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Abstract. In the paper the motion of a fixed mass of a viscous compressible heat conducting
fluid is considered. Assuming that the initial data are sufficiently close to an equilibrium state
and the external force, the heat sources and the heat flow through the boundary vanish, we
prove the existence of a global in time solution which is close to the equilibrium state for any
moment of time.

1. Introduction. In this paper we examine the global motion of a drop of a viscous
compressible heat conducting fluid in the general case, i.e. without assuming any condi-
tions on the form of the internal energy per unit mass e = e(p,6). Here p = p(z,t) and
0 = 0(x,t) (where x € Q, t € (0,T), Q; C R? is a bounded domain of a drop at time t)
are the density and the temperature of the drop, respectively.

Next, let v = v(z,t) denote the velocity of the fluid, p = p(p,0) the pressure, ¢, =
¢v(p, 0) the specific heat at constant volume, p and v the constant viscosity coeflicients,
» the constant coefficient of the heat conductivity, po the external (constant) pressure.
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Then the motion of the drop is described by the following system of equations (see [1], [2]):

plve + (v V)v] —divT(v,p) =0 in Q7
pt +div(pv) =0 in QT
pcy (0 + v - VO) — 5Af + Opg divw
3
— BN (0, +0j0)? — (v = p)(dive)2 =0 in O
(1.1) we .
Tn = —pon on ST,
_ Pt aT
ven=— on S,
Vol
0 -
g—n =0 on ST,
Plicg =ro, |,y =10, 0],y ="t in €,
where Q7 = Useo.r) 2 x {t}, ST = Useo.r) St x {t}, St = 0u; o(z,t) = 0 describes
St (at least locally), i is the unit outward vector normal to the boundary, i.e. i = ‘g—;,

Q=,_,=Q. In(L1) T ="T(v,p) = {Ti;}ij=123 = {205 (v) + (v — p)di; dive —
Pdij}ig=123, where S(v) = {Si;(v)}ij=123 = {5 (Via; +Vje)}; o105

Finally, we assume that p, > 0, pg > 0 for p > 0, 6 > 0.

Let us introduce the Lagrangian coordinates as the initial data to the Cauchy problem
dr
dt

Then, we obtain the following relation between the Eulerian x and the Lagrangian &
coordinates of the same fluid particle:

v(z,t), x‘t:():ﬁe(l.

t
(1.2) r=¢ +/ u(&,t) dt’ = Xy (€, ),
0
where u(§,t) = v(X,(&,t),t).
Let Q be given. Then by (1.1)5, Q; = {z € R? : Xu(&,t), € € Q} and Sy =

{z eR3:2=X,(£t), £€ S =00} By the continuity equatlon (1.1)2 and the kinematic
condition (1.1)5 the total mass in conserved, i.e.

/Qt p<x,t>dx=/ﬂpo<f>dsz,

where M is a given constant.
The aim of this paper is to prove the existence of a global-in-time solution to prob-
lem (1.1). For this purpose we have to introduce an equilibrium state.

DEFINITION 1.1. By an equilibrium state we mean a solution (v, p, 6, ;) of (1.1) such
that v =0, 0 = 0., p = pe, & = Q¢ for t > 0, where p., 0, are positive constants
satisfying the state equation

(1.3) p(pe, 0e) = po,

and 2, is a domain of volume |[Q.| = M
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To prove the global-in-time existence of solutions to problem (1.1) we have to restrict
to looking for a solution which is close to the equilibrium state. Therefore we introduce

Po=D—Do, Os=0—0., ps=p—pe.

The paper consists of three sections. In Section 2 we present notation and auxiliary
results, i.e. the local existence theorem for problem (1.1) proved in [11] and a differential
inequality for the local solution proved in [13].

Section 3 contains a few auxiliary lemmas and the main result of the paper — The-
orem 3.7 which yields the global existence of solutions of problem (1.1), close to the
equilibrium state.

The global motion of a viscous compressible heat-conducting fluid bounded by a free
surface in R? has been also considered in papers [7]-[10].

In [10] we proved the existence of a global solution (v,#,p) to problem (1.1) such
that ¢(t) + fo dt' < oo, where t € RY, ¢(t) = [vl3 0.0, + 051300, + lPol3,
(t) = vlf 1, + |9 3 1.0, + 113,00, the norms |ul; k.o, for u € {v,0,,p,} are defined
in Section 2. The global existence in [10] was proved under the assumption of a special
form of internal energy e(p, §) per unit mass.

Analogous result for equations describing the motion of a viscous compressible heat-
conducting capillary fluid but without assuming any conditions on the form of the internal
energy e has been proved in [7].

Paper [8] is also concerned with the free boundary problem (1.1) in the case when
the shape of a free boundary is governed by a surface tension. It contains a proof of
the global existence of solutions such that (u,9,,7,) € W22+a’1+a/2(QkT x (kT,t)) x
Wit 2 (s (KT, £)) x O (KT, £]; Wit Qi) ) Wy T4 2972 (@0 (KT, 1)), where
u, 94,1 denote v, 0, p, written in the Lagrangian coordinates { € Qur; a € (3,1), kT <
t< (k+ 1T, ke NU{0}; WZTT/2(Qu0 x (KT, 1)) and Wy T*2T/2(Qup x (KT, t))
denote the anisotropic Sobolev-Slobodetskii spaces.

Papers [6], [12], [14], [15] are concerned with the global existence theorems for free
boundary problems for equations of the motion of viscous compressible barotropic fluids.

Papers [3]-[5] are devoted to the global motion of a viscous incompressible fluids
bounded by a free surface, both with the surface tension ([3], [4]) and without it ([5]).

2. Notation and auxiliary results. First, we introduce some notation. Let

[ullk,o = [lull @) ke N;
lulp.o = llullz,@), p €10, 00];
k—1
w(®)lkp0 =Y 10fu®)lk—i0, k,1€N.
i=0

Let us introduce the spaces

A7, = Lo (iT, (i + 1)T5 H*(Qur)) N Br.o,ys

2 2
Bra.. = () C?([iT, (i + 1)T]; H*7( ﬂ (iT, (i + 1)T; H*9 (Qur)),
=0
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where Q;r is the considered domain at time ¢ =47, i € NU {0} and
CI ([T, To); X) = {u: &lu € C([Ty, To); X)},
LY(Ty, To; X) = {u: d)u € Lo(Th, To; X)}.
We define
AT7Q0T = AT,Q and BT7QOT = BT7Q.

In order to formulate the local existence theorem rewrite problem (1.1) in the La-
grangian coordinates as follows:

nu — div,, Ty (u,p) =0 in Q7
ne +ndivyu =0 in Q7
ncy s + Upy divy, u — %Viﬂ
3
(2.1) -5 €z - Veu; + &g, - Veu:)? — (v — p)(div, u)? =0 in Q7
ij=1

Tu(uvp)ﬁu = —PpoNy on ST7
My - V=0 on ST,
ulyg =0, P,y =100, 1,y = po in &,

where Q7 = Q x (0,7), ST =8 x (0,T), u(&,t) = (X (&,1),1); V(€ ) = 0(X (&, 1),1);
77(§7f) = p(Xu(f,t),t); ﬁu(gat) = T_l(Xu(f,t),t); Xy is given by (12)7 Vu = gzza& =
{&ia,; 0c, bi=1.2,3, Tulu, p) = {11(0z,§k0¢, uj + O, Ek0g, ui) + (v — 1) 0ij dive u—pdij i =123,
divy, u = Vy - u = 05,&,0¢, ui, divy, Ty (u, p) = {BrjgkafkTuij(u,p)}¢7j217273 and 0,,& are
elements of matrix &, which is inverse to the matrix z¢ = I + fot ue(&,t) dt’.

To prove the local existence of solutions we apply the method of successive approxi-
mations taking as zero step functions ug € W2 ™/2(QT) and 9, € WZT*1Te/2(QT)
which are solutions of the following parabolic problems:

ugt — divD(ug) =0 in QT
(2.2) D(uo)no = (p(po, o) — po)no on ST,
u0|t:0 =g in Q,

(where D(ug) = {21555 (uo) + (v — p1)di; div g }4, j=1,2,3) and
Yoy — 2xA9 =0  in Q7

(2.3) o - Vedo = 0 on ST,
Jo|,_, = 6o in Q,

where 79 is the unit outward vector normal to S.
Functions up and ¥y satisfy the estimates (see [11], estimates (4.3) and (4.5)):

(2.4) HUOH,%\T_Q < Ci(D)[llp(po, bo) —po)ﬁong/z,s + HUO||§,Q

+ [[uor (0) 17,0 + [luow (0)I5.0] = Fu(t)
and
(2.5) 19001%4s.0, < c2(T) (160]13.0 + [00: (0)]17.0 + 902 (0)1[5.2) = F2(T),
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where C; and C5 are positive continuous increasing functions of T'; ug¢(0), ugs (0), 6o¢(0),
Yo (0) are calculated from (2.2) and (2.3).
Finally, ng is a solution of the problem

Mot + M0V, - uo =0 in Q7

m0l,_y = Po in Q.
Next, assume that
(26) pr1 < po < p2, 01 < 0y < Oy for all £ € Q;
1
(2.7) o1 < (0. 0) < o9 for p € (p1,p2), 0 € (61,62)
and define

1
Hy =02+ — + |lpoll3.0 + llvoll3.0 + 1603
(2.8) p1 lpoll2,0 + [[voll2,0 + [100ll2,0

+ ue(0)[13 o + 196 (0113 o + [l (0)[1F. + 196 (0) 1§ 2 < Ho,
where u:(0), ug(0), 9:(0), 94(0) are calculated from (1.1); and (1.1)2, respectively;
Hy > 0 is a constant. Then the following theorem holds.

THEOREM 2.1 (see [11], Theorem 4.2). Assume that v, po,fo € H%(Q); po,fo > 0;
(0), 94(0), u0: (0), 9o¢ (0) € H(Q); ure(0),34¢(0), uoee (0), 901 (0) € L2(Q); S € H2,
p € C3(R?), ¢, € C%(R?), ¢, > 0. Let assumptions (2.6), (2.7) and the following compat-
wbility conditions be satisfied:

(2.9) D(vo)nio = (p(po, o) — po)no on S,
(2.10) no - V§90 =0 onS.
Assume that Fy(t) + Fa(t) < A fort < T, where A > 0 is a constant depending also
on Hy (i.e. there exists a positive continuous increasing function F = F(Hy) satisfying
F(Hy) < A). Then there exists T > 0 (depending on A) such that there exists a unique
solution u,¥ € Arq, n € Bro of (2.1) and

[ullPagq + 190%,, < A,

9113, < 91(A),

where 11 is a positive continuous increasing function of A.
Now, in view of Lemmas 3.5, 3.6, 2.3 of [11] and Theorem 2.1 we obtain

LEMMA 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then for a sufficiently
small time T of the local existence, the local solution of problem (2.1) satisfies the estimate

[ s 2 v B 7% -
(2.11) < Ua(A,T) (lwoll3. + 10013 0 + llpo0ll3 o + llue (0)I1F o
+u (O3 0 + 19:(0)1F o + 192 (015,

where 5 = 0 — Oc, N5 =1 — pe, 050 = 00 — O, poo = po — pe; e and p. are given by
Definition 1.1.
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Now, we recall the differential inequality proved in [13]. To derive this inequality we
use a partition of unity ({Q:},{¢:}), @ € Ui pun s Sserqun Gi(z) = 1 for z € Q,
where §;, i € M, are interior subdomains and 2;, ¢ € N, are boundary subdomains, i.e.
Q; cQforie Mand ;NS # @ for i € N. We can assume that ¢;(¢) = 1 for & € &y,
where @, is such that &; C €.

Consider now a boundary subdomain Q; (which we denote for simplicity by Q) and
let 6c®;NScOQNS,S=S8NQ. Introduce local coordinates connected with {¢} by

(2.12) k= car(§ — Br), azr=nx(B), k=1,2,3,
where {ay;} is a constant orthogonal matrix such that S is determined by
ySZF(ylayQ)a FEHS/Q

and
QNQ={y: |yl <d i=1,2 F@)<ys < Fy)+d, v = (y1,12)}.

Next, we introduce functions v/, 9" and n’ by

where £ = £(y) is the inverse transformation to (2.12).
Further we introduce the transformation of variables, z = ¥(y), by

Zi = Yi, 1:1327 23:y37ﬁ1(y)7 yGQ,

where F is an extension of F to €.

Let
Q=0(QNQ) ={z:|z]<d i=1,2 0<z <d}
and § = ¥(S).
Define

a(z) = ul(y)‘y:q}—l(z)’ 19(2) = ﬁ/(y)‘y:q},](z), 77(2:) = n/(y)‘y:‘yfqz)'

Let Vi = &, 2ie, Va, f=x—1(2)’ where x (&) = U(¢(&)) and y = (&) is defined by (2.12).

Introduce also the notation

(&) = w(€)C(€), Vo(€) = 05(£)C(E), To(8) =no(€)C(E), €0, QNS =g,

i(2) = @(2)((2), Vo (2) = Vo (2)C(2), 710(2) = e (2)((2), 2€Q, QNS £ 2,
where 6(2’) = C(&)‘gzx—l(z)'

Next, assume that

(2.13) p1 < p(z,t) < pa2, 61 <0(x,t) < by
for € Q, t € [0,T] (where T is the time of the local existence) and introduce the
functions:
(2.14) B(t) = |U|§,O,Qt + 05 g,O,Qt +1po g,O,Qtv
(2.15) o(t) = |U|§,1,Qt + |00‘§,1,Qt + HPo”g,Qt =+ Hpatng,ﬂt + ”patt”iﬂtv
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o) => / pla;(9]v)? +b;(0! ps)? +¢;(0]0,)?] d

Q¢

Jj=0

i Do PCy
+‘/§2t pvtt+ pppcgrtt—'_ 9 93&)
o~ Do o Cy a9
+ Z{/ﬂ 3 {U(Dgu)z—i- —n"(D i0)2 + —”ﬂ (Dgﬁg)Q}Adg
-2 DPon ~2 NCy 39
/Q (nut§ + nn natf + 9 ﬁatf)Adf}

(2.16) + Z{ /Q ca (D202 + 221 (D2 )7 + 77; (D2d,)%| 7 dz

R D2t [ (Pt B0 ) 0
' a; N 1N ]

where a;, bj, ¢; (j = 0,1), d, &, (a: 1< |a| <2), & fa, Gas ha (@ :0<]|a|] <1) are
positive constants depending on p1, pa, 01, 02, i, v, 2, cy, p, ||S|l5/2, T, fOT HvH%Qt dt and
the constants from the imbedding theorems and the Korn inequalities (which depend
on O, t <T); Aand J are the Jacobians of transformations z = z(¢) and = = z(2),
respectively.

By 7 we denoted in (2.16) 21, 29, i.e. 7 = (21, 22) and by n we denoted z3. Moreover,
« is a multiindex and

ololf olal f
DY f = o
ef = veroegoey = aaag
N olal f o
D, f= Wa la| = ;am fed{a,n,,95}.

The following lemma holds.

LEMMA 2.3 (see [13], Theorem 2). Let v > tp > 0, ¢, > 0, 5 > 0, ¢, € C*(R?),
p € C*(R?), p, >0, pg >0 for p,0 >0 and let assumption (2.13) be satisfied. Moreover,
assume that

/onvo-<a+bx§)d5:o,

where a and b are arbitrary constant vectors.
Then for the local solution (v,0,p) of problem (1.1) such that u,¥, € Arq and
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Ne € Bra, the following differential inequality is satisfied

d t
(2.17) d—‘f +c® <y [¢(1 +¢%) + / 10113 0, dt'}b for t < T,

where T is the time of the local existence, cy and c1 are positive constants depending on
the same quantities as constants G, b], ¢ (1=0,1), d, e (1<]al £2), € fa, Ga, ha
(0 < l|a| <1) from formula (2.16).

3. Global existence. Let us introduce the spaces
N(t) ={(v. 05, p5) : $(t) < oo},
t
M(0) = {(0.60,.00) s 600+ [ @t at' < o},
0

where ¢ and ® are given by (2.14) and (2.15), respectively.
From the definition of ¢ (see (2.16)) it follows that

(3.1) c20(t) < o(t) < c3p(t) fort < T,

where ca, c3 > 0 are constants depending on the same quantities as constants cg and c;
from inequality (2.17).
In view of (3.1), estimate (2.11) from Lemma 2.2 yields

6(t) + / B(t') d’ < c40(0),

where ¢4 > 0 is a constant depending on the same quantities as ¢o and c3 and on A.
Hence we obtain the lemma.

LEMMA 3.1. Let (1},90—7[)0) S N(O), S € H5/2, u0t7190t € Hl(Q), uOtt,ﬁott S LQ(Q)
(ug, Yo are solutions of problems (2.2) and (2.3), respectively), ¢, € C*(R?), ¢, > 0,
p € C3(R?). Let assumptions (2.13), (2.7) and compatibility conditions (2.9), (2.10) be
satisfied. Moreover, assume

(3.2) ¢(0) <e.
Then the local solution (v,0, p) of problem (1.1) is such that (v,0,,p,) € M(t) fort <T

(where T > 0 is the time of the local existence) and the following estimate holds

t
(3.3) ¢(t)+/0 () dt' < 0235 for t < T.

Another consequence of Lemma 2.2 is the remark.

REMARK 3.2. Estimate (2.11) and assumption (3.2) yield

¢ T 1/2
w6 ) dt!| < eV ( JAE dt’)
0

< T2 [Ua(A T)0(O)] ¥ < TR 202 (A, 1) = o262,

where 3 is a positive continuous function, c; > 0 is a constant from the imbedding
theorem depending on €.
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Hence, relation (1.2) implies that both the shape and the volume of ; do not change
much for ¢ < T and the constants ¢; (i = 0,...,6) can be chosen independently of time
fort <T.

Now, we prove

LEMMA 3.3. Let the assumptions of Lemmas 2.3 and 3.1 be satisfied. Then there exists
a constant po > 0 (depending on the same quantities as cy, . .., cg) such that
(3.4) B(t) < p(0)e Ho! for t <T
where T > 0 1is the time of the local existence.

PRrOOF. For ¢ sufficiently small inequalities (2.17) and (3.3) yield

do
— ¢ <0.
di +crd < 0
Since ¢ < c3® (where c3 > 0 is the constant from (3.1)), we get (3.4) with po = c7/cs.

This concludes the proof. m
COROLLARY 3.4. By estimate (3.1) inequality (3.4) yields
o(t) < Z—%(o)e—uot for t < T.
2

Lemma 3.3 suggests that the solution can be continued to the interval [T, 27]. How-
ever, to do this we must have the sum of the right-hand sides of (2.4) and (2.5) with
initial conditions at T' estimated by A.

Let

g1(t) = [uo (30 0 G1(1) = [uo(®)3.1. — luo®) 20
92() = [0~ 0B Galt) = [Pa() 1.0
where uy and ¥y are solutions of (2.2) and (2.3), respectively.
LEMMA 3.5. Let assumption (3.2) be satisfied. Moreover, let
91(0) < ax,
where a; > 0 is a constant (not necessarily small). Then for e sufficiently small we have

g1(t) <ay fort <T.

PROOF. Repeating the argument from [12] (see Lemma 3.8) we obtain the inequality

1d
(3.5) 5 7791 () + esGi(t) < collpooll5.0G1(8) + cro(lpoollf + 100]17 )
By assumption (3.2), estimate (3.5) yields
1d ¢
(3.6) 5 00 + ESGl(t) < cipe

for € so small that coe < cg/2.
Let t,. = inf{t € [0,T] : g1(¢t) > a1}. Then ¢1(t) > a3 in an interval (t.,t), where
t < T. Integrating (3.6) over (t.,7) (7 < ¢) and using the estimate G; > g1 we get

g1(t) + 08/ g1(t") dt’ < g1(ts) + 2c10e(T — o).
¢

*
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Hence
g1(t) + cgon (7 — ti) < ag + 2c10e(T — ty).
Assuming that ¢ is so small that 2¢1pe < cga; we obtain
g1(1) <ap fort, <7 <t

a contradiction.
This completes the proof. m

LEMMA 3.6. Let
g2 (0) S a2,

where as > 0 is a constant. Then
g2(t) <ag fort <T.
The proof of Lemma 3.6 is analogous to that of Lemma 3.5.
Now, we prove the main result of the paper.

THEOREM 3.7. Let v > zpu > 0, 5 > 0, ¢, > 0, ¢, € C*(R?), p € C3(R?); p, > 0,
pg > 0 for p,0 > 0 and assume that there exist pe > 0 and 0. > 0 satisfying equation (1.3).
Let (v,05p5) € N(0), S € H52; ug(0),90:(0) € HY(Q); w0zt (0)904(0) € La(Q) (ug, Yo
are solutions of (2.2) and (2.3), respectively) and let the following compatibility conditions
be satisfied:

[D(vo) — (p(po, o) — po)]70 =0 on S,
ng - V§90 =0 on S,

where ng 18 the unit outward vector normal to S.
Moreover, assume that

(3.7) 9(0) < ¢
I > 0 is a constant such that
(3.8) pe—1>0, 0.—1>0and p1 < pyg < p2, 01 <6y <8y,

where p1 = pe — 1, po = pe+1, 00 = 0. —1, 02 = 0, — 1 (pe,0. are introduced by
Definition 1.1);

QprWanxswkzo

where a and b are arbitrary constant vectors;

AM%ZM

Then for sufficiently small € there exists a global solution of (1.1) such that (v,0,,p,) €
M(t) fort € Ry, S, € H? fort € R, and

(3.9) o(t) < Z—% for t € Ry,
2

where co and c3 are constants from (3.10).
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PROOF. We prove the theorem as in the barotropic case (see [12], Theorem 3.9), step
by step using the local existence in a fixed interval. First, notice that by (2.14) and (2.16),

(3.10) c20(0) < 6(0) < ¢39(0),
where co, c3 > 0 are constants depending on 0, p1, p2, 01, 02, p, Cy, 1, v, 3.
To extend the solution to the interval [T, 2T we prove that

(3.11) Vo € Qu, t€[0,T], p1 < p(a,t) < po,
(3.12) Vo € Q, t€[0,T], 61 <0(z,t) < 0.
By (2.11) and (3.7) we have
lu(®)13.0 + I1- 3.0 + 19 (D50 < ¢2(A,T)e fort <T.

Hence

(3.13) sup [uf? + sup 1512 + sup [0 2 < c(Q)pa(A, T)e,
Qr Qr Qr

where ¢(€2) > 0 is a constant from the imbedding theorem.
Assuming now that ¢ is so small that

(3.14) z—zc(Q)W(A,T)eTﬂ <1,

(where [ is the constant from assumption (3.8)), from estimate (3.13) we get (3.11)—(3.12).
Inequalities (3.11)—(3.12) and Remark 3.2 imply estimate (3.1) with the same constants
¢z and c3 as in (3.10). Thus the assumptions of the theorem, relations (3.11)—(3.12),
Remark 3.2 and Lemmas 2.3, 3.1, 3.3 yield

(3.15) d(t) <cze fort <T.

Hence

o(t) < Be fort<T.
C2

Therefore, in view of Theorem 2.1, Lemmas 3.5, 3.6 and estimates (2.4), (2.5), (2.8) (with
the initial conditions at T"), for A so large that

C1(T) (0161203 + 041) +Co(T)as < A

(where ¢17 > 0 is a constant such that ||(p(p0,90) —po)ﬁ0||§/2’5 < c116(0) < c11e < e11)
there exists a local solution of (1.1) in the interval [T, 2T] and

lalar g, + 1901, + 3,
316) <A (D)o, + Wa(DEa, + 1o (D)0, + a0,

031/}2 (Aa T)
et (DT 0 + et (DG 0 + 1aee(T)IE 2r) < S
where u, ¥,,n, denote v, 8, p, written in the Lagrangian coordinates £ € )7 connected

with Eulerian coordinates x by the relation

t
o=t+ [ uet)ar

Arq. and Br g, are defined in Section 2.



264 E. ZADRZYNSKA AND W. M. ZAJACZKOWSKI

Since by Remark 3.2 the shape of Q, does not change much for ¢ < T', condition (3.14)
is satisfied with the constant ¢(€21) such that
sup |ul? + sup [, + sup |1, |?
Qr Qr Qr
< Q) (lu®3.0, + 1903 0, + 10O 0,) for T <t <2T.
Therefore in view of (3.16) and (3.11)—(3.12) we have

(3.17) Vo € O, t €[0,2T), p1 < p(x,t) < pa
and
(318) Vr € Qt, te [O,QT], 0, < G(I,t) < 05.

Now, we prove that the volume and the shape of ; change in [0, 27"] no more than they
do in [0, T]. To do this we consider fot v(x,t') dt’ for 0 < t < 2T. We estimate fOT v(x, t') dt’
by applying Lemma 3.3 and to estimate fTQT v(x,t') dt’ we use inequality (3.16). Thus,

we have
t T 2T
/v(x,t’)dt’ g/ |v(x,t’)|dt’+/ (e, ) dt’
0 0 T
T 1/2 c-
(3.19) < T2 {012 (/ ||ru||§Q/dt’> +c6351/2]
0 o C2
1/2,.1/2 0120;,/2 =) 1/2,.1/2 CI2C§/2 e
cpran( s )gT : <+c )
((02N0)1/2 ‘e & e

where ¢, c3 are the constants from (3.10), o is the constant from Lemma 3.3 and cg is
the constant from Remark 3.2.

For sufficiently small e estimates (3.17)-(3.19) imply that the differential inequal-
ity (2.17) can be derived in [T, 2T] with the same constants cg,c; and with function
é(t) replaced by é7(t) which has analogous form to ¢(t), but the integrals over
Q, Q; are replaced by integrals over Qp, Qip = {z : x = £ + fOTu(f,t’) dt', ¢ e Q;},
respectively.

From the forms of ¢(t) and ¢r(t) it follows that

QET(T) < [1 + Cl3T||u||?4T,Q](Z_5(T)'
Hence by estimate (2.11), Lemma 3.3, estimate (3.10) and assumption (3.7) we get
(ET(T> S (1 + C13 Z—ST’(ﬁQ(A, T)E) 0366_“0T.
2
Therefore, choosing ¢ so small that

crpe T = (1 + clgc—gng(A,T)e) e T <1,
C2

we obtain

¢r(T) < cse.
Thus, we see that at ¢ = T functions ¢(t) and ¢r(t) are estimated by the same con-
stant cse.

Next, for ¢ sufficiently small, estimates (3.17)—(3.19) also yield inequality (3.3) for
function ¢r(t) (T < t < 2T) with the same constants co and c3. Moreover, also the
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constants ¢; (i = 4,...,12) and po are the same in [T, 27T] as in [0, T]. Therefore, esti-
mate (3.15) and Lemmas 2.3, 3.1 and 3.3 yield

(3.20) or(t) <cze for T <t <2T.

Hence

(3.21) o(t) < z—;“s for t < 2T.

Estimates (3.20)—(3.21) allow to extend the solution on the interval [27, 3T.
Now, assume that there exists a local solution in [0, kT (where k > 3) satisfying

(3.22) ||u||?4TYQjT + W”imﬂ <A forj=1,...k—1,
(3.23) I3y, <v1(A) forj=1,... k-1,
(3.24) oir(t) <ecsze for jJT<t<(j+1)T, j=0,...,k—2,
(3.25) o(t) < Z—zg for t < (k — 1)T,

C3 .
(3'26) ||u||?4Tyng + ||Q90‘|?4T7§2].T + ||770-||28T1Q.7.T S an(A7T)€ for ] = 07 U] k - ]-7

where in (3.24) by ¢;7(T) we mean the function given by (2.16) with the integrals over
Q, Q; replaced by integrals over Qr, Q”T, respectively; dor (t) = ¢(t) for t € [0, 7).
Moreover, assume that the volume and shape of €, change in [0, (k — 1)T] no more
than they do in [0, 7] and estimates (3.11)—(3.12) hold for ¢ < (k —1)T (so the constants
¢i, i =1,...,12 and pq are the same in each [(i — 1)7T,4T], i = 1,...,k — 1). Since the
argument used to show estimates (3.11)—(3.12) for ¢ < kT is the same as for ¢ < T and
for t < 2T, to prove the existence of a local solution in [0, (k 4+ 1)T] it remains to show
that the volume and shape of €; change in [0, k7] no more than they do in [0, 7.
Applying Lemma 3.3 and estimates (3.22)—(3.26) we have, for ¢ € [0, kT

z+1)T kT
(x,t')dt/ / v(x,t) dt+/ u(&, )| dt
[ Z e+ [ et
C12Z(
=0

k-2
(3.27) < /2 012‘33 (1- —poT\1/2 T 1/2 €3 1/2
= (1oc2) 1/2 ¢ ) ;(¢ r(iT))"" + ¢ 025

z+1)T

1/2 c
< T2 )dt’) + cg 351/2]
o

3/2 - 1/2
< ] O TP 0) (L e e )]

3/2 —poT 1/2
G120 /2 1/2( €129 1—e 3
+ co 028 } - € ,LL(l)/Qcé/Q 1-— 01467“07“ té Co ’
where ¢z and c¢3 are the constants from (3.10), g is the constant from Lemma 3.3 and
cg is the constant from Remark 3.2.
Thus, the right-hand side of (3.27) does not depend on k. Therefore, for e sufficiently

small the shape of €, change in [0, k7] no more than it does in [0,7] and the constants
¢i (i=1,...,13) and po are the same in each [T, (i + 1)T] for i =0,...,k — 1.
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Estimates (3.24)—(3.25), (3.27) and Lemmas 2.3, 3.1 and 3.3 give qg(k,l)T(t) < ¢3¢ for

(k—1)T <t <kT and ¢(t) < &¢ for t <KT.

This completes the proof of the theorem. m
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