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Abstract. We analyze three simple genetic circuits which involve transcriptional regulation and

feedback: the autorepressor, the switch and the repressilator, that consist of one, two and three

genes, respectively. Such systems are commonly simulated using rate equations, that account

for the concentrations of the mRNAs and proteins produced by these genes. Rate equations are

suitable when the concentrations of the relevant molecules in a cell are large and fluctuations

are negligible. However, when some of the proteins in the circuit appear in low copy numbers,

fluctuations become important and the rate equations fail. In this case stochastic methods, such

as direct numerical integration of the master equation or Monte Carlo simulations are required.

Here we present deterministic and stochastic simulations of the autorepressor, the switch and

the repressilator. We show that fluctuations give rise to quantitative and qualitative changes

in the dynamics of these systems. In particular, we demonstrate a fluctuations-induced bista-

bility in a variant of the genetic switch and and noisy oscillations obtained in the repressilator

circuit.
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1. Introduction. The production of proteins in cells is regulated by networks of in-

teracting genes. Some of these genes code for transcription factors, which are proteins

that regulate the expression of other genes by binding to specific promoter sites on the

DNA. Some of these proteins, called repressors, perform negative regulation, while others,

called activators, perform positive regulation. Post-trancriptional regulation can occur by

translational regulation, or by post-translational regulation such as protein-protein inter-

action, which may modify the function of these proteins. These networks of interacting

genes are at the heart of all processes in cells: from the regulation of the cell cycle to the

various stress responses.

It turns out that genetic networks are typically sparse networks, namely most genes

interact only with a small number of other genes. Also, the networks exhibit some degree

of modularity, namely one can identify recurring modules, which are known as network

motifs [18].

Modules found in nature are often hard to study and fully control. To overcome these

limitations, synthetic networks can be constructed from well-studied components. Ex-

amples of such components are the lactose, the lambda and the tetracycline systems in

bacteria. The synthetic networks are designed to perform desired functions, determined

by their architecture. They do not require the manipulation of the structure of proteins

and other regulatory elements at the molecular level. The genes and promoters are of-

ten inserted into plasmids rather than on the chromosome. Two important examples of

synthetic circuits are the genetic toggle switch and the repressilator.

The toggle switch consists of two genes, which negatively regulate each other expres-

sion. The regulation is performed at the transcriptional level, namely each gene codes

for a repressor protein that binds to the promoter of the other gene. Such system may

exhibit bistability, namely two stable states, where in each state one of the proteins is

dominant and the other is suppressed. A synthetic toggle switch was constructed in E.

coli and the conditions for bistability were examined [6]. The switching between its two

states was demonstrated using chemical and thermal induction. More recently, such cir-

cuit was found to exist in a natural system in which two mutual repressors regulate the

differentiation of myeloid progenitors into either macrophages or neutrophils [11].

The synthetic repressilator circuit, constructed in E. coli, was designed to exhibit

oscillations, reminiscent of natural genetic oscillators such as the circadian rhythms [4].

The repressilator circuit was encoded on a plasmid that appears in a low copy number.

The protein concentrations were measured vs. time in single cells. Oscillations with a

period of about 150 minutes were found, namely extending over several division cycles.

The oscillations were found to be noisy, typically maintaining phase coherence for times

of the order of a single oscillation period.

The dynamics of genetic networks is often simulated using rate equation models. These

are sets of coupled ordinary differential equations, which account for the concentrations

of the mRNAs and proteins in the network. In general, rate equations account for aver-

age concentrations and ignore fluctuations. They are suitable for systems in which the

concentration of interacting molecules are large and fluctuations are negligible. However,

proteins in cells often appear in low copy numbers and may exhibit large fluctuations.
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Moreover, in case of transcriptional regulation, the expression of the regulated gene may

be controlled by a single protein that binds to its promoter. This extends the notion of

low copy numbers and the resulting fluctuations even to the case when there is a large

number of free repressors of a certain type, since only one of them may bind to the pro-

moter at any given time. Recent advances measurement techniques made it possible to

measure the fluctuations in copy number of proteins in single cells [5, 23, 26]. Measure-

ments of protein levels in single cells revealed distributions that depend on the topology

of the regulatory network controlling the particular protein [19].

To account for the fluctuations, simulations of genetic networks should be done using

stochastic methods such as the master equation [10, 16, 17, 20, 21, 22, 23] or Monte

Carlo simulations [7, 9, 16]. The master equation provides the probability distribution

of the concentrations of proteins in a population of cells. From this distribution one

can calculate the average concentrations as well as the correlations and the rates of all

processes. Monte Carlo simulations enable to follow the temporal variations in the level

of gene expression and in the concentrations of proteins in a single cell. These results

enable to extract the noise level and temporal correlation functions. They can also be

used to characterize the dynamics of the system and determine whether it exhibits a

single steady state, multi-stability or oscillatory behavior.

Fig. 1. The three genetic circuits considered in this paper: the autorepressor (a); the genetic
switch (b); and the repressillator (c). The flat-headed arrows denote negative transcriptional
regulation.

In this paper we present deterministic analysis (using rate equations) and stochastic

analysis (using direct numerical integration of the master equation and Monte Carlo

simulations) of three simple genetic circuits: the autorepressor, the toggle switch and

the repressilator (Fig. 1). We show that fluctuations give rise to both quantitative and

qualitative effect in the dynamics of thse circuits.
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The paper is organized as follows. In Sec. 2 we consider the autorepressor and present

the deterministic and stochastic methods used in the paper. In Sec. 3 we study the genetic

switch and in Sec. 4 we analyze the repressillator circuit. The results are discussed and

summarized in Sec. 5.

2. The autorepressor. The autorepressor is the simplest genetic circuit that involves

feedback. It consist of a single gene, denoted by a, that negatively regulates its own ex-

pression. The gene transcribes into mRNAs that translate into A proteins. These proteins

function as repressors. When an A protein binds to the a promoter site, it prevents the

RNA polymerase from binding to the promoter and thus inhibits the transcription pro-

cess. It turns out that genetic networks include a large number of autorepressor modules.

This circuit is thus considered as a network motif [25]. One may speculate that it per-

forms some crucial function in the cell. It was proposed that the role of the autorepressor

is to speed up response times [25] or to reduce fluctuations [2]. Below we analyze the au-

torepressor using deterministic and stochastic methods. We utilize its simplicity in order

to present the methodologies in details.

2.1. Michaelis-Menten equations. The dynamics of genetic networks are commonly de-

scribed using the Michaelis-Menten equations. These equations describe the temporal

variations in the concentrations of the relevant molecules in the cell. Here, we denote the

concentration of protein A in a cell by [A] (by concentration we refer to the average copy

number of A proteins per cell). The concentration of the corresponding mRNA is denoted

by [m]. The Michaelis-Menten equations for the concentrations take the form

˙[m] =
gm

1 + k[A]n
− dm[m],

(1)
˙[A] = gp[m] − dp[A].

The parameters dm and dp (sec−1) are the degradation rates of the mRNAs and proteins,

respectively. The trascription rate is given by gm (sec−1). The rate in which each mRNA

is translated into proteins is given by gp (sec−1). Since A proteins negatively regulate their

own synthesis, the transcription rate is reduced by a factor of 1/(1 + k[A]n). This factor

is called the Hill-function. In this expression, the parameter k quantifies the regulation

strength (determined by the affinity between the repressor and the promoter site). The

exponent n is called the Hill-coefficient. In general, Hill-function models can be derived

from more complete rate equation models. In this case, n is expected to take only integer

values. In fact, n represents the number of copies of the transcription factor, that are

required to be bound simultaneously to the promoter in order to perform the regulation.

The case of n > 1 is often referred to as cooperative binding. In this paper we consider

only integer values of n. However, similar models may also be used to fit empirical data.

In this case, n is simply a fitting parameter which may take non-integer values.

To simplify the analysis of genetic circuits, the mRNA level is often ignored and the

transcription and translation processes are regarded as a single step of protein synthesis

[25]. In this case, the effective production rate of proteins is given by g = gpgm/dm. The
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Michaelis-Menten equations are reduced to

(2) ˙[A] =
g

1 + k[A]n
− d[A],

where d = dp. Ignoring the mRNA level is typically justified under steady state conditions.

However, in the analysis of systems that are away from steady state due to external

signals, or those that exhibit oscillations or large fluctuations the mRNA level should be

included. The Michaelis-Menten equations for the autorepressor exhibit a single steady

state solution for the concentration of A proteins. In case that n = 1, it is given by

(3) [A] =
−1 +

√

1 + 4kg/d

2k
.

This solution is found to be stable for any choice of the parameters.

2.2. Extended set of rate equations. In the Michaelis-Menten equations the negative reg-

ulation process is described by the Hill-function. This description is rather crude and

incomplete. In order to model the regulation process in greater detail we present below

a more complete rate equation model [12]. In this model, we account separably for the

populations of free and bound proteins. The bound A proteins are denoted by r and their

concentration is given by [r].

Consider an autorepressor gene a, encoded on the chromosome, which exhibits no

cooperative binding. In this case the number of bound repressors is in the range 0 ≤

[r] ≤ 1. The concentration, [r], can also be considered as the fraction of time in which the

promoter is occupied by a bound repressor and the transcription process is suppressed.

Therefore the transcription rate is reduced by a factor of (1 − [r]). Ignoring the mRNA

level, the extended set of rate equations takes the form [12]

˙[A] = g(1 − [r]) − d[A] − α0[A] (1 − [r]) + α1[r],
(4)

˙[r] = α0[A] (1 − [r]) − α1[r],

where the parameter α0 (sec−1) is the binding rate of the repressors to the promoter site

and α1 (sec−1) is the their unbinding rate. In the limit in which the binding and unbinding

processes are much faster than other processes in the system (namely α0, α1 ≫ d, g), these

equations can be reduced to the Michaelis-Menten form. In this limit, the relaxation

time of the concentration [r] is much shorter than other relaxation times in the system.

Therefore, one can take the time derivative of [r] to zero, even if the system is away

from steady state. This brings the rate equations to the Michaelis-Menten form [Eq. (2)]

with n = 1 and k = α0/α1. Therefore, Eqs. (4) have the same steady state solution

for the protein A as the Michaelis-Menten equation (2). However, the dynamics leading

to steady state may differ between the two equations. Furthermore, the extended rate

equation model exhibits more flexibility in the sense that it is much easier to insert

additional features into Eqs. (4) than into Eq. (2). For example, it is possible to introduce

degradation of bound repressors by adding the term −dr[r] to the equation for ˙[r] in

Eqs. (4).

2.3. Stochastic analysis. Transcription factors and other proteins, as well as their mR-

NAs in a cell, often appear in low concentrations [9, 17, 8]. In this case, fluctuations in the
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copy numbers of these molecules may play an important role in the dynamics of genetic

networks. To obtain a better description of thse systems, one should take into account

the discrete nature of the molecules rather than using continuous concentrations. More-

over, even in case that some transcription factor appears in a high concentration, the

regulation is performed by a small number of copies that are bound to the promoter site.

The fluctuations in the number of bound transcription factors give rise to large temporal

variations in the transcription rate of the regulated gene.

In order to account for fluctuations in genetic networks, stochastic methods are re-

quired, such as the master equation or Monte Carlo simulations [1, 10, 16, 20, 23]. The

master equation is expressed in terms of the probability distribution P (NA, Nr). This is

the probability for a cell to include NA = 0, 1, 2, . . . free copies of protein A and Nr = 0, 1

copies of the same protein, which are bound to the promoter. The master equation ac-

counts for the temporal variations in the probability distribution. For the autorepressor,

it takes the form [12]

Ṗ (NA, Nr) = gδNr,0[P (NA − 1, Nr) − P (NA, Nr)](5)

+ d[(NA + 1)P (NA + 1, Nr) − NAP (NA, Nr)]

+ α0[δNr,1(NA + 1)P (NA + 1, Nr − 1) − δNr,0NAP (NA, Nr)]

+ α1[δNr,0P (NA − 1, Nr + 1) − δNr,1P (NA, Nr)],

where the g term accounts for the production of proteins and the d term accounts for

their degradation. The α0 (α1) terms describe the binding (unbinding) of proteins to

(from) the promoter site.

In numerical integration, the master equation must be truncated in order to keep

the number of equations finite. This is done by setting a suitable upper cutoff, Nmax
A ,

on the population size of the free proteins. In order to maintain the accuracy of the

calculations, the cutoff should be chosen such that the probability of population sizes

beyond it will be sufficiently small. The master equation exhibits a single steady state

solution, characterized by Ṗ (NA, Nr) = 0 for all NA and Nr. This solution is always

stable [27]. The average concentration of free A proteins can be obtained from

(6) 〈NA〉 =

Nmax

A
∑

NA=0

1
∑

Nr=0

NAP (NA, Nr).

Other properties of the distribution, such as the variance, can be obtained from the

calculation of higher moments.

Another useful approach to the study of stochastic dynamics is provided by Monte

Carlo methods [7, 9, 16]. The simulation dynamics is Markovian. At each instant, the

next process to take place is chosen randomly from all the possible processes, where

each process is assigned with a suitable weight, proportional to its rate. The elapsed

time is then updated accordingly. Unlike the master equation, which accounts for the

entire distribution, Monte Carlo simulations follow the temporal variations in protein

concentrations in a single cell.

In Fig. 2(a) we present the concentration of A proteins vs. time, obtained from the

rate equations [Eq. (4)] and from Monte Carlo simulations. In Fig. 2(b) we show the
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Fig. 2. Results for the autorepressor circuit. (a) The concentration of A proteins vs. time, ob-
tained from the rate equations and from Monte Carlo simulations. The rate equation results
quickly reach a steady state. The Monte Carlo results fluctuate around this steady state. (b)
The steady state probability distribution P (NA) for a cell to contain NA copies of protein A,
obtained from the master equation. The parameters used are g = 0.05, d = 0.001, α0 = 0.01,
α1 = 0.01 and dr = 0 (sec−1).

probability distribution P (NA obtained from the master equation under steady state

conditions.

3. The genetic switch. The genetic toggle switch consists of two proteins, A and B,

which negatively regulate each other at the transcriptional level [Fig. 1(b)]. This ar-

chitecture may lead to two steady states, one dominated by A proteins and the other

dominated by B proteins. When the population of A proteins is much larger than that

of B proteins, the A proteins tend to suppress the production of B proteins. Under these

conditions, the production of A proteins is enhanced, because the declining concentra-

tion of B proteins is not sufficient to suppress it. Therefore, the system approaches a

state rich in A proteins and poor in B proteins. Similarly, the system may approach

a state rich in B proteins and poor in A proteins. Transitions between the two states

may take place in response to a suitable external signal. Spontaneous transitions, due to

random fluctuations, are also possible. To qualify as a switch, the system should exhibit

bistability. In the deterministic description, bistability is defined as the existence of two

stable steady state solutions of the rate equations. This description does not account

for the possibility of spontaneous transitions between the two states. In the stochastic

description, spontaneous transitions are taken into account. Therefore, the condition for

bistability is that the rate of spontaneous transitions (due to random fluctuations rather

than an external signal) is much lower than the rates of all other relevant processes in

the system.
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Genetic switch systems exist in nature, and give rise to different cell behaviors in

different situations. A notable example is the phage λ switch [24]. This switch appears

in λ phages, which infect E. coli bacteria and can exist in two exclusive states, one

called lysogeny and the other called lysis. In addition to natural switches, a synthetic

switch was constructed and studied in E. coli [6]. Numerous studies, using rate equations,

have concluded that cooperative binding is a necessary condition for the emergence of

bistability [3, 6, 28, 29, 30]. Stochastic analysis reveals the reason to this fact. For a switch

without cooperative binding, three peaks are obtained in the probability distribution

function. These peaks corresponds to three possible states for the system: one in which

A is highly expressed, a second in which B is highly expressed and a third in which both

proteins are suppressed (a ’deadlock’ situation) [13, 14]. Monte Carlo simulations show

rapid transitions between these three states. The possibility of simultaneous suppression

of both proteins, prevents the system from functioning as a switch. It causes the system

to exhibit three states of limited stability instead of the two stable states that are desired.

It is found that in switch systems in which the A and B repressors exhibit cooperative

binding, the deadlock situation is removed and bistability emerges. This can be explained

as follows. The deadlock situation results from a simultaneous binding of A and B repres-

sors to the corresponding promoter sites. Without cooperative binding, it is sufficient for

the minority protein to recruit a single copy that will bind and suppress the production

of the dominant protein. In the case of cooperative binding (for example, with n = 2)

the minority protein needs to recruit two copies that will bind simultaneously in order

to suppress the production of the dominant protein. This is much less likely. Therefore,

cooperative binding induces bistability and enables the system to function as a switch.

Apart from cooperative binding, there are several other mechanisms that may stabilize

bistability in genetic switch systems. The most obvious is the exclusive switch, where

there is an overlap between the promoters of A and B, leaving no room for both to be

occupied simultaneously. Such situations are encountered in nature, for example, in the

lysis-lysogeny switch of phage λ [24]. It was shown that in the presence of cooperative

binding, the exclusive binding of A and B repressors enhances the stability of the genetic

switch [29]. This is because in exclusive binding the access of the minority specie to

the promoter site is blocked by the dominant specie. For the exclusive switch without

cooperative binding, rate equations exhibit only a single steady state solution, namely,

the system is not a switch in the deterministic framework. However, in the stochastic

framework the system exhibits bistability and functions as a switch. The distribution

P (NA, NB) exhibits two peaks, one dominated by A proteins and the other dominated

by B proteins. The exclusive binding prevents the possibility of a deadlock situation.

In addition to the exclusive switch, there exist other variants of the genetic switch

circuit (we focus here on systems without cooperative binding). Consider a switch in

which not only free proteins, but also bound proteins experience degradation. Bound-

repressor degradation tends to prevent the deadlock situation in which both A and B

repressors are bound simultaneously. This is due to the fact that degradation removes the

bound repressor from the system, unlike unbinding, where the resulting free repressor may

quickly bind again. It turns out that degradation of bound repressors induces bistability

not only in the stochastic framework but also at the level of deterministic rate equations.
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Fig. 3. The probability distribution P (NA, NB) of the concentrations of A and B proteins, for
the switch with degradation of bound repressors, obtained from the master equation. Two sharp
peaks are observed, one dominated by A proteins and the other dominated by B proteins. The
peaks are sharp and are separated by a region with vanishing probabilities. As a result, the
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Fig. 4. The concentration, NA, of A proteins vs. time, obtained from Monte Carlo simulations
for the switch with degradation of bound repressors. The two states are clearly observed: one
in which NA fluctuates around 50, and another in which it is nearly zero. Transitions between
these states occur at an average rate of one transition every ∼ 106 sec (about 10 days).

In Fig. 3 we present the probability distribution P (NA, NB) of the concentrations

of A and B proteins, for the switch with degradation of bound repressors. Two sharp

peaks, well separated from each other are observed, illuminating the bistable nature of

the systems. The parameters used in Fig. 3 and in the rest of the paper are: g = 0.15,

d = 0.003, α0 = 0.5, α1 = 0.01 and dr = 0.003 (sec−1).

In Fig. 4 we present the temporal variations of the concentration, NA, of A proteins,

obtained from Monte Carlo simulations for the switch with degradation of bound repres-

sors. Two states are clearly observed: one in which NA is dominant and another state
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Fig. 5. The concentration, NA, of A proteins vs. time, obtained from Monte Carlo simulations of
the repressilator circuit. The oscillations are noisy. Their period and amplitude vary from cycle
to cycle.

in which it is suppressed. Note that in spite of the very large fluctuations, the switch is

stable and the average time between spontaneous transitions is about 10 days.

Another variant of the genetic switch, which exhibits bistability even at the level of

rate equations, involves protein-protein interactions, where A and B proteins bind to

each other and form a complex that does not function as a transcription factor. This

additional process contributes to the stability of the switch because in such ’pair anni-

hilation’ processes the minority protein is affected more strongly. It is thus less likely to

bind and suppress the production of the dominant protein.

4. The repressilator. The repressilator circuit consists of three transcription factors,

A, B and C, which negatively regulate each other’s synthesis in a cyclic manner [Fig. 1(c)].

This circuit was synthetically constructed on plasmids in E. coli and was found to exhibit

oscillations in the concentrations of the three transcription factors. To understand the

origin of these oscillations, consider a situation in which the number of A proteins is

large. In this case it is likely that one of the A proteins will bind the to b promoter and

will repress the production of B proteins. The reduced level of B proteins will enable the

gene c to be fully expressed and the number of C proteins will increase and will start to

repress gene a. As a result, the number of A proteins will decrease, and gene b will be

activated, completing a full cycle. The order of appearance of the dominant protein type

in this cycle is A → C → B → A.

From a theoretical point of view, oscillations in this system can be obtained (under

some conditions) both in rate equations and in Monte Carlo simulations [Fig. 5]. The

oscillations obtained from the rate equations are regular, forming a stable limit-cycle. The

oscillations obtained from the Monte Carlo simulations are noisy and irregular. Moreover,

the period and amplitude differ significantly between the rate equations and the Monte

Carlo simulations [15].
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The repressilator system was constructed synthetically on plasmids. When the number

of plasmids in a cell is small, the numbers of promoter sites and bound transcription

factors are also small. As a result, one expects large fluctuations in the transcription

rates regulated by these transcription factors. In this case stochastic methods are required.

However, when the number of plasmids is large, fluctuations are reduced and the rate

equations become applicable. Therefore, by gradually changing the number of plasmids in

the cell one can explore the cross-over from the stochastic regime, where the oscillations

are noisy, to the deterministic regime, where the oscillations are regular.

5. Summary. We have presented deterministic and stochastic analysis of three simple

genetic circuits which involve transcriptional regulation and feedback: the autorepressor,

the switch and the repressilator. Such systems can be simulated using rate equations, that

account for the concentrations of the mRNAs and proteins produced by these genes. Rate

equations are suitable when these concentrations are large and fluctuations are negligible.

However, when some of the transcription factors and their binding sites in a cell appear in

low copy numbers, fluctuations become important and the rate equations fail. In this case

stochastic methods such as the master equation or Monte Carlo simulations are required.

We have shown that fluctuations give rise to quantitative and qualitative changes in

the dynamics of the systems. In particular, we demonstrated the fluctuations-induced

bistability in the exclusive switch and the noisy oscillations obtained in the repressilator

circuit.
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