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Abstract. Finite-size fluctuations in coevolutionary dynamics arise in models of biological as

well as of social and economic systems. This brief tutorial review surveys a systematic approach

starting from a stochastic process discrete both in time and state. The limit N → ∞ of an

infinite population can be considered explicitly, generally leading to a replicator-type equation

in zero order, and to a Fokker-Planck-type equation in first order in 1/
√

N . Consequences and

relations to some previous approaches are outlined.

1. Introduction. Evolution is a biological process ubiquituosly taking place, acting on

on several temporal, spatial, and taxonomic scales. Biological organisms are coded by

their genetic sequence, and their ability to survive, following Darwin, is largely deter-

mined by their genes. However, even the relationship between genotype, phenotype and

a fitness (e.g., defined by the reproduction rate) by no means is simple, as it maps an

enormously high-dimensional space (the state space of all possible genomes) to a much

lower-dimensional phenotype space, and finally to a one-dimensional space of fitness val-

ues.

The extinction of species, as observed in the fossile record, follows a complicated

behaviour [Eld72] including intermittency-like long periods of stasis, the so-called “punc-

tuated equilibria”. It is still at debate whether external or cosmic influences account for

these, or whether a purely dynamic mechanism of the evolutionary and ecological dynam-

ics can produce this stylized fact. In this direction, the Bak-Sneppen model [Bak93] is a

pioneering minimal model for the extinction of species, which however is difficult to relate

to the biological scenario. On the one hand, it provides an intermediate modeling level,

where biological observations can be explained to some extent, but on the other hand,
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a mathematical treatment is still possible [Ban05, Pis97]. On an individual-based level,

the Tangled Nature model [Jen04] approaches closer to biology. While the dynamics at

large will deserve some further decades of research, simplified situations of coevolutionary

dynamics, restricting to a finite number of species can be studied by formal models of

evolutionary processes, and can be solved analytically in many cases to allow for an exem-

plaric insight. In this brief tutorial review, coevolutionary dynamics in finite populations

is formulated within the framework of evolutionary game theory, providing a convenient

common mathematical framework for biological, social and economical evolutionary pro-

cesses of strategies, or genetic types.

1.1. Game theory: The strategy of conflict. Game theory was brought into play by von

Neumann and Morgenstern [Neu53] as a minimal model to explain and predict the be-

haviour of humans in strategic situations, military or economic, assuming fully rational

behaviour. In game theory, more specifically in two-player normal form games, agents

1 . . .N “play” a strategy, out of a finite set of possible pure strategies. They interact with

a partner also playing one of those stragegies, and both receive a (real valued) payoff ac-

cording to a so-called payoff matrix. This is best illustrated with an example. The most

paradigmatic conflict situation described in game theory is the Prisoner’s Dilemma. It is

defined by the payoff matrix

πij =

(

3 0

5 1

)

.(1)

This is to be read as follows. The game is defined between two players, who can adopt two

possible strategies: to cooperate (C) or to defect (D). The players act in parallel and are

not informed about the opponent’s move. Each player P (row player) playing strategy i

then receives the payoff πij when meeting a player using strategy j (column player, O) as

opponent. Obviously, here the conflict situation is symmetric, therefore the payoff matrix

of the opponent’s payoffs is given by the transpose πT
ij . Often both payoff matrices are

combined to

(2) (πP
ij , π

O
ij) =

(

3, 3 0, 5

5, 0 1, 1

)

.

In symmetric conflicts, thereby only redundant information is added. In asymmetric con-

flicts, for obvious reasons often called bimatrix games, the opponent’s payoffs, in general,

can be different. We will analyze such cases in Section 6.

In all cases above, the players play their respective strategy with probability one, i.e.,

they play pure strategies. A straightforward generalization is that players — in a random

and uncorrelated manner — can use mixed strategies, or strategy profiles sn, i.e., possess

a strategy vector (with components (sn)i summing up to one, thus are elements of a

simplex Sn), and gain payoffs which are the corresponding linear combination

un(sn, sm) =
∑

ij

(sn)iπij(sm)j(3)

for playing against one opponent (profile) sn, and

un(sn, {sm}) =
∑

ijm

(sn)iπij(sm)j(4)
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against a set of opponents indexed by m. Now, can mixed strategies exist that are suc-

cessfull against all hypothetical sets of opponents? This brings us to the central concept

of a Nash equilibrium [Nas51]: A Nash equilibrium is a mixed strategy, in which no single

agent can improve its payoff by solely changing its own strategy.

1.2. Nash equilibria. A strict Nash equilibrium (resp., Nash equilibrium) is defined as a

strategy profile s∗ = (s∗1, . . . s
∗
N ) for which each agent’s strategy sn is a best (resp., best

or equal) response to the strategies of the other players s∗−n, i.e.

(5) ∀n∀s∈Sn,s 6=s∗

n
un(s∗n, s∗−n) ≥ un(s, s∗−n)

where > instead of ≥ must hold for a strict Nash equilibrium.

Hereby s∗−n := (s1, . . . sn−1, sn+1, . . . sN ) is called a strategy profile of the co-players

(formally a set of N − 1 profiles, usually it is understood that playing against all co-

players linearly sums the payoffs received playing with each of them; so one can define the

co-profile (s∗−n)k := (N − 1)−1
∑

i 6=n(si)k as a linearly averaged profile of the co-players;

or define un(., s∗−n) as the sum of payoffs against the profile of each co-player).

Nash’s theorem [Nas51] ensures that a normal-form game (as defined above) for a finite

number of strategies and a finite number of players always posesses a Nash equilibrium.

However, it can be degenerate or a mixed strategy (mixed Nash equilibrium). In the above

Prisoner’s Dilemma, ((1, 0), (1, 0)), i.e. both players playing always “defect”, is a Nash

equlibrium; hence two memory-less agents playing it for one round have no incentive to co-

operate. Conversely, the Stag-Hunt game πij =

(

5 0

3 3

)

has two symmetric Nash equi-

libria, ((1, 0), (1, 0)) and ((0, 1), (0, 1)), the Hawk-Dove game πij =

(

(V − C)/2 V

0 V/2

)

with C > V has two nonsymmetric Nash equilibria, ((1, 0), (0, 1)) and ((0, 1), (1, 0)), the

latter is an example of a population where both strategies are present.

1.3. Evolutionary game theory and evolutionarily stable strategies. Decades after game

theory was invented, Maynard Smith and Price [May73] were the first to utilize its ap-

proaches to the understanding of biological conflict situations among whose the emergence

of cooperation [Axe84] among animals and humans still is a continuously active field. In

the dynamical picture of evolutionary game theory, the concept of the Nash equilibrium

has its counterpart in the evolutionarily stable strategies (ESS), which are defined as

a population in which a single mutant (changing to any of the possible strategies or

genotypes) cannot invade the population. In infinite populations, traditionally described

within the framework of replicator equations [Tay78, Hof79, Zee80], ESS appear as stable

fixed points (see [Hof98] for a systematic treatment). In finite populations, however, this

concept has to be refined [Now04, Tay04, Nei04, Wil04, Tra06b]. For a more detailed

introduction into the field of evolutionary game theory, and its recent development, see

the classical textbooks [Hof84, Hof98] and recent reviews [Sza07, Mie07].

2. Microscopic interactions: Game theory based on particle collision models.

The description of social agent behaviour as interaction, or collision, of particles has

been studied by Helbing establishing a quite general framework [Hel92a, Hel92b, Hel96],
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which at that time had not further been taken up within evolutionary game theory or

evolutionary dynamics.

One main limiting assumption of the mean-field type description discussed in the next

sections is that any spatial organization can be neglected in a first order approximation.

This approximation, as well as neglecting age structure and time delay [Alb04], however

is not warranted in general.

2.1. Patchy ecosystems. To describe the full dynamics of ecological and evolutionary

processes, it can be necessary to split up the population into parts, or patches, and to

investigate an intermediate level of subdivided populations [Che03] or metapopulation

dynamics [Hår02]. In general, a rich variety of dynamical scenarios can emerge; thus

simplified models on lattices and graphs have been investigated widely.

2.2. Spatial models. Life typically is organized, to a very rough approximation, as a

covering of the surface of earth, in competition for sunlight, solid ground, or hunting

territory. So it is natural to investigate evolutionary dynamics of individuals located in

a two-dimensional space [Now92], where collective phenomena can emerge [Her94]. An-

nother classical study by Lindgren and Nordahl [Lin94] investigated the spatial Prisoner’s

Dilemma game with strategies of different memory lengths. Spatial structure has been

identified as one possible mechanism to promote cooperation [Now92]. In general, spa-

tial game theory is capable of rich dynamical behaviour [Sza99, Szo04, Sza05, Tra04], as

coarsening, segregation, and spiral waves. Likewise, models for opinion dynamics have

been studied, as the Sznajd model [Szn00].

2.3. Evolutionary dynamics on graphs. The systematic understanding of evolutionary

dynamics on graphs is a still developing field. An early investigation of coevolutionary

dynamics (i.e., including frequency-dependence) on graphs has been given by Ebel and

Bornholdt [Ebe02], investigating the iterated Prisoner’s Dilemma on networks. On the

small-world architecture, Szabó et al. [Sza04] investigated the Rock-Paper-Scissors game

dynamics. In [Lie05, Oht06], fixation properties of evolutionary dynamics on graphs are

studied, and special subgraphs have been identified to enhance or suppress fixation. For

two strategies and non frequency-dependent fitness, Antal, Redner and Sood [Ant06] have

provided exact results for fixation for the case of degree-uncorrelated graphs. Despite

this significant progress [Sza07], a general theory of coevolutionary dynamics on graphs

remains a formidable challenge.

2.4. Unstructured population dynamics: Meanfield approach, or Pólya urn models. The

approximation of an unstructured population implies that individuals are undistinguish-

able (apart from their strategies or genotype), and individuals are chosen randomly from

the population, for death, reproduction, and competition. Hence, the population can be

viewed as a Pólya urn from which individuals are drawn for the stochastic process. All

evolutionary processes discussed for finite populations in the remainder belong to this

class of processes.

3. Microscopic evolutionary processes. Evolutionary processes have been widely

considered in population genetics. For processes in discrete time, an important systematic



COEVOLUTIONARY DYNAMICS IN FINITE AND INFINITE POPULATIONS 21

distinction has to be made between synchroneous or parallel [Baa97] update processes,

as the Fisher-Wright process, and processes with overlapping generations, where one

individual is replaced in each evolutionary step (see Fig. 1).

3.1. Fisher-Wright process. The process defined by Fisher [Fis30] and Wright [Wri31]

in its original form is not frequency-dependent; the fitness of the individuals does not

depend on the state of the population (given by the number of individuals in each of the

strategies). The Fisher-Wright process is defined as follows. In each time step, all individ-

uals reproduce with probabilities proportional to their fitness, until the same population

size N is reached. An important case is given by neutral evolution, where all individu-

als have identical fitness. Hence, the discrete stochastic process that describes the time

evolution resembles a random genetic drift, and no Darwinian principle is incorporated.
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Fig. 1. Discrete stochastic evolution processes: Fisher-Wright process (left) as a typical syn-
chroneous update process, and an overlapping generations process (right). In the Moran process
and Local update the lifetime of the individuals however is nonidentical, due to the stochastic
asynchroneous update. For the transition probabilities see text. The open and closed bullets
can represent two different strategies (in a social system), or two different alleles at a specific
genetic locus (in biology). The generalization to higher numbers of strategies or genetic types is
straightforward.

Of course the Fisher-Wright process can be straightforwardly generalized to the case

where the fitness of strategies depends on payoff gains obtained from game-theoretic in-

teractions with other individuals. The finite population case has been considered recently

by Taylor and Nowak [Tay06]. Here the transition matrix of the Markov process is by no

means sparse; apart from the absorbing boundaries all matrix elements can be nonzero.

3.2. Discrete stochastical processes for overlapping generations. The evolutionary pro-

cesses of Moran or Local update type provide us with a transition probability T± that

the number of individuals i (being in the first strategy) increases or decreases by one,

respectively.

For definiteness, we consider explicitly the Moran evolution dynamics in arbitrary

2×2 games [Cla05]. Given a finite population of N agents (two types/strategies A and B)

interacting via in a game with the payoff matrix

P =

(

a b

c d

)

.(6)
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In the frequency-dependent Moran process, every agent interacts with a representative

sample of the population, yielding the payoffs of A and B individuals as

πA(i) = 1 − w + w
a(i − 1) + b(N − i)

N − 1
,(7)

πB(i) = 1 − w + w
c i + d(N − 1 − i)

N − 1
,(8)

i is the number of A individuals, and 1 − w is a background fitness.

3.3. Moran process. In its original form, also the Moran process [Mor62] is not frequency

dependent. In this birth-death process, in each time step an individual is selected for

reproduction, and subsequently a randomly selected individual dies. Here it is ensured

that the total number of individuals N remains constant.

For two strategies, the Moran process therefore is a one-dimensional Markov process

with a finite number of states from i = 0, . . . , N . Taking up the Moran approach, Nowak,

Taylor, Fudenberg and Sasaki [Now04, Tay04] investigated a frequency-dependent Moran

process, defined as follows: In the frequency-dependent Moran process, selection for re-

production is proportional to the payoff compared to the average payoff, πA(i)/〈π〉. The

probability per time step that a copy of an A agent is newborn then is p+i/N (with p+ as

given in Table 1). It replaces a randomly chosen individual. Here, the fitness is evaluated

after each individual took interaction according to a payoff matrix with all individuals in

the population.

3.4. Local update and imitation processes. An apparent limitation of the Moran process

with respect to biological situations is that individuals in each update step have to com-

pete with the whole population (or, in real systems with a representative sample) of the

population.

A more realistic setting is given by local or pairwise competetive interactions, which

can be called imitation dynamics [Hof00] (in the concept of social strategies) or local up-

date. These processes can be defined in a slightly different manner. In a non-symmetric

definition of the (linear) local update process [Tra05], one individual is selected for re-

production, and the other for death. Then the strategy of the reproducing individual is

changed (or kept) with probabilities that depend linearly on the difference of the pay-

offs of the two interacting individuals. Here, as is usually assumed in evolutionary game

theory, the payoffs are evaluated by playing (on a shorter time scale) with the whole

population, so these payoff differences still are evaluated in a global process.

3.5. Nonlinear response: Local Fermi process. A variant [Blu93, Sza98, Hau05] of the

Local update process arises naturally when the game interaction payoff is one of many

additive contributions to the reproductive fitness. In the case where the external contribu-

tions are large, and consist of many degrees of freedom that act like an external heatbath,

the payoffs of the individuals appear as argument of Boltzmann factors, where a parame-

ter w can be introduced as for the other processes (w → 0 corresponds to weak selection),

and here can be interpreted as a temperature. This pairwise comparison process has been

studied in detail in [Tra06c, Tra07]. See Table 1 for the transition probabilities T± of the

Moran process, Local update, and Fermi process.
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Table 1. Comparison of three microscopic update processes and their respective differential
equations for x := i/N obtained in the deterministic limit of N → ∞ (see Sec. 5.2).

Moran process Local update Fermi process

p+ =
1 − w + wπA

i

1 − w + w〈πi〉
p+ =

1

2
+

w

2

πA
i − πB

i

∆πmax
p+ =

1

1 + e−w(πA
i
−πB

i
)

p− =
1 − w + wπB

i

1 − w + w〈πi〉
p− =

1

2
+

w

2

πB
i − πA

i

∆πmax
p− =

1

1 + e−w(πB
i

−πA
i

)

0 ≤ w ≤ 1 0 ≤ w ≤ 1 0 ≤ w ≤ ∞

Transition probabilities
for increase/decrease of i:

T± = p± i

N

N − i

N
T± = p± i

N

N − i

N
T± = p± i

N

N − i

N

In the N → ∞ limit:

ẋ =
wx(1 − x)(πA

x − πB
x )

1 − w + w〈π(x)〉 ẋ =
wx(1 − x)(πA

x − πB
x )

∆πmax
ẋ = x(1 − x) tanh(

w

2
(πA

x − πA
x ))

adjusted replicator eq. ordinary replicator eq. replicator eq. after [Tra06c]

4. Broadening of distributions in finite populations. For the Moran process, the

strategy distribution is generated only by the inherent stochasticity of the finite popula-

tion. At the borders, for T0→1 and TN→N−1 we assume a small mutation rate µ [Fud04].

While in the infinite population case the population density is peaked at the determinis-

tic trajectory in the sense of a delta distribution, for a finite population it is broadened.

Fortunately, the Moran process allows for an analytical treatment. The stationary distri-

bution for an arbitrary payoff matrix can be expressed via Pochhammer symbols, rising

factorials or gamma functions, for the general case of 2×2 games including nonvanishing

background fitness [Cla05]. For illustration, let us consider the special cases of neutral

evolution, constant fitness, an ‘anticoordination game’ and the Prisoner’s dilemma,

Pn =

(

a a

a a

)

, Pc =

(

a a

c c

)

, PAC =

(

0 1

1 0

)

, PPD =

(

3 0

5 1

)

.

Internal (mixed) vs. external (pure) Nash equilibrium. For frequency dependent fitness

and w > 0, the game can have an internal Nash equilibrium or an equilibrium in one

of the absorbing states. A simple example with an internal Nash equilibrium is the

‘anticoordination’ game with w = 1, P =
( 0 1

1 0

)

. The transition matrix here is

Ti→i+1 = N−i
2N

, Ti→i−1 = i
2N

, describing a random walk with a drift towards the de-

terministic fixed point i = N/2. In equilibrium, we have Pi Ti→i+1 = Pi+1 Ti+1→i for

every i, thus

Pi+1 = P0

i
∏

j=0

N − j

j + 1
= P0

(

N

i + 1

)

.(9)

Pi is a binomial distribution around the equilibrium of the replicator dynamics.
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The Prisoner’s Dilemma has a Nash equilibrium for mutual defection, i.e. i = 0. At the

borders, for T0→1 and TN→N−1 we assume a small mutation rate µ [Fud04]. As b = 0, also

state i = 1 is absorbing for w = 1 (two cooperators are needed to promote cooperation).

Thus a small mutation rate µ has to be assumed also for T1→2. Alternatively one could

assume w < 1.

The four cases are summarized in Table 2. For neutral evolution the decay is very

slow. With constant fitness, the probability decays approximately exponentially. For the

Table 2. The four payoff matrix cases considered in Fig. 2 under the assumption of a small
mutation rate (see text). Without the frequency-dependence introduced by a game, the cases
of constant fitness and neutral evolution known from mathematical genetics are recovered; the
distribution keeps localized (for low mutation rates, mutants stay rare). For the analytical ex-
pressions of the distributions see [Cla05]. The distributions follow approximately a stretched
exponential with the fit exponents γ as given in the table.

Payoff matrix Distribution ≈ exp(−bxγ) Nash equilibrium (NE)?

a = b = c = d
Neutral evolution

Pi ∼ 1
i(N−i)

drift → i = 0 and → i = N

a = b < c = d
constant fitness

≃ exponential γ = 0.87 drift → i = 0

PAC =

„

0 1
1 0

«

≃ binomial γ = 2.07 i = N/2 “internal NE”

PPD =

„

3 0
5 1

«

γ = 0.63 i = 0 “external NE”

10-5

10-4

10-3

10-2

10-1

100

0 10 20 30 40 50

P j
/P

m
ax

j-jmax

Neutral evolution, w=0
Anticoordination game
Constant fitness r=0.5

Prisoner’s Dilemma

-L
og

(P
j/P

m
ax

)

j-jmax

Fig. 2. Reproduced from [Cla05]. The invariant distributions Pj share different decay tails as
a function of the distance j − jmax from the Nash equilibrium jmax. Here r = 1 − w + wa. In
the four cases considered here (shown for N = 100), the distributions can be approximated by
stretched exponentials (which would appear as straight lines in appropriate scaling, the inset
shows that the approximation is reasonable). For higher mutation rates see [Tra06a].
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Prisoner’s dilemma, the decay becomes slower with larger distance, while it becomes faster

for the binomial distribution at the internal Nash equilibrium. The distributions are shown

in Fig. 2. The decay of the distribution can be fitted by a P ≈ exp(−bxγ), γAC = 2.06,

γCF = 0.87, γPD = 0.63. This corresponds to random motion in an anharmonic potential.

5. From microscopic equations to macroscopic equations Corresponding to the

discreteness of states, we first describe the processes by a master equation, then formulate

a Fokker-Planck (Kolmogorov forward) equation for large N , and finally compare the

deterministic equations resulting from the limit N → ∞.

5.1. Limit of large populations: From master equation to Fokker-Planck equation. The

equation of motion (or time evolution equation) for the stochastic process can be formu-

lated in terms of the master equation

P τ+1(i) − P τ (i) = P τ (i − 1)T+(i − 1) − P τ (i)T−(i)(10)

+ P τ (i + 1)T−(i + 1) − P τ (i)T+(i)

for the probability distribution, i.e., P τ (i) is the probability to be in state i at time τ . For

N ≫ 1 we can proceed via a Kramers-Moyal expansion, defining x = i/N and t = τ/N .

Then a formal Taylor expansion of T and ρ(x, t) = N P τ (i) yields, considering only the

two leading terms of the Taylor expansion,

d

dt
ρ(x, t) = −

d

dx
[a(x)ρ(x, t)] +

1

2

d2

dx2

[

b2(x)ρ(x, t)
]

,(11)

a(x) = T+(x) − T−(x),(12)

b(x) =

√

1

N
[T+(x) + T−(x)].(13)

For large, but finite N , this equation has the form of a Fokker-Planck equation. This

allows to generalize the diffusion approximation (see e.g. [Dro01]) to coevolution. Since

the internal noise is not correlated in time as subsequent update steps are independent,

according to the Itô calculus a corresponding Langevin equation reads

ẋ = a(x) + b(x)ξ(14)

where ξ is uncorrelated Gaussian noise and b(x) = 0 for x = 0 and x = 1. We here see

that the noise is multiplicative and frequency-dependent.

5.2. Limit of infinite populations: Replicator equation and adjusted replicator equation.

The leading order term does not vanish and describes the deterministic drift term. Sur-

prisingly, the replicator equation [Tay78, Hof79, Zee81]

ẋ =
wx(1 − x)(πA

x − πB
x )

∆πmax
(15)

is obtained for the Local update process [Tra05], whereas the adjusted replicator equation

ẋ =
wx(1 − x)(πA

x − πB
x )

1 − w + w〈π(x)〉
(16)

is the deterministic limit of the Moran process [Tra05]. For other processes, other differ-

ential equations may be obtained, see Table 1.
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The difference between the two equations may be best illustrated for the Prisoner’s

Dilemma. Here the (ordinary) replicator dynamics reads ẋ = −x(1 − x2), whereas the

adjusted replicator dynamics reads ẋ = −x(1−x2)
1−w

w
+1+3x−x2

. In this case, the stability of fixed

points is preserved, as the additional denominator can be absorbed into a dynamical

rescaling of the time scale, commonly known as velocity transform. However, in asym-

metric conflicts the change of time scale matters, as will be detailed in the next section.

6. Asymmetric and cyclic games. Cyclicity of evolutionary dynamics intuitively is

contradictory to the oversimplified picture of an absolute fitness landscape: any species

having reached the maximal fitness value within a population will outcompete all others,

and no cyclicity or oscillation can emerge. However, in ecological competition, oscillations

of populations are quite generic, as known since Lotka [Lot20] and Volterra [Vol26] (see

also [Mur04]). Of special interest are cases where species cyclically outcompete each other,

as in Dawkins’ caricature of mating strategies (see Sections 6.1–6.2), or the children’s

game Rock-Paper-Scissors, where rock crushes scissors, paper covers rock, and scissors

cuts paper. This situation has been spotted in the territorial behaviour of lizards [Sin96,

Zam00], and also in E.coli bacteria in vitro [Ker02] and in vivo [Kir04]. The Fokker-Planck

equation, in analogy to Sec. 5.1, for the Rock-Paper-Scissors game has recently been given

in [Rei06], and generalizations to other cyclic evolutionary games are straightforward. It

is generally claimed that such cyclic coevolution promotes biodiversity [Csa02, Cla08].

However, its relevance in a more general picture of “evolution at large” remains an issue

still to be investigated.

6.1. Asymmetric conflicts (bimatrix games). As mentioned in the introduction, the pay-

off matrix for the opponent can be different from that earned by the first player. To set

this scenario into work, it is usually required that the game is played between two disjunct

populations (as below, female and male), or that the interaction process itself is asym-

metric, e.g., that one player is “initiative” and gains payoffs different from those earned

in the opponents’ role. Many social and economic situations bear such asymmetries, but

they are often too weak to be significantly extracted from data.

An illustrative example of biological mating behaviour has been given by Dawkins

[Daw76]. Male and female each can occur with two genetic strategies, “fast” (male: phi-

landerer, female: “fast”) and “slow” (male: “faithful”, female: “coy”). The payoff benefit

of a child is assumed to be b for both parents, the total cost of raising an offspring is

(−2c), and the prolonged courtship that coy females insists on add a burden of a to both

parents. Coy females and male philanderers produce nothing and gain nothing. The cost

(−2c) is covered by both parents, except for philanderer males and fast females, where

the female has to growup its offspring alone. This translates into the payoff matrix (with

usual parameter choices a = 3, b = 15, c = 10, see also Fig. 3)

(πM
ij , πF

ij) =

(

(b − c − a, b − c − a) (b − c, b − c)

(0, 0) (b, b − 2c)

)

=

(

(2, 2) (5, 5)

(0, 0) (15,−5)

)

.(17)

If the four conditions a > 0, c > 0, b − c > 0, 2c − a − b > 0 are fulfilled, the game is

cyclic. These conditions correspond to the arrows in Fig. 3. The cyclicity of the game is
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−1
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−1

−1
+1

Fig. 3. Asymmetric payoff matrices for the Battle of the Sexes [Daw76]. Left: Original payoff
matrix suggested by Dawkins. Right: Simplified payoff matrix, identical to the game “Matching
pennies”. In both cases, the left entry is for the row player, and the right entry (upon a common
convention, shifted upwards, to enhance intuitive assignment) is for the column player. Arrows
indicate the cyclic dominance.

preserved if we consider a normalized version (being equivalent to the payoff matrix of

“Matching Pennies” played by two players):

(πM
ij , πF

ij) =

(

(+1,−1) (−1, +1)

(−1, +1) (+1,−1)

)

.(18)

For the cyclicity refer to Fig. 3. Let the cycle start in the lower right corner, where fast

females and male philandrers are present. If males are philanderers, it pays for females to

be coy (lower left corner); insisting on a long courtship period to make males invest more

in the offspring (upper left corner). However, once most males are faithful, fast females

are favored avoiding the costs of courtship (upper right corner). Subsequently, the male

investment into the offspring is no longer justified, philanderers are again favored (lower

right corner), and the cycle continues.

This game exhibits neutrally stable periodic orbits [May87] when described by the

usual replicator equation approach [Tay78, Hof79, Zee81]. This would, according to

Dawkins, lead to an infinitely lasting oscillation of strategies. As Dawkins argues, certain

species (gibbon, stickleback, duck, fruit fly) have, in the course of real evolution, chosen

to follow a fixed pair of strategies; for them the “Battle of the Sexes” has come to a rest.

Of course this models relies on several assumptions, and in the remainder we will analyze

how the conclusions change when considering different evolutionary processes and when

explicitly considering the finiteness of the population.

6.2. Counterintuitive behaviour for the “Battle of the Sexes”. The case of asymmetric

conflicts opens the possibility of a conterintuitive finite-size effect: The sign of the aver-

age of H = −xy(1 − x)(1 − y) (being a constant of motion for the ordinary replicator

equation) changes for the Moran process above a critical population size, whereas the

change remains positive (spiraling outwards) for the Local update and Fermi process in

all finite populations (Fig. 4) [Tra05, Cla06, Cla07]. Hence in the N → ∞ limit the Moran

process shows a deterministic behaviour (that of the adjusted replicator equation), which

is qualitatively different from that of the ordinary replicator equation. The reason is that

the common velocity transformation, which can absorb the normalization denominator of

the average fitness, here cannot be performed, as female and male population earn differ-

ent payoffs and the denominators no longer coincide. The adjusted replicator equations
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Fig. 4. Reproduced from [Tra05]. Drift reversal in the asymmetric game “Battle of the Sexes”.
Shown is the average change of H (which is a constant of motion in the ordinary replicator
equation) for different population sizes. (a) For the Moran process (circles) above a critical
population size the average change of H becomes negative so that trajectories spiral outwards
on average. For the Local update, no drift reversal is observed and for N → ∞ the change of
H approaches zero (shown in the inset in double logarithmic plot). (b): Scaling of the critical
population size with selection pressure w.

here read

ẋ = +2
(x2 − x)(2y − 1)

1−w
w

+ (2y − 1)(2x − 1)
,(19)

ẏ = −2
(y2 − y)(2x − 1)

1−w
w

− (2y − 1)(2x − 1)
.(20)

Hence, if the two populations earn different average payoffs (here they differ by a factor

−1), the fixed point stability of both types of replicator equations can differ.
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