF bdA ≥ dim bdA,

while dim bdA = n − 1 (see Corollary 2 on p. 46 in [10]), because A is a body (that is,
A = cl intA).

Finally, by Axiom F.2,

dimF bdA = dimF (bdA \ {0}),

because bdA = {0} ∪ (bdA \ {0}).

Definition 2.6. Let A be a star body.

(i) A is a fractal star body (with respect to dimF ) if and only if bdA is a fractal (with
respect to dimF );

(ii) A is a locally fractal star body (with respect to dimF ) if and only if bdA is locally
fractal (with respect to dimF ).

Since every bilipschitz map is a homeomorphism and thus preserves the topological
dimension, another direct consequence of Theorem 2.3 is the following.
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Corollary 2.7. For any A ∈ Sn and any fractal dimension dimF , A is a fractal star
body with respect to dimF if and only if graph ρA is fractal with respect to dimF . The
same holds if A ∈ S̃n and dimF is σ-stable.

3. Constructions of examples of fractal star bodies. We are interested in construc-
tions of examples of fractal star bodies and even more, of locally fractal star bodies. Our
first starting point for such constructions is the set of continuous real-valued functions on
Rn−1 whose graphs are fractal or locally fractal (see, for instance, [11]). The additional
assumption we require is that the restriction of such a function φ : Rn−1 → R to the
boundary of some cube is a positive constant.

In what follows, (e1, . . . , en) is the canonical basis of Rn.

Example 3.1. Let P be a cube in Rn−1 with facets parallel to the coordinate hyperplanes
and with symmetry center 0. Let diamP < 1.

Let φ : P → R be a continuous positive function with φ(x) = 1 for every x ∈ bdP
such that graphφ is a fractal.

Take the upper half sphere S of Sn−1; let π be its orthogonal projection onto the
hyperplane lin(e1, . . . , en−1) and let S0 := π−1(P ).

It is easy to show that the restriction map π|S0 is bilipschitz. Hence, the product
map (π|S0) × idR+ : S0 × R+ → P × R+ is bilipschitz too, and so is its restriction to
graphφ ⊆ S0 × R+. Since, by the assumption, graphφ is fractal with respect to some
dimF , so is its inverse image. This inverse image is the graph of the function φ ◦ π on
S0, which is equal to 1 on the boundary of S. Its extension by 1 on Sn−1 is positive
and continuous and thus is a radial function of some star body. By Theorem 2.3 and
Corollary 2.4, this is a fractal star body with respect to dimF . Obviously, this is not a
locally fractal star body.

Another way in which we can use functions with fractal graphs to construct fractal
star bodies is through a parametrization of the boundary of a star body by spherical
coordinates. For n ≥ 2, let Xn and pn : Xn → Sn−1 be defined as follows. For n = 2:

X2 := [0, 2π], p2(t1) := (cos t1, sin t1). (5)

If n ≥ 3, then
Xn := [0, π]n−2 × [0, 2π] = [0, π]×Xn−1. (6)

To describe pn, we identify Sn−1 ∩ (e1)⊥ with Sn−2 and, given pn−1 : Xn−1 → Sn−2, we
define pn : Xn → Sn−1 by

pn(t1, . . . , tn−1) := (cos t1)e1 + (sin t1)pn−1(t2, . . . , tn−1). (7)

Note that

pn(0, t2, . . . , tn−1) = e1 and pn(π, t2, . . . , tn−1) = −e1, for any t2, . . . , tn−1.

Moreover,

pn(t1, . . . , tn−2, 0) = pn(t1, . . . , tn−2, 2π), for any t1, . . . , tn−2.

So pn is obviously not bilipschitz on its domain Xn. However, we will show that there is a
dense subset of this domain which can be covered by a countable collection of subsets on
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which pn is bilipschitz. As a consequence of this we will find that for the radial function
ρA : Sn−1 → R+ of a star body, composition with pn does not change the fractal dimension
of its graph, i.e., that dimF (graph ρA) = dimF (graph ρA ◦ pn) if dimF is σ-stable. This
is a useful result as it is often easier to find the fractal dimension of graph ρA ◦ pn than
that of graph ρA.

For n ≥ 2, we will consider the following family of subsets of Xn. For any k =
(k1, . . . , kn−1) ∈ {0, 1}n−1 and ε ∈ (0, π/4), the subset Xn(k, ε) ⊂ Xn is defined by

X2(k, ε) = [k1π + ε, (k1 + 1)π − ε]; (8)

Xn(k, ε) =
n−2∏
i=1

[
ki
π

2
+ ε, (ki + 1)

π

2
− ε
]
× [kn−1π + ε, (kn−1 + 1)π − ε]. (9)

Note that the subsets Xn(k, ε) can be defined inductively as

X2(k, ε) = [k1π + ε, (k1 + 1)π − ε];

Xn(k, ε) =
[
k1
π

2
+ ε, (k1 + 1)

π

2
− ε
]
×Xn−1(k̄, ε),

where k̄ = (k2, . . . , kn−1) and n ≥ 3.

Lemma 3.2. Let n ≥ 2. For every k = (k1, . . . , kn−1) ∈ {0, 1}n−1 and ε ∈ (0, π4 ), the
restricted function pn|Xn(k, ε) : Xn(k, ε)→ pn(Xn(k, ε)) is bilipschitz.

Proof. Let k ∈ {0, 1}n−1 and ε ∈ (0, π4 ) be given. We need to prove that there are positive
αn and βn such that for all t, t′ ∈ Xn(k, ε),

βn‖t− t′‖ ≤ ‖pn(t)− pn(t′)‖ ≤ αn‖t− t′‖.

For p2(t1) = (cos t1, sin t1) (as in (5)), we calculate

‖p2(t1)− p2(t′1)‖ =
√

(cos t1 − cos t′1)2 + (sin t1 − sin t′1)2

≤
√

(t1 − t′1)2 + (t1 − t′1)2 =
√

2 |t1 − t′1|,

where the inequality is obtained by observing that | cos′(t)| ≤ 1 and | sin′(t)| ≤ 1. So we
may take α2 =

√
2.

On the other hand,

‖p2(t1)− p2(t′1)‖ ≥ 1
2

max{| cos t1 − cos t′1|, | sin t1 − sin t′1|}

≥ 1
2

min
s∈[k1π,(k1+1)π]

max{| cos′ s|, | sin′ s|}|t1 − t′1| ≥
√

2
4
|t1 − t′1|,

for both values of k1. So we may take β2 =
√

2
4 . This proves the assertion for n = 2.

By induction, assume that pn−1 is bilipschitz on Xn−1(k̄, ε) (for n ≥ 3 and k̄ =
(k2, . . . , kn−1)).

For the induction step, we need to prove the existence of positive constants αn and
βn such that for t = (t1, . . . , tn−1) and t′ = (t′1, . . . , t

′
n−1) in Xn(k, ε),

βn‖t− t′‖ ≤ ‖pn(t)− pn(t′)‖ ≤ αn‖t− t′‖.

Let t̄ = (t2, . . . , tn−1) and t̄′ = (t′2, . . . , t
′
n−1).
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By the inductive definition of pn in (7),

pn(t)− pn(t′) = (cos t1 − cos t′1)e1 + sin t1pn−1(t̄)− sin t′1pn−1(t̄′).

We will first find the constant αn for the upper bound. By Lemma 2.2 we may replace
‖pn(t)− pn(t′)‖ by | cos t1 − cos t′1|+ ‖ sin t1pn−1(t̄)− sin t′1pn−1(t̄′)‖. Observe that

‖ sin t1pn−1(t̄)− sin t′1pn−1(t̄′)‖
= ‖(sin t1 − sin t′1)pn−1(t̄) + (sin t′1)(pn−1(t̄)− pn−1(t̄′))‖
≤ | sin t1 − sin t′1|+ ‖pn−1(t̄)− pn−1(t̄′)‖,

because pn−1(t̄) ∈ Sn−2.
Since cos and sin are Lipschitz on [k1

π
2 +ε, (k1 +1)π2 −ε], there are positive constants

λ and µ such that | cos t1 − cos t′1| ≤ λ|t1 − t′1| and | sin t1 − sin t′1| ≤ µ|t1 − t′1|.
We conclude that

| cos t1 − cos t′1|+ ‖ sin t1pn−1(t̄)− sin t′1pn−1(t̄′)‖ ≤ (λ+ µ)|t1 − t′1|+ αn−1‖t̄− t̄′‖.

So we obtain the required

| cos t1 − cos t′1|+ ‖ sin t1pn−1(t̄)− sin t′1pn−1(t̄′)‖ ≤ αn(|t1 − t′1|+ ‖t̄− t̄′‖),

by taking αn = max{λ+ µ, αn−1}.
To find the constant βn for the lower bound, take t, t′ ∈ Xn(k, ε). By possibly inter-

changing t and t′, we may assume that if k1 = 0, then t1 ≤ t′1 and if k1 = 1, then t1 ≥ t′1,
so that

sin t1 − sin t′1 ≤ 0. (10)

Since

pn(t)− pn(t′)

= (cos t1 − cos t′1)e1 + ((sin t1)pn−1(t̄)− (sin t′1)pn−1(t̄′))

= (cos t1 − cos t′1)e1 + (sin t1)(pn−1(t̄)− pn−1(t̄′)) + pn−1(t̄′)(sin t1 − sin t′1),

it follows that

‖pn(t)− pn(t′)‖2 = (cos t1 − cos t2)2 + sin2 t1‖pn−1(t̄)− pn−1(t̄′))‖2 +

+(sin t1 − sin t′1)2 + 2 sin t1(sin t1 − sin t′1)(cosφ− 1),

where φ := ∠(pn−1(t̄), pn−1(t̄′)).
Thus, by (10),

‖pn(t)− pn(t′)‖2 ≥ (cos t1 − cos t2)2 + (sin t1 − sin t′1)2 + (sin2 ε)‖pn−1(t̄)− pn−1(t̄′)‖2,

because the omitted term 2 sin t1(sin t1 − sin t′1)(cosφ− 1) is non-negative and | sin t1| ≥
| sin ε| for t1 ∈ [k1

π
2 + ε, (k1 + 1)π2 − ε].

Since

(cos t1 − cos t′1)2 + (sin t1 − sin t′1)2 = ‖p2(t1)− p2(t′1)‖2 ≥ 1
8
|t1 − t′1|2,

as shown earlier in this proof, and

‖pn−1(t̄)− pn−1(t̄′)‖2 ≥ (βn−1)2‖t̄− t̄′‖2,
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we obtain
‖pn(t)− pn(t′)‖2 ≥ 1

8
|t1 − t′1|2 + ((sin ε)βn−1)2‖t̄− t̄′‖2.

Thus, if
βn :=

√
min{1/8, ((sin ε)βn−1)2},

then
‖pn(t)− pn(t′)‖ ≥ βn

√
|t1 − t′1|2 + ‖t̄− t̄′‖2 = βn‖t− t′‖.

This concludes the proof of Lemma 3.2.

Remark 3.3. It is easy to see that for X(k) := Xn(k), defined by

X2(k1) = [k1π, (k1 + 1)π] and Xn(k) =
[
k1
π

2
, (k1 + 1)

π

2

]
×Xn−1(k̄), (11)

and a continuous function f : X(k)→ R,

dimF graph (f |intX(k)) ≥ dimF graph (f |bdX(k)),

for arbitrary dimF .
Indeed, by Axiom F.0, the left hand side is greater than or equal to

dim graph (f |intX(k)) = dim intX(k) = n− 1,

while, by Axioms F.2 and F.3 together with Axiom F.1, the right hand side is less than
or equal to n− 1, because bdX(k) is the union of the relative interiors of all the proper
faces of bdX(k), and so each part of this graph lies within a subspace of Rn which has
dimension n− 1.

Note that the above inequality and reasoning also applies when X(k) is replaced by
any other (n − 1)-dimensional convex polytope in Rn−1 or by a spherical polytope in
Sn−1; for instance, it applies to p(X(k)).

Theorem 3.4. Let A ∈ S̃n. If X := Xn and p := pn are defined by (5)-(7) and

rA := ρA ◦ p, (12)

then
dimF graph rA = dimF graph ρA

for every σ-stable fractal dimension dimF .

Proof. Let X(k) and X(k, ε) be defined by (11) and (8) with (9), respectively. Note that
for k ∈ {0, 1}n−1 and ε ∈ (0, π4 ),

dimF graph (rA|X(k, ε)) = dimF graph (ρA|p(X(k, ε))). (13)

Indeed, by Lemma 3.2, the Cartesian product of p|X(k, ε) and the identity on rA(X(k, ε))
is bilipschitz. Using formula (12) we derive

dimF graph (rA|X(k, ε)) = dimF {(t, rA(t)) | t ∈ X(k, ε)}
= dimF {(p(t), rA(t)) | t ∈ X(k, ε)}
= dimF {(u, ρA(u)) | u ∈ p(X(k, ε))}
= dimF graph (ρA|p(X(k, ε))).

This proves equality (13).
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Now take any sequence (εi)i∈N which converges to 0. Evidently,

intX(k) =
⋃
i∈N

X(k, εi).

Thus, by Axiom F.2′ (σ-stability of dimF ), combined with (13),

dimF graph (rA|intX(k)) = dimF (graph (ρA|p(intX(k)))). (14)

Finally, by Remark 3.3,

dimF graph (rA|intX(k)) ≥ dimF graph (rA|bdX(k)),

so we may conclude that

dimF graph (rA|X(k)) = dimF graph (rA|intX(k)).

Analogously,

dimF (graph (ρA|p(intX(k)))) = dimF (graph (ρA|int p(X(k))))

= dimF (graph (ρA|p(X(k)))).

By (14), this completes the proof.

Corollary 3.5. Let A ∈ S̃n and let dimF be σ-stable. If rA is defined as in (12) then the
star body A is fractal with respect to dimF if and only if graph rA is fractal with respect
to dimF .

Proposition 3.6. Let n ≥ 2 and let Xn and pn be defined by (5)-(7). For every function
r : Xn → R+ the following are equivalent:

(i)n there is a star body A ∈ S̃n such that r = ρA ◦ pn;
(ii)n r is continuous and satisfies the following conditions:

– if n = 2, then r(0) = r(2π);

– if n ≥ 3, then

∗ r(t) = r(t′) for every t = (t1, . . . , tn−1) and t′ = (t′1, . . . , t
′
n−1) with tj = t′j

for j ≤ j0 and tj0 = 0 = t′j0 or tj0 = π = t′j0 ;
∗ r(t1, . . . , tn−2, 0) = r(t1, . . . , tn−2, 2π).

Proof. The equivalence (i)2 ⇔(ii)2 is evident.
Let n ≥ 3. The implication (i)n ⇒(ii)n follows from the properties of pn, as described

after the definition in equation (7) and the inductive nature of this definition.
To show that (ii)n ⇒(i)n, let X := Xn and p := pn. Consider all the pairs of opposite

facets Fi, F ′i of the polytope X: for i ≤ n− 2,

Fi := {t = (t1, . . . , tn−1) ∈ X | ti = 0}, F ′i := {t′ = (t′1, . . . , t
′
n−1) ∈ X | t′i = π};

and

Fn−1 := {t = (t1, . . . , tn−2, 0) ∈ X}, F ′n−1 := {t′ = (t′1, . . . , t
′
n−2, 2π) ∈ X}.

If p2(t1) = p2(t′1) and t1 6= t′1, then {t1, t′1} = {0, 2π}. For n ≥ 3, if pn(t) = pn(t′) and
t 6= t′, then either sin(t1) = 0 and t1 = t′1 ∈ {0, π}, or t1 = t′1 and pn−1(t2, . . . , tn−1) =
pn−1(t′2, . . . , t

′
n−1). It is easy to see by induction that p identifies points on the facets of

X; more precisely, it identifies Fn−1 with F ′n−1 and it collapses parts of the other facets.
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Moreover, p is a closed surjective map and it is not hard to see that Sn−1 has the quotient
topology for X with the equivalence relation induced by the pre-images of p.

So in order to show that r : X → R+ induces a continuous map ρ : Sn−1 → R+, we
only need to show that it is well-defined, i.e., if p(t) = p(t′) then r(t) = r(t′). By (ii)n,
this is indeed the case. Since ρ is a continuous map with values in R+, it defines the radial
function of a star body A ∈ S̃n. Thus (i)n is satisfied. This completes the proof.

It is an open problem whether the condition that dimF be σ-stable is essential in
Corollary 3.5. However, the fact that the function pn : Xn → Sn−1 is Lipschitz on all of
its domain implies that

dimF graph (ρA ◦ pn) ≥ dimF graph (ρA),

for any fractal dimension (we don’t need σ-stability for this inequality). So if the star
body A has a fractal boundary, we will also find that graph (ρA ◦ pn) is fractal. More
generally, we have the following result.

Proposition 3.7. There are rotations τ1, . . . , τn of Rn such that for every A ∈ S̃n, the
graph of ρA is fractal with respect to dimF if and only if there is an i ∈ {1, . . . , n}, an
ε ∈ (0, π4 ), and a k ∈ {0, 1}n−1 such that graph (ρA ◦ τi ◦ pn|Xn(k, ε)) is fractal with
respect to dimF .

Proof. It is not hard to see that there are n rotations τ1, . . . , τn (including the identity)
of Rn such that

n⋂
i=1

τi ◦ pn
( ⋃
k∈{0,1}n−1

bdXn(k)
)

= ∅.

Let {τ1, . . . , τn} be such a collection of n rotations for the rest of this proof.
Suppose that graph (ρA) is fractal with respect to dimF . Since graph (ρA) is compact,

there is a point u ∈ Sn−1 such that graph (ρA) is locally fractal at (u, ρA(u)) by Propo-
sition 1.2. Since

⋂n
i=1 τi ◦ pn(

⋃
k∈{0,1}n−1 bdXn(k)) = ∅, there is an i ∈ {1, . . . , n}, a

k ∈ {0, 1}n−1, and ε > 0 such that u ∈ τi ◦pn(Xn(k, ε)). The function τi ◦pn is bilipschitz
on Xn(k, ε), so dimF (graph (ρA◦τi◦pn|Xn(k, ε))) = dimF (graph (ρA|τi◦pn(Xn(k, ε)))) >
n− 1. We conclude that graph (ρA ◦ τi ◦ pn|Xn(k, ε)) is fractal with respect to dimF .

Conversely, assume that graph (ρA◦τi◦pn|Xn(k, ε)) is fractal with respect to dimF , for
some values of i, k, and ε. Since τi◦pn|Xn(k, ε) is bilipschitz, it follows that graph (ρA|τi◦
pn(Xn(k, ε))) is fractal with respect to dimF , so dimF (graph (ρA|τi ◦ pn(Xn(k, ε)))) >
n− 1. By Axiom F.2 this implies that dimF (graph (ρA)) > n− 1, so graph (ρA) is fractal
with respect to dimF .

Example 3.8. Let n = 2 and let r : [0, 2π] → R be the Weierstrass function (see [5],
p. 148, Example 11.3). For λ ∈ (1,∞) and s ∈ (1, 2), this function r is defined by

r(t) =
∞∑
k=1

λ(s−2)k sinλkt. (15)

Then, for λ large enough, dimM graph r = s and dimH graph r ≥ s − c/ log λ, for some
constant c. So for λ large enough, both dimM graph r > 1 and dimH graph r > 1.
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Defined this way, r is a function with a fractal graph, both relative to dimH and
relative to dimM . However, we don’t necessarily have that r(0) = r(2π), since λ need not
be an integer. We also need r(t) ≥ 0 for all t. So we adjust the function as follows:

r̃(t) :=
∣∣∣∣r(t) + (r(2π) +

t

2π
(r(0)− r(2π))

∣∣∣∣+ γ,

for some constant γ ≥ 0. Then r̃(0) = |r(0) + r(2π)| + γ = r̃(2π) and r̃ : [0, 2π] → R+

is continuous; thus, by Proposition 3.6 for n = 2, there exists a star body A ∈ S̃2

such that r̃(t) = ρA(cos t, sin t) for t ∈ [0, 2π]. Moreover, if γ > 0, then A ∈ S2. Since
the absolute value does not change the dimension of the graph of a function and the
additional summand of r̃ is a Lipschitz function, Exercise 11.2 in [5] says that

dimF graph r̃ = max(1,dimF graph r) = dimF graph r,

for both dimF = dimH and dimF = dimM (for dimH this was also shown in Theorem 1
of [13]). We conclude by Theorem 3.4 that A is a fractal star body with respect to dimF

for both of these dimensions. Moreover, since the graph of the function r is locally fractal
with respect to both dimM and dimH , the same is true for the graph of r̃, and therefore
A is a locally fractal star body with respect to both dimM and dimH .

It is clear that if we replace sin in (15) by cos, we obtain fractal star bodies with
the same dimensions. However, the shapes can be fairly distinct as some of our examples
show. Figures 1, 2, 3, 4, and 5 show examples of these star bodies for different values of
λ, and s, as indicated. In Figure 1 we have taken γ = 0; in all the other figures we have
taken γ = 1.

Fig. 1. Fractal star bodies in S̃2 derived from the Weierstrass function with λ = 2, and s = 1.3.
We used the sin function for the left body and the cos function for the right body.

Fig. 2. Fractal star bodies in S2 derived from the Weierstrass function with λ = 2, and s = 1.3.
We used the sin function for the left body and the cos function for the right body.
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Fig. 3. Fractal star bodies in S2 derived from the Weierstrass function with λ = 3, and s = 1.3.
We used the sin function for the left body and the cos function for the right body.

Fig. 4. Fractal star bodies in S2 derived from the Weierstrass function with λ = 5; s = 1.4 for
the left body and s = 1.5 for the right body.

Fig. 5. Fractal star bodies in S2 derived from the Weierstrass function with λ = 4, and s = 1.7.
We used the sin function for the left body and the cos function for the right body.

4. Operations on fractal star bodies. Let FSn(dimF ) be the subfamily of Sn with
members that are fractal with respect to dimF . Similarly, let FS̃n(dimF ) be the subfamily
of S̃n with members that are fractal with respect to dimF .

It is natural to look for possible operations on Sn or S̃n which preserve

FSn(dimF ), FSn(dimH) or FSn(dimM ),

or the corresponding extended families.
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Transformations of the radial function

Definition 4.1. A continuous function

φ : (0,∞)→ (0,∞)

(or φ : [0,∞)→ [0,∞) with φ(0) = 0) gives rise to a function

Fφ : Sn → Sn

(or, F̃φ : S̃ → S̃, respectively), defined for any A ∈ Sn (or A ∈ S̃n, respectively) by

Fφ(A) = A(φ), where ρA(φ)(u) := φ(ρA(u)) for u ∈ Sn−1.

Theorem 4.2. (i) If φ : (0,∞) → (0,∞) is bilipschitz, then for every fractal dimension
dimF , the function Fφ is a unary operation on the family FSn(dimF ).

(ii) If φ : [0,∞)→ [0,∞) is bilipschitz and φ(0) = 0, then for every fractal dimension
dimF , the function F̃φ is a unary operation on FS̃n(dimF ).

Proof. For Part (i), it suffices to prove that A(φ) ∈ FSn(dimF ). Evidently, ρA(φ)(u) > 0
for all u ∈ Sn−1, that is, A(φ) ∈ Sn. Further, the function gφ : graph ρA → graph ρA(φ)

defined by
gφ(u, ρA(u)) := (u, φρA(u))

is bilipschitz as the Cartesian product of idSn−1 and φ|ρA(Sn−1). Thus,

dimF graph ρA(φ) = dimF graph ρA.

For Part (ii), note that φ is a bijection and φ(0) = 0. It follows that

(ρA(φ))−1(0) = ρ−1
A (0).

Evidently, graph (ρA|ρ−1
A (0)) is a subset of Sn−1 × {0} ⊂ Sn−1 ×R. Therefore, it has

fractal dimension less than or equal to n− 1. The same holds for A(φ). Moreover, since
cl intA = A, there is a connected subset T of Sn−1 with a non-empty interior such that
ρA(T ) ⊆ (0,∞) and consequently, ρA(φ)(T ) ⊆ (0,∞).

Hence, by Axiom F.2,

dimF graph ρA(φ) = dimF graph (ρA(φ) | (Sn−1 \ (ρA(φ))−1(0)),

and
dimF graph ρA = dimF graph (ρA | (Sn−1 \ ρ−1

A (0))).

Since the right hand sides are equal because φ is bilipschitz, the left hand sides are equal
too.

As an example of such a function we consider star duality (see [14], [15]). Let i : Rn \
{0} → Rn \ {0} be the inversion with respect to Sn−1:

i(x) :=
x

‖x‖2
.

For every A ∈ Sn, the star dual A◦ is defined by

A◦ := cl (Rn \ i(A)).

Then
ρA◦ =

1
ρA
. (16)
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Theorem 4.3. Star duality preserves the family FSn(dimF ) for every fractal dimension
dimF .

Proof. Let A ∈ S. We will show that dimF of the boundary of A is the same as dimF of
the boundary of its star dual A◦. Since A is compact and ρA is positive, it follows that
there exists a constant α ≥ 1 such that ρA(u) ∈ [ 1

α , α] for every u ∈ Sn−1.
Let φ(t) := 1

t for 1
α ≤ t ≤ α. Then A◦ = A(φ). By Theorem 4.2 (i) it suffices to prove

that the function φ is bilipschitz. By easy calculation, φ is a Lipschitz function. Since φ
is an involution, it is bilipschitz.

Radial sums. For any two star bodies A,B ∈ Rn the radial sum A +̃B is determined by
its radial function:

ρA+̃B = ρA + ρB

(compare [7], p. 19, and [15], p. 177).

Theorem 4.4. Let L ∈ S̃n. If ρL is a Lipschitz function, then for every A

dimH graph ρA+̃L = dimH graph ρA. (17)

Proof. Let X := Xn and p := pn (see (5)-(7)). Consider the subsets Xn(k, ε) defined in
(8) and (9) for k ∈ {0, 1}n−1 and ε ∈ (0, π4 ). Further, let rA = ρA ◦ p and rL = ρL ◦ p
(see (12)). Then, by Lemma 3.2, rL|X(k, ε) is a Lipschitz function for k and ε as above,
whence by Theorem 1 in [13],

dimH graph (rA+̃L|X(k, ε)) = dimH graph (rA|X(k, ε)).

Thus, by Remark 3.3 and σ-stability of dimH ,

dimH graph (rA+̃L) = sup
k,ε

dimH graph (rA+̃L|X(k, ε)) = sup
k,ε

dimH graph (rA|X(k, ε))

= dimH graph rA.

By Theorem 3.4, this implies equality (17).

Corollary 4.5. Let L ∈ S̃n. If ρL is a Lipschitz function, then

A ∈ FS̃n(dimH)⇒ A +̃ L ∈ FS̃n(dimH).

Corollary 4.5 combined with Lemma 3.10 in [20] yields the following.

Corollary 4.6. If L ∈ S̃n and 0 ∈ int kerL, then

A ∈ FS̃n(dimH)⇒ A +̃ L ∈ FS̃n(dimH).

Quotient star bodies. The notion of quotient star body A/C for A,C ∈ S̃n and C ⊂ intA
was introduced in [14] as a metric counterpart of the topological notion of quotient set.
By Proposition 2.3 in [14],

ρA/C = ρA − ρC .

Theorem 4.4 and Corollaries 4.5 and 4.6 have their counterparts for quotient star
bodies: Theorem 4.7 and Corollaries 4.8 and 4.9, respectively. The proofs are analogous
to those for Theorem 4.4 and Corollaries 4.5 and 4.6, we only replace ρL by −ρC .
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Theorem 4.7. Let A,C ∈ S̃n and C ⊂ intA. If ρC is a Lipschitz function, then

dimH graph ρA/C = dimH graph ρA.

Corollary 4.8. If A,C ∈ S̃n, C ⊂ intA, and ρC is a Lipschitz function, then

A ∈ FS̃n(dimH)⇒ A/C ∈ FS̃n(dimH).

Corollary 4.9. If A,C ∈ S̃n and 0 ∈ int kerC, then

A ∈ FS̃n(dimH)⇒ A/C ∈ FS̃n(dimH).

5. Cylinders and suspensions of star bodies. For any nonempty compact subset A
of the hyperplane (en)⊥ in Rn, we define the cylinder over A by

C(A) := A+ ∆(−en, en).

Evidently, C(A) is isometric to the Cartesian product A× [−1, 1].

Theorem 5.1. If A ∈ FS̃n−1(dimH), then

C(A) ∈ FS̃n(dimH). (18)

Also, the corresponding statement holds for the classes FSn−1(dimH) and FSn(dimH).

Proof. By the assumption, dimH bdA > n− 2.
By Corollary 7.4 of the product formula in [5] it follows that

dimH C(bdA) = dimH bdA+ 1. (19)

But
bdC(A) = C(bdA) ∪ (A+ {−en, en});

hence, by (19), dimH bdC(A) ≥ max{dimH bdA + 1, n − 1} > n − 1. By Corollary 2.7
this implies (18).

If n > 2 and 1 ≤ k ≤ n− 2, we can define the iteration C(k) : Sn−k → Sn of C:

C(1) := C, C(k+1) := C ◦ C(k). (20)

Then, evidently, C(k)(A) is isometric to the product of A and k-dimensional cube. Thus,
by (19),

dimH bdC(k)(A) = dimH bdA+ k. (21)

Next, we want to consider the notion of a ‘geometric suspension’ (the geometric coun-
terpart of the well known topological notion of suspension). We adopt the symbol SA for
this suspension of A.

For any nonempty compact subset A of the hyperplane (en)⊥ in Rn we define the
suspension of A to be the union of two cones over A: for every c ∈ lin(en), let

cone(A, c) :=
⋃
{∆(x, c) | x ∈ A};

then the suspension of A is defined by

SA := cone(A, en) ∪ cone(A,−en). (22)

In what follows, we identify (en)⊥ with Rn−1. Evidently,

A ∈ Sn−1 ⇒ SA ∈ Sn
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and the corresponding implication holds for S̃n. We shall prove the following.

Theorem 5.2. Let n ≥ 3. If A ∈ FS̃n−1(dimH), then

SA ∈ FS̃n(dimH).

The corresponding statement holds for the classes FSn−1(dimH) and FSn(dimH).

Proof. By (22),

bd (SA) = cone(bdA, en) ∪ cone(bdA,−en) = S(bdA).

For any natural number k, we define the subset Sk of bd (SA) to be

Sk := bd (SA) \
((

en +
1
k
Bn
)
∪
(
−en +

1
k
Bn
))

and the subset Ck of C(bdA),

Ck := bdA+ relint ∆
((

1− 1
k

)
(−en),

(
1− 1

k

)
en

)
.

It is easy to show that Sk is bilipschitz equivalent to Ck, and thus, by Axiom F.1, for
every k

dimH Sk = dimH Ck. (23)

Note that
dimH(bd (SA)) = dimH

⋃
k≥3

Sk

and similarly,
dimH(C(bdA)) = dimH

⋃
k≥3

Ck,

because the Hausdorff dimension of the removed parts of the sets S(bdA) and C(bdA)
is smaller (0 and at most n− 1, respectively). Since the Hausdorff dimension is σ-stable,
by (23) and (19) it follows that

dimH bd (SA) = dimH C(bdA) = dimH bdA+ 1 > n.

This completes the proof.

6. Kernels of fractal star bodies. The problem of characterizing star bodies with
kernels of a given dimension was studied, for instance, in [6], [2], and [3]. In this section
we will discuss what values the dimension of the kernel of a fractal star body can take.

We shall prove that the topological dimension of kerA for a star body A ∈ FS̃n(dimF )
is

• less than or equal to n− 1 for arbitrary dimF ;
• less than or equal to n− 2 if dimF is σ-stable.

We begin with the following.

Theorem 6.1. Let A be a star body in Rn. Then, for arbitrary fractal dimension dimF ,

dim kerA = n ⇒ dimF bdA = n− 1.
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Proof. Let a ∈ int kerA, and let A−a be the translated star body. Then by Lemma 2.19
in [20], the radial function ρA−a is a Lipschitz map. Let g := idSn−1 · ρA−a, that is,
g(u) = uρA−a(u) for every u ∈ Sn−1. By Lemma 2.3, g is a Lipschitz map from Sn−1

onto bd (A− a), and thus, by Axiom F.1 and Axiom F.3,

dimF bdA = dimF bd (A− a) ≤ dimF S
n−1 = n− 1,

for arbitrary fractal dimension dimF . Hence, by Axiom F.0, dimF bdA = n− 1.

As a direct consequence of Theorem 6.1 we obtain the following.

Corollary 6.2. If A is a fractal star body, then dim kerA ≤ n− 1.

For σ-stable dimensions we have a stronger result.

Theorem 6.3. Let A ∈ S̃n. If dimF is σ-stable, then

dim kerA = n− 1 ⇒ dimF bdA = n− 1.

Proof. Let H = aff kerA and let E+, E− be two closed half-spaces with E+ ∪ E− = Rn
and E+ ∩E− = H. There are two cases to be considered: when kerA ⊂ bdA, and when
kerA∩ intA 6= ∅. We will first consider the former and then show how the latter may be
reduced to the former.

Case 1: Let kerA ⊂ bdA. Then A is contained in one of the two half-spaces, because it
is star-shaped with respect to every point of kerA. Assume A ⊂ E+.

Let a ∈ relint kerA. Then there exists a ball B with center a such that B ∩ E+ ⊂ A.
We may assume that a = 0, H = (en)⊥, and B = Bn, because otherwise we can replace
A by a suitable homothet of A, whose properties involved in our statement will be the
same as those of A. Also, let

d := sup{‖x‖ | x ∈ A}. (24)

Consider a sequence (φk)k∈N in (0, π2 ) with limk→∞ φk = π
2 , and the corresponding

sequence (Tk)k∈N of cones:

Tk := {x ∈ E+ | ∠(x, en) ≤ φk}.

Let Ck := Tk ∩ bdA and Sk := Tk ∩ bdB. We shall prove that for every k the central
projection ξk : Ck → Sk defined by ξk(x) := x

‖x‖ is bilipschitz.
Evidently, ξk is a restriction of the metric projection (the nearest point map) of Rn

onto B. Thus, ξk is a weak contraction (see [15], Theorem 3.3.4). Hence, it suffices to
show that there exists βk > 0 such that

‖ξk(x)− ξk(y)‖ ≥ βk‖x− y‖ for every x, y ∈ Ck. (25)

For any x ∈ bdA, let γ(x) := inf{∠(−x, b− x) | b ∈ H ∩ bdB}, and let

γk := inf{γ(x) | x ∈ Ck}.

Note that for any b ∈ H ∩ bdB, we have also −b ∈ H ∩ bdB and the plane through b, 0
and x, contains the triangle ∆(−b, x, b). Note that one of its angles is ∠(−b− x, b− x) =
∠(−x, b − x) + ∠(−x,−b − x), so at least one of them is less than π

2 . We conclude that
γk <

π
2 .
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To prove that there is a value for βk such that (25) holds, take x, y ∈ Ck and let
x′ = ξk(x), y′ = ξk(y). Let ψ := ∠(x, y). It is clear that ∠(x′, y′) = ψ and ψ ≤ 2φk < π.
We may assume that x 6= y and ‖x‖ ≥ ‖y‖. Let now y′′ ∈ pos y ∩ conv ({x} ∪H ∩ bdB).
Since y ∈ bdA, it follows that y′′ ∈ ∆(0, y).

If
ψ ≥ π

2
− γk,

then

‖x′ − y′‖ = 2 sin
ψ

2
≥ sin

(π
4
− γk

2

)
· d−1‖x− y‖,

since ‖x′‖ = ‖y′‖ = 1. So in this case we may take βk := sin(π4 −
γk

2 ) · d−1.

Assume now that
ψ <

π

2
− γk. (26)

Let us consider the triangle ∆(x, 0, y) and let δ := ∠(x− y,−y). If δ ≥ π
2 , then

‖x− y′′‖ ≥ ‖x− y‖, (27)

since ∆(x, y′′) is the longest side in the triangle ∆(x, y′′, y). If δ < π
2 , then by the rule of

sines for ∆(x, y′′, y), the assumption that ‖x‖ ≥ ‖y‖, and (26),

‖x− y′′‖ =
‖x− y‖ sin δ

sin(∠(y′′ − y, y′′ − x))
≥ ‖x− y‖ sin δ

> ‖x− y‖ sin
π − ψ

2
> ‖x− y‖ sin

(
π

4
+
γk
2

)
. (28)

Therefore, by (27) and (28), we obtain ‖x− y′′‖ ≥ ck‖x− y‖ for ck = sin(π4 + γk

2 ).
Moreover, by the rule of sines for ∆(x, 0, y′′), the minimality of γk, and (24),

‖x− y′′‖
sinψ

=
‖x‖

sin(ψ + ∠(−x, y′′ − x))
≤ d

sin(ψ + γk)
.

Thus, by (26),

‖x− y′′‖ ≤ d

sin γk
sinψ,

whence

‖x− y‖ ≤ d

ck sin γk
sinψ. (29)

Since

‖x′ − y′‖ = 2 sin
ψ

2
=

sinψ
cos ψ2

,

by (29) it follows that

‖x− y‖ ≤ d

ck sin γk
cos

ψ

2
‖x′ − y′‖ ≤ d

ck sin γk
‖x′ − y′‖.

Taking now βk := ( d
ck sin γk

)−1, we obtain the inequality (25) required.
Thus for every k the function ξk is bilipschitz, whence by Axiom F.1 combined with

Axioms F.0 and F.3,
dimF Ck = dimF Sk = n− 1. (30)
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Further,
⋃
k∈N Tk = {0} ∪ intE+, whence

bdA = (H ∩ bdA) ∪
⋃
k∈N

Ck. (31)

By (30), (31) and σ-stability of dimF , we infer that dimF bdA = n− 1.

Case 2 : Let kerA ∩ intA 6= ∅. Then relint kerA ⊂ intA, because otherwise A would
not be star-shaped at points of relint kerA \ intA. Thus, H separates A into two star
bodies A1, A2 such that kerA1 = kerA2 ⊂ bdAi for i = 1, 2. Then, as in Case 1,
dimF bdAi = n − 1 for i = 1, 2. Since bdA ∪ (H ∩ A) = bdA1 ∪ bdA2, it follows from
Axiom F.2 that max(dimF (bdA,n − 1) = n − 1. Hence dimF bdA ≤ n − 1, and thus
dimF bdA = n− 1 by Axiom F.0.

Corollary 6.4. If dimF is σ-stable and A ∈ FS̃n(dimF ), then dim kerA ≤ n− 2.

The following simple example shows that for the Hausdorff dimension the upper bound
in Corollary 6.4 cannot be decreased.

Example 6.5. If A0 ∈ FS̃2(dimH), then by Corollary 6.4, dim kerA0 = 0 (such a star
body A0 exists, see Example 3.8 for instance).

For n > 2, A0 can be embedded isometrically in lin(e1, e2). Define

An := C(n−2)(A0),

(as in (20)). Then dim kerAn = dim kerA0 +n−2 = n−2, because kerAn is the product
of kerA0 and an (n− 2)-dimensional cube.

Hence, for every n ≥ 2 there exists an An ∈ FS̃n(dimH), with dim kerAn = n− 2.

Remark 6.6. It is not clear whether the condition in Corollary 6.4 that dimF be σ-stable
is essential. In order to prove that it is essential one would need to construct an example
of a star body with dim kerA = n− 1, for which the boundary is fractal with respect to
dimM for instance. Whether such fractal star bodies exist is still an open problem.
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