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Abstract. Molecular motors are nano- or colloidal machines that keep the living cell in a highly

ordered, stationary state far from equilibrium. This self-organized order is sustained by the

energy transduction of the motors, which couple exergonic or ‘downhill’ processes to endergonic

or ‘uphill’ processes. A particularly interesting case is provided by the chemomechanical coupling

of cytoskeletal motors which use the chemical energy released during ATP hydrolysis in order

to generate mechanical forces and to perform mechanical work. We describe a general network

theory for molecular motors which leads to local and nonlocal balance conditions that are valid

far from equilibrium and generalize the well-known detailed balance conditions for equilibrium

states. The nonlocal balance conditions may also be viewed as generalizations of the classical

law of mass action to small systems that transduce chemical energy into mechanical work. As

a pedagogical example, we discuss the simple case of a single motor head. We also review the

application to two-headed motors such as kinesin, which serves as a paradigmatic example for

energy transduction via chemomechanical coupling.

1. Introduction and outline. All biological systems are built up from the same kind

of building blocks. In fact, these building blocks or ‘modules’ form a whole hierarchy of

structures that cover a wide range of length and time scales. Bottom–up, i.e., as one moves

from small scales to larger ones, these structural levels are: aqueous solutions, i.e., water

and ions, small molecules or monomers, polymers, supramolecular assemblies, organelles,

bacterial or procaryotic cells, eucaryotic cells of animals and plants, populations of cells,

tissues etc.

The most basic levels of this hierarchy correspond to nanostructures and colloids that

extend from molecules to cells as shown in Fig. 1. The first level contains the small
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molecules or monomers that provide the precursors for most macromolecules in the cell.

These monomers can be divided into several subsets or ‘alphabets’. Different elements of

one alphabet can be connected by covalent bonds which leads to the formation of four

classes of polymers: nucleic acids (RNA and DNA), proteins, polysaccharides, and lipids,

see second level (or column) of Fig. 1.

Fig. 1. Hierarchy of biological nanostructures and colloids: The first three levels on the left
correspond to aqueous solutions, polymers (nucleic acids, proteins, polysaccherides, and lipids)
as well as biocolloids and molecular motors (polymerases, ribosomes, cytoskeletal filaments and
motors, membranes), respectively. The last two levels on the right correspond to bacterial or
procaryotic cells and to eucaryotic cells. The purple regime between biocolloids and procaryotes
represents the twilight zone between matter and life.

These polymers assemble into biocolloids and molecular machines, see third level of

Fig. 1. The four examples shown for this latter level are in ascending order (i) a RNA

polymerase that moves along a DNA strand and transcribes it into RNA, (ii) a ribosome,

(iii) a cytoskeletal filament with two motor proteins, and (iv) a biomembrane. The inte-

gration of different types of biocolloids and molecular machines leads to the simplest form

of life, i.e., to bacterial or procaryotic cells that have no interior subcompartments. The

corresponding level in Fig. 1 also displays certain organelles such as mitochondria and

chloroplasts, which are believed to have evolved from procaryotic precursor cells. Finally,

the combination and integration of different types of organelles leads to eucaryotic cells

as shown in the last level (or column) of Fig. 1.

Biopolymers are dead objects whereas procaryotic cells represent the simplest form

of life. Thus, the regime between polymers and bacteria corresponds to the twilight zone

between matter and life as indicated by the purple regime in Fig. 1. At the lower boundary

of this zone, we find many different molecular motors and colloidal machines that perform

various tasks such as assembly of polymers, creation of concentration gradients across

membranes, transport of vesicles, cell division, and cell locomotion. These motors and

machines act like little demons or nanorobots that keep the living cell in a highly ordered,
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stationary state far from equilibrium, see Fig. 2(b). This self-organization is based on the

energy transduction of the motors, which couple exergonic or ‘downhill’ processes to

endergonic or ‘uphill’ processes. A particularly interesting case is provided by energy

transduction based on chemomechanical coupling. In this latter case, the motors use the

chemical energy released during ATP hydrolysis in order to generate mechanical forces

and to perform mechanical work.

(a) (b)

Fig. 2. Spatial disorder and order at the molecular and colloidal scale, respectively: (a)
Nanoscopic view into a living cell which reveals many different molecules and molecular as-
semblies that appear to be spatially disordered. The width of this image corresponds to 125 nm;
and (b) Microscopic view of eucaryotic cells which exhibit soft colloidal order on the scale of
hundreds of nanometers. The linear dimension of these cells is tens of micrometers.

This review is organized as follows. In Section 2, the main features of molecular motors

are discussed in a qualitative manner. It is emphasized that molecular motors are colloidal

machines that (i) either involve a molecular complex that interacts with a much larger

supramolecular assembly or (ii) are based on the supramolecular assembly process itself.

One class of motors that has been studied in much detail during the last decade consists of

cytoskeletal motors such as kinesin that walk along cytoskeletal filaments by transforming

the chemical energy of ATP hydrolysis into mechanical work. The thermodynamics of the

motor system and its ATP hydrolysis is discussed in Section 3. As explained in this latter

section, the motor is viewed as a small system that is always taken to be in thermal

equilibrium but may be far from chemical equilibrium with its enviroment.

The understanding of molecular motors provides a challenge since these motors are

capable of chemomechanical coupling and energy transduction even though they exhibit

several aspects of randomness [1]. This behavior can be addressed within a general net-

work theory [2, 3, 4] as explained in Sections 4, 5, and 6. Section 4 introduces network

models for a single motor head or catalytic domain and for two-headed motors with two

catalytic domains. The steady state fluxes of these models are discussed in Section 5, the

steady state entropy production and energy balance in Section 6, in which we review our

recent results as obtained in [2]. Our theory represents an extension of the theoretical

framework developed by T. L. Hill and coworkers for biochemical networks [5], which

do not involve mechanical forces, to the case of chemomechanical coupling as present

in molecular motors. In particular, the thermodynamic forces as considered by Hill and
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coworkers are shown to be equal to the entropy produced during the energy transduction.

The latter relation is useful since the produced entropy can be identified with the heat

released by the motor, and the latter quantity is accessible to experiment, at least in

principle. A detailed comparison of our network theory with other theoretical studies is

provided in [4].

As described in Section 6, our theory leads to energy balance conditions that provide

generalizations of the classical law of mass action to small systems that can perform

mechanical work. We also discuss a local form of the balance conditions that involves the

internal energies of the motor states and the entropy produced during a single transition.

The latter entropy follows directly from the decomposition of the entropy production

rate in the steady state and agrees with the more general proposal of U. Seifert [6]

when applied to steady states. The identification of the entropy produced by the network

model with the heat released by the system relies on an appropriate level of description

which includes the relevant states and transitions between these states. In particular, one

should include those transitions, that describe the coupling of the motor to the different

reservoirs, which are essential for energy transduction. This latter aspect is illustrated in

Section 7 where we discuss energy transduction of a single motor head as described (i) by

a 4-state network as introduced by T. L. Hill [5] and (ii) by a reduced 3-state network.

The final Section 8 gives a brief summary of the application of our theoretical framework

to the cytoskeletal motor kinesin [3], which provides a case study for chemomechanical

coupling.

2. Multiscale motility of molecular motors. In each living cell, there are several

types of molecular motors and machines which fulfill different functions [7]. Prominent

examples are: (i) DNA and RNA polymerases which move along the strands of DNA in

order to replicate it and to transcribe it into RNA; (ii) ribosomes that attach to mRNA

and translate the nucleotide sequence into proteins; (iii) membrane pumps which trans-

port ions and small molecules across membranes; the resulting concentration gradients

may be used in order to drive (iv) rotary motors such as the bacterial flagellar motor and

the F0F1–ATPase which are used for cell locomotion and ATP synthesis, respectively;

(v) myosins in muscles which work in ensembles and collectively displace actin filaments;

(vi) cytoskeletal motors which bind to the filaments of the cytoskeleton and then walk

along these filaments in a directed fashion; and (vii) Cytoskeletal filaments that generate

pushing forces during their assembly and growth.

In most cases, the molecular motor consists of a protein complex that interacts with

another colloidal structure such as a macromolecule, membrane, or filament. In case (vii),

the molecular machine is provided by the assembly of many proteins into a filament. In

all cases, the molecular motor involves the interaction of at least two different species of

molecules which bind together to form a larger colloidal complex that acts as a nanoma-

chine.

Apart from case (iv), the molecular motors just mentioned are powered by the hydrol-

ysis of adenosine triphosphate (ATP). Thus, all of these motors represent ATPases, i.e.,

catalysts or enzymes for the hydrolysis of ATP. For the concentrations which prevail in
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living cells, the ATP hydrolysis is strongly exergonic or ‘downhill’ but it is also quite slow

in the absence of any enzymatic activity. The motors act as enzymes for this chemical

reaction which leads to much faster hydrolysis rates. In addition, these motors are also

able to transform the energy released from the ATP hydrolysis into useful work. In fact,

this energy transduction occurs even at the level of single hydrolysis events. In this way,

they consume quantized amounts of fuel.

In this article, we will focus on cytoskeletal motors such as kinesin, see Fig. 3(a),

that are essential for intracellular transport, cell division, and cell locomotion [8, 9].

Three superfamilies of cytoskeletal motors have been identified: kinesins, dyneins and

myosins [9, 10]. Kinesins and dyneins bind to microtubuli as shown in Fig. 3(a) whereas

myosins bind to actin filaments.

The motor properties of kinesin have been determined in a long series of sophisticated

experiments [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Its processive walks consist

of about 100 steps and take a few seconds [11]. In its bound state, kinesin walks in a

‘hand-over-hand’ fashion, i.e., by alternating steps in which one head moves forward while

the other one remains bound to the filament [12, 19]. Each step corresponds to a motor

displacement of 8 nm corresponding to the lattice constant of the microtubule. If there

is no shortage of ATP, the motor makes about 100 steps in one second which leads to

a velocity of about one micrometer per second. The absolute value of this velocity is

not very impressive, but relative to its size, the motor molecule moves very fast: On the

macroscopic scale, its movement would correspond to an athlete who runs 200 meters in

one second! This is even more surprising if one realizes that the motor moves in a very

viscous and noisy environment since it steadily undergoes thermally excited collisions

with a large number of water molecules.

(a) (b)

Fig. 3. Multiscale motility of molecular motors: (a) Microtubule with one dynein (violett) and
one kinesin (blue) motor. The tubulin dimers form a lattice of binding sites with a lattice
parameter of 8 nm; and (b) Bidirectional transport of vesicles and other types of cargo within
an axon. The longest axons in our body have a length of about half a meter.

Indeed, because of this thermal noise, a single motor molecule falls off from the fil-

ament after it has made about a hundred steps. It has then covered a walking distance

or run length of about one micrometer [11] which is rather small compared to the long

distances – centimeters or even meters – over which cargo is transported in cells and

axons, see Fig. 3(b). One rather effective way to increase the run length is via coopera-
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tive transport of cargo particles by several motor molecules [23]. The corresponding run

length distribution has been recently measured experimentally for an in vitro assay [24].

On length scales that are large compared to a single step along the filament, cytoskeletal

motors undergo peculiar random walks that consist of both directional movement along

the filament and diffusion in the surrounding solution [25, 26].

In biological cells, vesicles and other cargo particles, which are transported along mi-

crotubules, often carry both kinesins and dyneins which leads to bi-directional transport

along the filaments [27, 28]. The presumably simplest mechanism for this kind of move-

ment is provided by the competition or ‘tug-of-war’ between the two motor species. A

recent theory for this tug-of-war leads to several coexisting motility states and is found to

be consistent with the experimental data currently available [29]. In addition, many inter-

esting transport phenomena occur if one includes the mutual exclusion between different

motors or between different filaments. Indeed, both the traffic of motors on immobilized

filaments [25, 26] and the traffic of filaments on immobilized motors [30, 31] leads to

crowding, pattern formation, and phase transitions.

3. Thermodynamics of ATP hydrolysis. In the following, we will focus on the most

basic level of motor motility as provided by its energy transduction via chemomechanical

coupling. We will use the framework of statistical mechanics and view the motor as a small

system that is coupled to a heat reservoir at temperature T and to particle reservoirs for

the chemical species X = ATP, ADP, and inorganic phosphate P. We will always assume

thermal equilibrium, i.e., the motor is always characterized by the same temperature

as the surrounding aqueous solution. However, the concentrations or activities of the

chemical species involved in ATP hydrolysis and synthesis may or may not correspond

to chemical equilibrium, which is defined as follows.

The activity of the chemical species X will be denoted by [X] and has the dimension

of a molar concentration. For dilute solutions, the activity is equal to the molar concen-

tration. In general, the activity [X] is defined in such a way that the chemical potential

µX for the chemical species X has the simple form

µX ≡ µo
X + kBT ln([X]/[X]o) (3.1)

with Boltzmann constant kB where the superscript o refers to some standard or reference

activity [X]o. The relation (3.1) implies that

[X]oe−µo
X/kBT = [X]e−µX/kBT ≡ [X]∗ (3.2)

where the activity scale [X]∗ has a unique value that does not depend on the choice of

the standard or reference activity [X]o. Therefore, the chemical potential may also be

written as

µX = kBT ln([X]/[X]∗) (3.3)

The activity scale [X]∗ can be determined using the grand-canonical ensemble. One

then has to consider a large volume V of water and calculate the partition functions

Z0 and Z1 corresponding to the situations in which this volume contains either no or

a single molecule of species X, respectively. The activity scale [X]∗ is then given by

[X]∗ = Z1/Z0V NAv with the Avogardo number NAv [32].
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When the motor hydrolyzes a single ATP molecule, it binds one such molecule and

releases one inorganic phosphate P and one ADP molecule. According to the Gibbs

fundamental form of thermodynamics, the corresponding change in internal energy of

the motor is given by

∆µ = µATP − µP − µADP (3.4)

which also represents the chemical energy input from the aqueous solution to the motor

molecule. Using the expression (3.1) for the three chemical potentials, we then obtain

∆µ = ∆µo + kBT ln

(

[ATP]

[ADP] [P]

[ADP]o [P]o

[ATP]o

)

= kBT ln

(

[ATP]

[ADP] [P]

[ADP]∗ [P]∗

[ATP]∗

)

,

(3.5)

with ∆µo ≡ µo
ATP − µo

P − µo
ADP.

Chemical equilibrium between ATP hydrolysis and ATP synthesis corresponds to

∆µ = 0 which implies

[ADP] [P]

[ATP]

∣

∣

∣

∣

eq

=
[ADP]∗ [P]∗

[ATP]∗
. (3.6)

The right hand side of this equation defines the equilibrium (dissociation) constant Keq.

Therefore, the relation (3.6) is equivalent to

Keq ≡
[ADP] [P]

[ATP]

∣

∣

∣

∣

eq

. (3.7)

For dilute solutions, the activities of the three chemical species are equal to their mo-

lar concentrations and can be directly measured (after the system has relaxed into

equilibrium for a sufficiently long time). For ATP hydrolysis, the precise value of the

equilibrium constant depends on the ionic conditions but a typical value is given by

Keq = 4.9 × 1011 µM [33, 18].

The three activities or concentrations [ATP], [ADP], and [P] represent three control

parameters that can be varied independently. Since all concentrations have to be zero

or positive, they span the first octant of the three dimensional parameter space with

x = [ADP], y = [P], and z = [ATP]. The equilibrium states, which satisfy the relation

(3.7), form the 2-dimensional surface as given by z = (1/Keq)xy. On the other hand, all

parameter values that do not lie on this surface and do not satisfy (3.7) represent states

of chemical nonequilibrium.

For a molecular such as kinesin that performs mechanical work against an external

load force, the complete thermodynamic description of the motor depends on the three

activities or concentrations [ATP], [ADP], and [P] as well as on the force component F

parallel to the filament [2, 3]. An extended discussion of this thermodynamic description

is given in [4].

4. Network theory for molecular motor cycles. In the main body of this article, we

will address the energy transduction of molecular motors which underlies their ability to

perform mechanical work. This coupling is based on their chemomechanical motor cycles.



174 R. LIPOWSKY AND S. LIEPELT

Such a cycle consists of a cyclic sequence of conformational transitions that enables the

motor to hydrolyze ATP and to perform useful work.

Molecular motors perform their cycles in a rather noisy environment. Even in the

absence of ATP, they can attain many conformational states because of thermal collisions

with adjacent water molecules. Kinesin, for example, is a rather large molecule, compare

Fig. 3(a), and it will bend and rotate in various ways as a result of such collisions. In

addition, when bound to a filament, a motor can undergo 1-dimensional diffusion or

’passive sliding’ as has been observed both for dynein at microtubules [34] and for RNA

polymerase at DNA [35]. The delivery of the ATP molecules represents another stochastic

process since these molecules diffuse through the surrounding solution and will have many

collisions with the motor molecule before they stick to the catalytic motor domains. For

kinesin, this implies that the adsorption of ATP is a random process, and that the time

for this adsorption is governed by some probability distribution which depends on the

ATP concentration.

In order to describe these different stochastic processes, it is necessary to construct

motor models in which the motor can undergo transitions between different internal

states and to incorporate the basic property that some of these transitions are coupled to

ATP hydrolysis. Such a description is provided by stochastic networks as reviewed in the

following. In order to be specific, we will first introduce network representations for two

specific cases, namely for single motor heads and for two-headed motors. The subsequent

theory is, however, rather general and can be applied to any other type of molecular

motor or colloidal machine.

4.1. Network description of single motor head. Let us first consider a single motor head

of kinesin or any other motor component with a single catalytic domain for ATP hydroly-

sis. In the latter process, a single molecule of ATP is broken up into a single ADP molecule

and inorganic phosphate P. This process involves several substeps: adsorption of ATP,

hydrolysis proper, i.e., the transformation of bound ATP into bound ADP/P, the release

of P, and the release of ADP. As far as the chemical composition of the catalytic domain

is concerned, one may then distinguish four different states of the motor head denoted

by E, T, Θ, and D as shown in Fig. 4(a): [36] State E corresponds to the empty head,

state T to the state with bound ATP, state Θ to bound ADP/P, and state D to bound

ADP. Such a representation was previously used by T. L. Hill for a generic ATPase [5].

The edges between the different chemical states in Fig. 4(a) represent forward and

backward transitions. The edge between state i and state j will be denoted by 〈ij〉. It

consists of two directed edges or di-edges, |ij〉 and |ji〉, corresponding to the forward

transition from i to j and to the backward transition from j to i, respectively. Thus, the

di-edge or transition |ET〉 corresponds to ATP binding to the motor head, whereas the

transition |TE〉 represents ATP release from this head.

Likewise, the transitions |ΘD〉, |DΘ〉, |DE〉, and |ED〉 describe P release, P binding,

ADP release, and ADP binding, respectively. Finally, the transition |TΘ〉, corresponds

to ATP hydrolysis proper and the transition |ΘT〉 to ATP synthesis from ADP and P.

The three edges 〈ET〉, 〈ΘD〉, and 〈DE〉 involve the binding and release of a certain

molecular species from the aqueous solution. In contrast, the edge 〈TΘ〉 in the 4-state
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Fig. 4. Single motor head as an ATPase: (a) Network with 4 states corresponding to the motor
head being empty (E), occupied by ATP (T), by ADP/P (Θ), and by ADP (D); and (b) Reduced
network with 3 states in which the hydrolysis transition and the P release transition have been
combined into the single transition |31〉.

network does not involve such an interaction of the motor head with the particle reservoir,

see Fig. 4(a). Therefore, one may combine the two edges 〈TΘ〉 and 〈ΘD〉 of the 4-state

network into the edge 〈TD〉 as shown in Fig. 4(b). The latter representation involves

only 3 states: the motor head is occupied by ADP in state D, empty in state E, and

occupied by ATP in state T. This reduced representation is useful since it eliminates

some parameters but is still consistent with the fundamental constraints arising from the

energetics of ATP hydrolysis, see Section 7.2 below.

4.2. Two-headed motors with two catalytic domains. Next, we consider a two-headed

motor such as kinesin or myosin V. If each motor head can attain three different chemical

states as in Fig. 4(b), the two-headed motor can attain 32 = 9 different states as in

Fig. 5(a). All of these states represent two-headed motors that are bound to a polar

filament. We use the convention that the right head is the leading head whereas the left

head is the trailing head with respect to the prefered direction of the motor movement.

If the motor walks via the ‘hand-over-hand’ mechanism, the leading and the trailing

head interchange their positions during each mechanical step. If one assumes that this

step is fast on the timescale of the chemical transitions, one has, in general, three possible

mechanical steps: from state (E,D) to state (D,E), from state (E,T) to state (T,E), and

from state (D,T) to state (T,D). These possible mechanical transitions are shown in

Fig. 5(a) as broken edges. Recent experiments by Carter and Cross [21] provide strong

evidence that such a separation of time scales does indeed apply to the cytoskeletal motor

kinesin, see Section 8 below.

Inspection of Fig. 5(a) shows that each state of the two-headed motor is connected to

four other states via four solid edges. As in Fig. 4, each solid edge between two states i

and j represents both the forward chemical transition |ij〉 and the backward transition

|ji〉. Thus, the 9-state network in Fig. 5(a) contains 18 solid edges corresponding to 36

chemical transitions.

Let us now assume that the processive motion of the two-headed motor is ‘out-of-

phase’ and involves primarily those states for which the two heads have different chemical

composition. This assumption applies to kinesin [2, 3], see section 8 below. In such a

situation, one can ignore the three states (E,E), (D,D), and (T,T) in Fig. 5(a). In addition,

a detailed comparison with experimental data for kinesin reveals that the only mechanical

transition that is compatible with these data is provided by the transition from (D,T)
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Fig. 5. Stochastic networks for a molecular motor with two catalytic domains or motor heads.
Each head can be empty (E), occupied by ATP (T), or occupied by ADP (D): (a) State space
with 32 = 9 chemical states, each of which is connected to four neighboring states via solid
edges (or lines). Each such edge represents both the forward and backward chemical transition
as in Fig. 4; (b,c) Reduced state space with 6 chemical states, each of which is connected to two
neighboring states via solid edges. We use the convention that the left and right head represent
the trailing and leading head, respectively. Broken edges (or lines) correspond to mechanical
step transitions in which the two heads interchange their relative position. In (a), three possible
step transitions have been included but only one of those transitions is kept in (b) and (c). The
latter transition applies to kinesin [3], see section 8 below.

to (T,D). If we delete the three states (E,E), (D,D), and (T,T) and the two mechanical

transitions from (D,E) to (E,D) and from (E,T) to (T,E) from the 9-state network, we

obtain the reduced 6-state network as shown in Fig. 5(b). As shown in this figure, we have

labeled the six remaining states by i = 1, 2, . . . , 6. A more transparent representation

of the 6-state network is shown in Fig. 5(c): the six states form a cycle consisting of

six (forward and backward) chemical transitions; the broken edge corresponds to the

mechanical step transition. According to our convention, the mechanical forward step is

given by |25〉, the mechanical backward step by |52〉.

As shown in Fig. 5(c), the cycle of chemical transitions consists (i) of the two ATP

binding transitions |12〉 and |45〉, (ii) of the two transitions |61〉 and |34〉, which both

represent ATP hydrolysis and P release, as well as (iii) of the two ADP release transitions

|23〉 and |56〉.

4.3. Cycles and dicycles. The two previous subsections provided two specific examples

for the description of molecular motors in terms of a discrete state space. These states

are represented as the vertices of a network graph, G, and are labeled by i = 1, 2, . . . , |G|.

If two states i and j are connected by an edge 〈ij〉, the motor can undergo the forward

transition |ij〉 from i to j and the backward transition |ji〉 from j to i. Inspection of Fig. 4

and Fig. 5 shows that these edges may form cycles. These cycles are particularly important

in the present context since they are intimately related to fluxes and nonequilibrium

states [5].

In order to be precise, we will distinguish (undirected) cycles from directed cycles or

dicycles. The smallest dicycle consists of three states and three di-edges. In the mathemat-

ical literature, di-edges are often called arcs and dicycles are sometimes called circuits.

An (undirected) cycle Cν is given by a closed sequence of vertices and edges in which
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each vertex and each edge occurs only once. The notation Cν = 〈i1i2 . . . ini1〉 implies that

the cycle Cν contains the edges 〈i1i2〉, 〈i2i3〉, ...., and 〈ini1〉. Each cycle Cν leads to two

dicycles Cd
ν with d = ± that differ in their orientation.

First, we choose a certain arbitrary but fixed orientation of cycle Cν to correspond

to the positive direction d = + , which defines the dicycle C+
ν . When we pass through

Cν in the opposite direction d = −, we obtain the dicycle C−
ν . These two dicycles will

be denoted by C+
ν = |i1i2 . . . ini1〉 and C−

ν = |i1in . . . , i2i1〉. The dicycle C+
ν contains

the di-edges |i1i2〉, |i2i3〉, ...., and |ini1〉; the dicycle C−
ν consists of the di-edges |i1in〉,

|inin−1〉, ...., and |i2i1〉.

The network description of a single motor head, see Fig. 4, involves only a single cycle

and, thus, two dicycles. Analogous unicycle models have also been frequently used for

two-headed motors, see, e.g., [37, 38]. Inspection of Fig. 5 shows, however, that these

motors will, in general, exhibit several motor cycles. The 9-state network in Fig. 5(a)

involves a rather large number of cycles (more than 200). In contrast, the 6-state network

in Fig. 5(c) contains only three cycles: the forward cycle F = 〈25612〉, the backward cycle

B = 〈52345〉, and the chemical cycle D = 〈1234561〉.

We will now distinguish different types of cycles by the following terminology:

(i) Chemomechanical cycles that contain both an ATP hydrolysis transition and a

mechanical step. Examples are given by the forward cycle F and the backward cycle

B in the 6-state model, see Fig. 5(c). In general, a chemomechanical cycle couples the

hydrolysis of at least one ATP molecule to a net mechanical displacement;

(ii) Dissipative slip cycles that contain hydrolysis transitions but no mechanical step

transition. One example is provided by the chemical cycle D = 〈1234561〉 of the 6-state

model;

(iii) Mechanical slip cycles that contain mechanical step transitions but no net hydroly-

sis of ATP. Examples without any hydrolysis transitions are the cycles 〈(E, E)(E, D)(D, E)

(E, E)〉 and 〈(E, T)(D, T)(T, D)(T, E)(E, T)〉 of the 9-state model, see Fig. 5(a). An exam-

ple for a mechanical slip cycle with one ATP hydrolysis and one ATP synthesis transition

is provided by the cycle 〈(T, D)(D, D)(D, T)(T, D)〉; and

(iv) Thermal slip cycles that involve neither a mechanical step nor a hydrolysis transi-

tion. Examples are provided by 〈(E, E)(E, D)(D, D)(D, E)(E, E)〉 and 〈(E, E)(E, T)(D, T)

(D, E)(E, E)〉.

It is interesting to note that the reduction of the 9-state model to the 6-state model

eliminates all mechanical and thermal slip cycles from the network.

5. Motor dynamics as a Markov process. The dynamics of the motor is now de-

scribed by a continuous-time Markov process [39, 40] on the network graph G. Such a

process involves two stochastic ingredients, the sojourn (or dwell) times and the transition

probabilities. When the system arrives in the state i, it occupies this state for a certain

sojourn (or dwell) time τi. This time is a random variable governed by the exponential

probability distribution

P (τi) =
1

〈τi〉
e−τi/〈τi〉 (5.1)
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where 〈τi〉 denotes the average sojourn time [40]. When the motor leaves the state i, it

jumps to state j with transition probability πij . By definition, one has πii ≡ 0 for all

i and
∑

j πij = 1. From the mathematical point of view, the latter transitions occur

instantaneously; from the physical point of view, they occur on a time scale that is small

compared to all average sojourn times 〈τi〉.

The probability Pi(t) to find the motor in state i at time t is then governed by the

loss-and-gain equation
d

dt
Pi = −

∑

j

(Piωij − Pjωji) (5.2)

with the transition rates

ωij = πij/〈τi〉 and
∑

j

ωij = 1/〈τi〉. (5.3)

In the physical literature, this equation is known as the Master equation [39]; in the

mathematical literature, it is called the forward equation of the continuous-time Markov

process [40] .

This description of the motor dynamics is convenient since it allows explicit calculation

of the steady state fluxes and the steady state entropy production of the motor. These

quantities are related to various experimentally accessible quantities such as the motor

velocity and the ratio of forward to backward mechanical steps. In this and the following

section, we will discuss the steady state fluxes and steady state entropy production,

respectively.

It is convenient to define the local fluxes

Jij ≡ P st
i ωij (5.4)

and the local excess fluxes (or currents)

∆Jij ≡ Piωij − Pjωji = −∆Jji (5.5)

from state i to state j. The steady state is characterized by probabilities P st
i with

dP st
i /dt = 0 which implies

∑

j

∆J st
ij =

∑

j

(Jeq
ij − Jeq

ji ) =
∑

j

(

P st
i ωij − P st

j ωji

)

= 0. (5.6)

This relation provides Ns linear equations for the probabilities P st
i which can be solved

by linear algebra, see, e.g., [41, 42] or, more conveniently, by a graph-theoretic method

[43, 44, 45, 46, 1].

The steady state equation (5.6) has a simple intuitive interpretation. The term
∑

j Jeq
ij

=
∑

j P st
i ωij represents the sum of all fluxes out of the state i; the term

∑

j Jeq
ji =

∑

j P st
i ωji represents the sum of all fluxes into the state i. Furthermore, the local flux

Jeq
ij = P st

i ωij is equal to the number of transitions that the system performs from state i

to state j per unit time in the steady state. Thus, this steady state flux is also equal to

the transition frequency

Ωst
ij ≡ P st

i ωij , (5.7)

i.e., to the frequency with which the system undergoes the transition |ij〉 in the steady

state.
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5.1. Equilibrium, detailed balance, and dicycle ratios. In thermal and chemical equilib-

rium, all local excess fluxes vanish simultaneously , i.e. ∆Jeq
ij = 0 for all di-edges |ij〉. In

such a situation, the transition rates ωij must satisfy certain conditions, the so-called de-

tailed balance conditions. Indeed, the relations ∆Jeq
ij = 0 for all di-edges can be rewritten

as

P eq
i ωij = P eq

j ωji (5.8)

for all edges 〈ij〉. These conditions can be expressed in terms of the transition rates ωij

alone. In order to do so, it is convenient to define, for each dicycle Cd
ν and arbitrary

transition rates ωij , the dicycle ratio

Ξ(Cd
ν ) ≡

∏

|ij〉∈Cd
ν

ωij/
∏

|ij〉∈C−d
ν

ωij =
∏

|ij〉

ν,d
(ωij/ωji) (5.9)

where the superscipt ν, d at the product sign indicates a product over all di-edges |ij〉 of

the dicycle Cd
ν . This definition implies that

Ξ(C−
ν ) = 1/Ξ(C+

ν ). (5.10)

It can be shown that the detailed balance conditions as given by (5.8) are equivalent

to the relations [47]

Ξeq(Cd
ν ) =

∏

|ij〉

ν,d
(ωij/ωji) = 1 for all dicycles Cd

ν (5.11)

for the dicycle ratios Ξeq(Cd
ν ). In this form, the detailed balance conditions are no longer

local (since large cycles involve widely separated edges of the network) but they are

expressed only in terms of the transition rates ωij , which are the basic parameters of the

model. In the context of chemical kinetics, these conditions are also known as Wegscheider

conditions [48].

Away from equilibrium, some of the dicycle ratios Ξ(Cd
ν ) are different from one. The

corresponding numerical values can be interpreted in a rather intuitive way. Indeed, as

discussed in the next subsection, Ξ(C+
ν ) is equal (i) to the ratio of the steady state fluxes

through the dicycles C+
ν and C−

ν ; and (ii) to the ratio of the (unnormalized) probabilities

or frequencies to complete the dicycles C+
ν and C−

ν in the steady state. In addition, we

have recently shown [2] that the dicycle ratio Ξ(Cd
ν ) is directly related to the entropy

∆S(Cd
ν ) produced during the completion of the dicycle Cd

ν via the equation ∆S(Cd
ν ) =

kB ln(Ξ(Cd
ν )), see next section.

In a long series of studies on biochemical networks, Hill and coworkers have previously

discussed the quantity kBT ln(Ξ(Cd
ν )), which they interpreted as the “thermodynamic

force” that drives the system out of equilibrium. Our results imply that this thermo-

dynamic force is, in fact, equal to temperature T times entropy ∆S(Cd
ν ) produced per

completed dicycle Cd
ν [2]. This identification is useful since the produced entropy can be

identified with the heat released by the motor, and the latter quantity is accessible to

experiment, at least in principle.

5.2. Dicycle fluxes and frequencies. In the steady state, each dicycle Cd
ν with d = ±

can be characterized by a dicycle flux J st(Cd
ν ) which represents a global property of the
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stochastic network. These fluxes can be explicitly calculated (for a finite network) using a

graph-theoretic or diagrammatic method. They are then found to have the general form

[45, 49, 1]

J(Cd
ν ) =

(

∏

|ij〉

ν,d
ωij

)

Υ(Cν)/Ω with d = ± (5.12)

where the superscript ν, d at the product sign indicates a product over all di-edges |ij〉

that are contained in the dicycle Cd
ν . The factor Υ(Cν) is identical for both dicycles but

depends, in general, on the cycle Cν ; this factor is given by a multilinear polynomial of

transition rates which belong to di-edges not contained in the two dicycles C+
ν and C−

ν .

As explained in Ref. [1], these di-edges correspond to the edges of the spanning trees that

are not contained in the cycle Cν . The factor Ω is a normalization factor which is given

by a multilinear polynomials that depends on all transition rates of the network.

Even though the dicycle fluxes J st(Cd
ν ) are global properties of the network process,

they have a rather intuitive interpretation since they determine the frequencies of dicycle

completion and the average completion times. Thus, let us follow the network process

for a long time period ∆t. The system will then pass successively through many dicycles

and we can count the number of times, N∆t(C
d
ν ), that it passed through the dicycle Cd

ν .

Thus, N∆t(C
d
ν ) represents the absolute frequency of completed dicycles Cd

ν within the time

interval ∆t.

It is intuitively clear that N∆t(C
d
ν ) behaves as

N∆t(C
d
ν ) ≈ Ωst(Cd

ν ) ∆t for large ∆t (5.13)

which defines the frequencies (or unnormalized probabilities) Ωst(Cd
ν ). This frequency is

equal to the average number of dicycles Cd
ν that are completed in the steady state per

unit time. It can be shown that [49, 50]

Ωst(Cd
ν ) = J st(Cd

ν ), (5.14)

i.e., that the dicycle completion frequencies are equal to the dicycle fluxes J st(Cd
ν ) which

implies that the ratio of the dicycle completion frequencies is equal to the ratio of the

dicycle fluxes. Furthermore, the explicit expression (5.12) for the dicycle fluxes implies

that
Ωst(C+

ν )

Ωst(C−
ν )

=
J st(C+

ν )

J st(C−
ν )

=
∏

|ij〉

ν,+
(ωij/ωji) = Ξ(C+

ν ) (5.15)

i.e., both ratios are equal to the dicycle ratio Ξ(C+
ν ).

The relation (5.15) for the dicycle frequencies can be generalized if one uses the action

functional A of Lebowitz and Spohn [51]. Thus, consider a directed walk or trajectory

T + ≡ |i1i2 . . . im〉 on the network graph together with the time-reversed walk T − ≡

|imim−1 . . . i1〉. Each walk consists of a connected sequence of di-edges |ij〉. The action

functional A is then defined by [51]

exp[A(T +)] ≡
∏

|ij〉∈T +

ωij/
∏

|ij〉∈T −

ωij = exp[−A(T −)] (5.16)

where the product in the numerator and denominator runs over all di-edges of the walk

T + and T −, respectively.
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Now, consider a closed trajectory T + = T +
ν that goes through the dicycle C+

ν only

once and does not go through any other dicycle. In general, such a trajectory consists

of (i) segments of the dicycle C+
ν , (ii) “back-and-forth” segments of the cycle Cν that

contain segments of the dicycle C−
ν together with the corresponding reverse segments of

the dicycle C+
ν , and (iii) tree-like excursions away from the cycle Cν . The corresponding

action functional satisfies

exp[A(T +
ν )] ≡

∏

|ij〉∈T +
ν

ωij/
∏

|ij〉∈T −

ν

ωij =
∏

|ij〉∈C+
ν

ωij/
∏

|ij〉∈C−

ν

ωij = Ξ(C+
ν ). (5.17)

Thus, in this ratio, all transition rates from the segments of type (ii) and (iii) of the

trajectories T +
ν and T −

ν cancel out, and one is simply left with the transition rates

corresponding to one completion of C+
ν and C−

ν . Therefore, the dicycle ratio Ξ(C+
ν ) applies,

in fact, to the transition rate ratios of all pairs of closed trajectories T +
ν and T −

ν .

As mentioned in Ref. [51], the frequencies Ωst(T +) and Ωst(T −) for the two walks

T + and T − are related to the action functional A via

Ωst(T +)/Ωst(T −) = (P st
1 /P st

m) exp[A(T +)]. (5.18)

This relation simplifies for closed walks T +
c which are characterized by im ≡ i1 and,

thus, by P st
1 = P st

m . If we now consider again a closed trajectory T +
c = T +

ν that goes

through the dicycle C+
ν only once and does not go through any other dicycle, we obtain

the frequency ratio

Ωst(T +
ν )

Ωst(T −
ν )

= exp[A(T +
ν )] =

∏

|ij〉

ν,+
(ωij/ωji) = Ξ(C+

ν ). (5.19)

As before, the superscript ν, + at the product sign indicates a product over all di-edges

|ij〉 contained in the dicycle C+
ν .

5.3. Cycle decomposition of fluxes. Using the dicyle fluxes J(Cd
ν ) with d = ± as in (5.12),

one may define the cycle flux

J st(Cν) ≡ J st(C+
ν ) − J st(C−

ν ) (5.20)

which characterizes the flux through the (undirected) cycle Cν . Furthermore, each excess

flux ∆Jij through the di-edge |ij〉 can be decomposed according to

∆J st
ij =

∑

ν

ǫij,νJ st(Cν) =
∑

ν

ǫij,ν

(

J st(C+
ν ) − J st(C−

ν )
)

(5.21)

where the antisymmetric symbol ǫij,ν = −ǫji,ν is given by

ǫij,ν ≡







+1 for |ij〉 ∈ C+
ν

−1 for |ij〉 ∈ C−
ν

0 otherwise.

(5.22)

Thus, the sum in (5.21) contains contributions from all cycles that go through the edge

〈ij〉, and the sign of these contributions is positive, if the di-edge |ij〉 is contained in (or

parallel to) the dicycle C+
ν , and negative, if |ij〉 is contained in (or parallel to) the reverse

dicycle C−
ν .
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6. Entropy production and balance conditions. In this section, we will study the

entropy that is produced by the motor dynamics. The entropy production rate can be

decomposed in terms of separate contributions arising (i) from the different di-edges

and (ii) from the different dicycles of the network graph. The dicycle entropy ∆S(Cd
ν )

produced by completion of dicycle Cd
ν is found to be given by ∆S(Cd

ν ) = kB ln(Ξ(Cd
ν )),

i.e., by the logarithm of the dicycle ratio Ξ(Cd
ν ).

If one identifies the entropy produced by the motor dynamics with the heat that the

motor releases into its environment, one obtains energy balance conditions that replace

the detailed balance conditions for equilibrium states and hold for any state of chemical

and/or mechanical nonequilibrium.

6.1. Production of statistical or Shannon entropy. First, we will discuss the dicycle en-

tropies, ∆S(Cd
ν ), which are produced on average, during the completion of dicycle Cd

ν in

the steady state, and show that these entropies satisfy the simple relations [2]

∆S(Cd
ν ) ≡ kB ln(Ξ(Cd

ν )) = kB ln

(

∏

|ij〉

ν,d
(ωij/ωji)

)

, (6.1)

with the dicycle ratios Ξ(Cd
ν ). Since these ratios satisfy Ξ(C−

ν ) = 1/Ξ(C+
ν ), the entropies

of the two dicycles C+
ν and C−

ν are related via

∆S(C−
ν ) = −∆S(C+

ν ) (6.2)

which reflects the fact that the dicycle C−
ν corresponds to the time-reversed dicycle C+

ν .

T. L. Hill and coworkers have previously discussed the quantity kBT ln(Ξ(Cd
ν )), which

they viewed as the “thermodynamic force” that drives the system out of equilibrium. Our

work shows that this thermodynamic force is, in fact, equal to temperature T times dicycle

entropy ∆S(Cd
ν ).

It is interesting to note that one may combine the relations (5.15) and (6.1) in order

to express the dicycle frequency ratio Ωst(C+
ν )/Ωst(C−

ν ) in terms of the dicycle entropies

via
Ωst(C+

ν )

Ωst(C−
ν )

= e∆S(C+
ν )/kB = e−∆S(C−

ν )/kB (6.3)

which is reminiscent of the various relations that have been derived in the context of

entropy fluctuations [52, 53, 54, 6]. However, the entropies ∆S(Cd
ν ) as considered here do

not fluctuate but have a certain, fixed value for each dicycle of the network. [55]

In the following, we will give two derivations of the relations (6.1) which are both

based on the decomposition of the entropy production rate in the steady state. We start

from the statistical or Shannon entropy

S{Pi} ≡ −kB

∑

i

Pi ln(Pi) (6.4)

which one may define for any probability distribution {Pi} on a discrete state space G.

This entropy provides a well-defined measure by which one can compare different prob-

ability distributions. If the probability distribution changes with time t, so does the
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statistical entropy S{Pi}. Its time derivative can be written in the form [46, 56, 51, 57]

d

dt
S{Pi} = σpr + σfl (6.5)

with the entropy production rate

σpr ≡
1
2 kB

∑

i

∑

j

′
∆Jij ln

(

Piωij

Pjωji

)

(6.6)

and the entropy flux term

σfl ≡ −1
2 kB

∑

i

∑

j

′
∆Jij ln

(

ωij

ωji

)

(6.7)

where the prime at the summation sign indicates that there are no terms with j = i.

Thus, the double sum represents a summation over all di-edges or transitions |ij〉 of the

network.

In the steady state, the system’s entropy does not change and d
dtS{Pi} = 0, which

leads to the entropy production rate

σst
pr = 1

2

∑

i

∑

j

′
∆J st

ij kB ln(ωij/ωji). (6.8)

We now rewrite this expression in two different ways which leads to two different deriva-

tions of the dicycle entropy ∆S(Cd
ν ) as given in (6.1). The first derivation is based on

the decomposition of the entropy production rate in terms of di-edge contributions. The

second derivation corresponds to our original calculation in [2] which is based on the

decomposition of the entropy production rate in terms of dicycle contributions.

6.1.1. Di-edge decomposition of entropy production rate. In the expression (6.8) for the

entropy production rate σst
pr, the di-edge or transition |ji〉 gives the same contribution as

the transition |ij〉 which implies

σst
pr =

∑

|ij〉

P st
i ωij kB ln(ωij/ωji) =

∑

|ij〉

Ωst
ij kB ln(ωij/ωji), (6.9)

where the sum represents a summation over all di-egdes or transitions |ij〉 of the network

graph and Ωst
ij is the transition frequency as defined in (5.7). Thus, the second equation

in (6.9) has the form

σst
pr =

∑

|ij〉

Ωst
ij ∆Sij (6.10)

with the steady state transition entropies ∆Sij defined via

∆Sij ≡ kB ln(ωij/ωji) = −∆Sji. (6.11)

This definition is rather natural if one assumes that the entropy production rate is an

additive quantity just like the entropy. Indeed, the expression (6.10) gives the total en-

tropy production rate as a sum over contributions from all di-edges or transitions, and

each of these contributions is equal to the transition frequency Ωst
ij times the transition

entropy ∆Sij . This conclusion agrees with the more general proposal of Seifert [6], who

considered arbitrary trajectories of Markov processes. The dicycle entropy ∆S(Cd
ν ) as
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given by (6.1) can now be obtained from

∆S(Cd
ν ) =

∑

|ij〉

ν,d
∆Sij , (6.12)

i.e., by a summation of the transition entropies ∆Sij over all di-edges contained in the

dicycle Cd
ν .

6.1.2. Dicycle decomposition of entropy production rate. Alternatively, let us insert the

dicycle decomposition (5.21) of the local excess fluxes ∆J st
ij into the relation (6.8) for the

entropy production rate σst
pr. We then obtain the expression

σst
pr =

∑

ν

J st(Cν) 1
2

∑

i,j

′
ǫij,ν kB ln(ωij/ωji) (6.13)

The summation over the di-edges may be divided up into three contributions correspond-

ing to (i) those di-edges which are contained in the dicycle C+
ν , (ii) those in C−

ν , and (iii)

those that are neither contained in C+
ν nor C−

ν . The latter di-edges do not contribute since

the antisymmetric symbol ǫij,ν vanishes in this case. Furthermore, the contributions from

(i) and (ii) are equal which implies

σst
pr =

∑

ν

J st(Cν)
∑

|i,j〉

ν,+
kB ln(ωij/ωji) =

∑

ν

J st(Cν) kB ln(Ξ(C+
ν )) (6.14)

with the dicycle ratio Ξ(C+
ν ) as given by (5.9). Finally, using the cycle flux decomposition

J st(Cν) ≡ J st(C+
ν )− J st(C−

ν ) as in (5.20) and the relation Ξ(C−
ν ) = 1/Ξ(C+

ν ), one obtains

σst
pr =

∑

ν

∑

d=±

J st(Cd
ν ) kB ln(Ξ(C+

ν )) =
∑

ν

∑

d=±

Ωst(Cd
ν ) kB ln(Ξ(C+

ν )) (6.15)

where we have replaced the dicycle fluxes J st(Cd
ν ) by the dicycle frequencies Ωst(Cd

ν ).

In this way, the entropy production rate σst
pr is decomposed into separate contributions

arising from all dicycles of the network. This decomposition may be rewritten in the form

σst
pr =

∑

ν

∑

d=±

Ωst(Cd
ν ) ∆S(Cd

ν ) (6.16)

with the dicycle entropies ∆S(Cd
ν ) as given by (6.1).

6.2. Energy conservation for motor cycles. In general, each state i of the motor repre-

sents an ensemble of molecular conformations that differ in thermally excited vibrational

modes. The corresponding internal energy will be denoted by Ui. For equilibrium states,

the internal energy is a state function (or state property) that does not depend on the

system’s history. We will now assume that we can associate such a history-independent

quantity with the steady states of the motor system as well. This assumption is justified

in the next section by an explicit calculation of the internal energies Ui for the network

models of a single motor head as introduced in section 4.1.

In general, the internal energy Ui can change during the transition |ij〉 because of (i)

energy input Ein,ij during the transition |ij〉, (ii) work Wij , which the motor performs

during this transition, and (iii) heat Qij , which the motor exchanges with the reservoir.
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Conservation of energy now implies

∆Uij ≡ Uj − Ui = Ein,ij − Wij − Qij . (6.17)

The energy input Ein,ij may arise from the coupling to an exergonic chemical reaction

and/or from photon absorption. The work Wij may consist of mechanical work against

an external force and/or against an electrochemical potential gradient.

The energy input Ein,ij may be partially stored in the motor molecule after the tran-

sition |ij〉, which implies ∆Uij > 0, and this stored energy may be transformed into

work and/or heat during a later transition |i′j′〉, which implies ∆Ui′j′ < 0. However, the

situation simplifies if we sum the local energy balance as given by (6.17) over any dicycle

Cd
ν which leads to

∑

|ij〉

ν,d
∆Uij = 0 =

∑

|ij〉

ν,d
[Ein,ij − Wij − Qij ] (6.18)

or the dicycle heat

Q(Cd
ν ) ≡

∑

|ij〉

ν,d
Qij = Ein(Cd

ν ) − W(Cd
ν ) (6.19)

with the dicycle energy input Ein(C
d
ν ) and the dicycle work W(Cd

ν ) as given by

Ein(Cd
ν ) ≡

∑

|ij〉

ν,d
Ein,ij and W(Cd

ν ) ≡
∑

|ij〉

ν,d
Wij . (6.20)

6.3. Nonlocal and local balance conditions. We now want to combine the entropy pro-

duced during the motor dynamics, see subsection 6.1, with the energy conservation law

as given by (6.19). In order to do so, we identify the dicycle entropy ∆S(Cd
ν ) as given by

(6.1) with the reduced heat Q(Cd
ν )/T . A combination of (6.19) and (6.1) then leads to

the nonlocal balance conditions [2]

kBT ln(Ξ(Cd
ν )) = Q(Cd

ν ) = Ein(Cd
ν ) − W(Cd

ν ) (6.21)

or

kBT
∑

|ij〉

ν,d
ln

(

ωij

ωji

)

= Ein(Cd
ν ) − W(Cd

ν ) (6.22)

between the transition rates ωij , the energy input Ein, and the work W for any dicycle

Cd
ν of the network. In equilibrium, all terms on the right hand side of these equations

vanish, and we recover the detailed balance conditions Ξ(Cd
ν ) = 1 as in (5.11).

The nonlocal balance conditions as given by (6.22) are valid for any stochastic network

with an arbitrary number of cycles and extend the theoretical framework for biochemical

networks as developed by T. L. Hill and coworkers [5], for which W (Cd
ν ) ≡ 0. Note that

these balance conditions relate kinetic parameters as given by the transition rates to

thermodynamic controll parameters. In this sense, they represent a generalization of the

law of mass action to nonequilibrium situations which involve various processes of energy

transduction. Since we derived these nonlocal balance conditions from the steady state

properties of the system, we called them ‘steady state balance conditions’ in our previous

work [2, 3]. It is important to note, however, that these equations do not contain any

quantities that are restricted to the steady state.
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We may also derive a local form of the balance conditions if we start from the local

energy balance as given by (6.17) and identify the heat Qij with the transition entropy

∆Sij = kB ln(ωij/ωji) as given by (6.11). This leads to the local balance conditions

kBT ln(ωij/ωji) = Ui − Uj + Ein,ij − Wij . (6.23)

which involve the internal energies Ui and Uj . The latter quantities should be considered

as system parameters that cannot be directly controlled in an experiment. A special case

of the local conditions (6.23) was obtained in Ref. [58] for simplified motor models with

a single cycle and Ui = Uj .

The local balance conditions as given by (6.23) can be rewritten in the form

ωji

ωij
=

exp[−Ui/kBT ]

exp[−Uj/kBT ]
e(−Ein,ij+Wij)/kBT . (6.24)

As explained in [4], this relation may be interpreted as a constrained equilibrium between

the motor states i and j provided one properly distinguishes the terms Ui and Uj , which

characterize the single motor states or vertices i and j, from the terms Ein,ij and Wij ,

which are related to the transition or di-edge |ij〉.

6.4. Practical value of balance conditions. If one wants to apply our theory to specific

motors, the nonlocal balance conditions have the advantage that they provide direct

relations between two types of variables that can both be determined experimentally: the

transition rates can be measured, at least in principle, via kinetic experiments whereas the

energy input Ein and the work W represent thermodynamic control parameters. Indeed,

for motors that are powered by ATP hydrolysis, the energy input can be expressed in

terms of the chemical energy change ∆µ per ATP hydrolysis as given by (3.4) and the

performed work depends on the external load force F that acts parallel to the filament

and on the size of the mechanical step [2, 3, 4].

Therefore, one may use the nonlocal balance conditions in two different ways. If,

for a certain motor, all transition rates were known from experiments, one could use

the balance conditions to estimate the experimental accuracy. In practise, some of the

transition rates will be difficult to measure, and the balance conditions can then be used

to estimate the values of the unknown rates. We have recently applied this latter strategy

to the cytoskeletal motor kinesin [2] as summarized in section 8 below.

6.5. Some qualifications. The derivation of the nonlocal conditions (6.22) was based on

two important physical assumptions: (i) the stochastic process that describes the motor

dynamics can be represented as a continuous-time Markov process and (ii) the statistical

(or Shannon) entropy produced by this process can be identified with the heat that the

motor releases into its environment.

These two assumptions will only apply to a specific physical system if we chose an

appropriate level of description which includes the (most) relevant states and transitions

between these states. This limitation can be understood if we coarse-grain our network

models. If we start from the Markov process on the 6-state model shown in Fig. 5, e.g.,

we can derive the effective stochastic process that governs the mechanical steps alone but

this latter process is no longer Markovian [59].
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Furthermore, if the statistical entropy produced in a certain network model can be

identified with the heat released by the motor, this identification is lost in a coarse-grained

model unless the transition rates of this coarse-grained model satisfy certain relations with

the transition rates of the original model. This latter point will be illustrated in the next

section for the case of a single motor head.

7. Balance conditions for single motor heads. In this section, we will consider the

unicycle networks for single motor heads, which contain a single catalytic domain for ATP

hydrolysis, see Fig. 4(a) and (b), and provide the presumbly simplest examples for our

balance conditions. In fact, these conditions ensure that both the 4-state model and the

reduced 3-state model describe the same energy transduction process. We will also show

that the internal energies Ui can be expressed in terms of the transition rate constants

κij and the activity scales [X]∗. It turns out that analogous relations apply for network

representations in general. Indeed, as shown in Ref. [4], the landscape of internal energies

Ui can always be expressed in terms of the transition rate constants and the activity

scales for arbitrarily complex networks.

7.1. Balance conditions for the 4-state model. First, let us consider again the 4-state

network in Fig. 4(a). As previously explained, this network has four states i = E, T, Θ,

and D. The state E corresponds to an empty head, the state T to a head occupied by one

ATP molecule, the state Θ to bound ADP/P, and the state D to bound ADP. These four

states are connected by forward and backward chemical transitions with transition rates

ωij . Thus, the motor head can undergo chemical transitions between the four states but

does not perform any mechanical work.

Three of the chemical transitions involve the binding of a chemical species: The ATP

binding transition |ET〉, the P binding transition |DΘ〉, and the ADP binding transition

|ED〉. Therefore, the corresponding transition rates ωET, ωDΘ, and ωED must depend on

the activities [ATP], [P], and [ADP], respectively.

The 4-state network consists of the single cycle H4s ≡ 〈ETΘDE〉. As the motor

completes the hydrolysis dicycle H+
4s = |ETΘDE〉, it binds one ATP molecule during the

transition |ET〉, hydrolyzes this ATP into ADP/P during |TΘ〉, releases P during |ΘD〉,

and releases ADP during |DE〉. The corresponding chemical energy inputs Ein,ij ≡ Ech,ij

are given by Ech,ET = µATP, Ech,TΘ = 0, Ech,ΘD = −µP, and Ech,DE = −µADP.

If we sum these energy inputs over the dicycle H+
4s and use the definition (3.4) of the

overall chemical energy ∆µ, we obtain the dicycle energy input

Ech(H+
4s) =

∑

|ij〉

+
Ech,ij = ∆µ = kBT ln

(

Keq [ATP]

[ADP] [P]

)

. (7.1)

Since this dicycle does not perform work, the steady state balance condition for this

dicycle is simply given by

Ξ(H+
4s) = kBT ln

(

ωET ωTΘ ωΘD ωDE

ωTE κΘT κDΘ κED

)

= ∆µ. (7.2)

This relation must hold for any values of the three activities [ATP], [ADP], and [P]. The

latter requirement implies that the transition rates ωET for ATP binding, ωED for ADP
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binding, and ωDΘ for P binding are given by

ωET = κET [ATP], ω21 = κ21 [ADP], and ωDΘ = κDΘ [P], (7.3)

whereas all the other rates ωij are independent of these activities and equal to the cor-

responding rate constants κij . If these dependencies are inserted into (7.2), one obtains

the relation
κET κTΘ κΘD κDE

κTE κΘT κDΘ κED
= Keq (7.4)

between the rate constants and the equilibrium constant Keq.

The relations (7.4) and (7.2) were previously derived by T. L. Hill for a generic ATPase

[5]. In fact, he first derived the equilibrium relation (7.4) using detailed balance and then

observed that this latter relation must remain valid even if ∆µ 6= 0. In contrast, our

derivation does not use detailed balance but provides a direct derivation of the general

steady state balance condition (7.2) from the energy balance of the dicycle. Detailed

balance is then recovered as a special case of this general condition.

Next, we will show that the local form (6.17) of the energy balance leads to explicit

expressions (i) for the internal energies Ui and (ii) for the probability distribution P eq
i

that the system attains in chemical equilibrium. If we apply the local energy balance

relation (6.17) to the four edges of the 4-state network and identify the transition heat

Qij with temperature T times the transition entropy ∆Sij as given by (6.11), we obtain

the internal energy changes

∆UET = UT − UE = µATP − kBT ln(ωET/ωTE), (7.5)

∆UTΘ = UΘ − UT = −kBT ln(ωTΘ/ωΘT), (7.6)

∆UΘD = UD − UΘ = −µP − kBT ln(ωΘD/ωDΘ), (7.7)

and

∆UDE = UE − UD = −µADP − kBT ln(ωDE/ωED) (7.8)

for the 4-state network of a single motor head.

At first sight, these energy differences ∆Uij seem to depend on the chemical potentials

and on the activities [ATP], [ADP], and [P]. Such a dependence is, however, not present. In

order to show that all internal energy differences are independent of the various activities,

we now use the definition (3.2) for the activity scales [X]∗ = [X] exp[−µX/kBT ] that have

a certain fixed value for each chemical species X. In this way, the four relations (7.5) –

(7.8) are transformed into

∆UET = UT − UE = −kBT ln

(

[ATP]∗ κET

κTE

)

, (7.9)

∆UTΘ = UΘ − UT = −kBT ln(κTΘ/κΘT), (7.10)

∆UΘD = UD − UΘ = −kBT ln

(

κΘD

κDΘ [P]∗

)

, (7.11)

and

∆UDE = UE − UD = −kBT ln

(

κDE

κED [ADP]∗

)

. (7.12)
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These expressions hold for any value of ∆µ. For the equilibrium case with ∆µ =

0, these energy differences determine the equilibrium distribution P eq
i via the detailed

balance condition P eq
i ωij = P eq

j ωji as in (5.8). In this latter case, we can then replace

the transition rate ratios ωij/ωji in the four relations (7.5) – (7.8) by the probability

ratios P eq
j /P eq

i . As a result, we find the equilibrium distribution {P eq
i } as given by

P eq
i ≡

1

Z4s
P̂ eq

i (7.13)

with the unnormalized probabilities or Gibbs factors

P̂ eq
E ≡ e−UE/kBT , (7.14)

P̂ eq
T ≡ e−(UT−µATP)/kBT , (7.15)

P̂ eq
Θ ≡ e−(UΘ−µADP−µP)/kBT , (7.16)

and

P̂ eq
D ≡ e−(UD−µADP)/kBT (7.17)

as well as the partition function

Z4s ≡ P̂ eq
E + P̂ eq

T + P̂ eq
Θ + P̂ eq

D . (7.18)

It is important to note that we could have obtained the same distribution from a (re-

stricted) grand canonical ensemble for the motor system which provides another consis-

tency check of the theory.

7.2. Balance conditions for the 3-state model. The 4-state model in Fig. 4(a) can be

reduced by combining the hydrolysis transition |TΘ〉 with the P release transition |ΘD〉

into the new, effective transition |TD〉. As a result, one obtains the 3-state model as

shown in Fig. 4(b) which now contains the single cycle H3s ≡ 〈ETDE〉. The steady state

balance condition for the dicycle H+
3s is then given by

Ξ(H+
3s) = kBT ln

(

ωET ωTD ωDE

ωTE ωDT ωET

)

= ∆µ (7.19)

We now require that the 3-state network and the 4-state network describe the same

energy balance for the same value of ∆µ. Comparison of the two steady state balance

conditions (7.2) and (7.19) then implies the relation

ωTD

ωDT
=

ωTΘ ωΘD

ωΘT ωDΘ
(7.20)

between the transition rates ωTΘ, ωΘT, ωΘD and ωDΘ of the 4-state network and the

transition rates ωTD and ωDT of the 3-state network. This relation may also be expressed

in terms of the transition entropies ∆Sij = kB ln(ωij/ωji) which leads to

∆STD = ∆STΘ + ∆SΘD. (7.21)

Furthermore, using the local balance conditions (6.23), we also find that the relation

(7.20) implies

∆UTD = −µP − kBT ln

(

ωTD

ωDT

)

= ∆UTΘ + ∆UΘD (7.22)
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with the energy differences ∆UTΘ and ∆UΘD as given by (7.6) and (7.7) for the 4-state

model.

In equilibrium with ∆µ = 0, we may again express the probabilities P eq
i in terms of

the internal energies Ui and the chemical potentials via the detailed balance condition

P eq
i ωij = P eq

j ωji. We then recover the Gibbs factors (7.14), (7.15), and (7.17) for the

unnormalized probabilities P̂E, P̂T, and P̂D and the equilibrium probabilities

P eq
i =

1

Z3s
P̂i with Z3s ≡ P̂E + P̂T + P̂D. (7.23)

Therefore, the relation (7.20) between the transition rates ωTΘ, ωΘT, ωΘD and ωDΘ of

the 4-state network and the transition rates ωTD and ωDT of the 3-state network implies

that the 3-state network is governed by the same transition entropies, internal energies,

and Gibbs factors as the 4-state network. In this way, the relation (7.20) illustrates the

fact that the transition rates of the coarse-grained model must satisfy certain relations

with the transition rates of the original model, if we want to ensure that both models

describe the same process of energy transduction. In particular, let us assume that the

transition entropies ∆STΘ and ∆SΘD provide good estimates for the heat released by

the motor during the transitions |TΘ〉 and |ΘD〉 in the 4-state model. We may then also

identify the transition entropy ∆STD with the heat released during the transition |TD〉

in the 3-state model provided the transition entropies satisfy the relation (7.21) which is

equivalent to (7.20).

8. Kinesin: A case study for chemomechanical coupling. We have recently ap-

plied the general network theory as described in the previous sections to the cytoskeletal

motor kinesin [3]. Since kinesin is a two-headed motor, we start from the network descrip-

tion as discussed in subsection 4.2, see Fig. 5. As mentioned, this description is based (i)

on the distinct chemical states that the two-headed motor can attain and (ii) on the as-

sumption that the mechanical steps are fast compared to the chemical transitions. Recent

experimental observations by Carter and Cross [21] provide strong evidence that such a

separation of time scales applies to kinesin.

In Fig. 5, we have illustrated the reduction of the 9-state network to the 6-state

network, in which all motor states are characterized by two motor heads that differ in

their chemical composition. A slightly different representation of this 6-state network is

displayed in Fig. 6(a). As before, the network consists of 6 vertices representing the 6

possible motor states, of solid edges corresponding to the chemical forward and backward

transitions, and of one broken edge for the forward and backward mechanical steps. In

addition, we have now indicated the direction of the forward mechanical step by a black

arrow and the direction of the ATP hydrolysis by a white double-arrow.

The 6-state network contains the two chemomechanical cycles F = 〈12561〉 and B =

〈23452〉 where the motor states are labeled as in Fig. 6(a). For small ADP concentrations,

the competition of these cycles is predicted to determine the stall force of the motor at

which the motor velocity vanishes. In the steady state, the motor velocity v is proportional

to the local excess flux ∆J st
25 through the mechanical transition |25〉 and is given by

v = ℓ ∆J st
25 = ℓ [P st

2 ω25 − P st
5 ω52] (8.1)
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with the step size ℓ = 8 nm. Using the cycle decomposition (5.21) for the local flux ∆J st
25,

one obtains

v/ℓ = J st(F) − J st(B) (8.2)

= J st(F+) − J st(F−) − [J st(B+) − J st(B−)].

Therefore, in the 6-state model, this velocity is governed by the competition between the

two motor cycles F and B, and vanishes for J st(F) = J st(B) which provides an implicit

equation for the stall force Fs. This latter equation can be rewritten in the simple form

ω25

ω52
=

ω23

ω56
for F = Fs. (8.3)

This equation remains unchanged in the limit of small [ADP], in which the transition

rates ω65 and ω32 and the dicycle fluxes J st(F−) and J st(B−) vanish. Thus, for small

[ADP], the motor velocity is given by v ≈ ℓ[J st(F+) − J st(B+)], and the stall force is

determined by the two dicycles F+ and B+ which both involve ATP hydrolysis.

This prediction of our network model differs qualitatively from those of unicycle mod-

els, see, e.g., [37, 38]. Indeed, in motor models with a single motor cycle, the stall force

is necessarily determined by the flux balance between ATP hydrolysis and ATP synthe-

sis [38]. Since the ATP synthesis rate is proportional to ADP concentration, the latter

balance would imply that the ATP hydrolysis rate vanishes at the stall force in the limit

of small ADP concentration. The experiments by Carter and Cross [21] show, however,

that the ATP hydrolysis rate is finite in this limit in agreement with our network models.

As shown in [3], the 6-state network in Fig. 6(a) agrees even quantitatively with the

experimental data in Ref. [21] for an appropriate choice of the transition rates.

Another quantity which can be easily calculated is the ratio, q, of forward to backward

mechanical steps which is given by

q =
P2 ω25

P5 ω52
= 1 +

v/ℓ

P5ω52
. (8.4)

In the 6-state network, an explicit calculation leads to

q =
1 + ω56/ω52

1 + ω23/ω25
. (8.5)

If the load force F is equal to the stall force Fs, one has ω25/ω52 = ω23/ω56 as in

(8.3) which implies q = 1. For the transition rates as determined in [3], the step ratio q as

calculated for the 6-state model agrees very well with the ratio as observed experimentally

in [21]. In addition, the 6-state model also agrees with the data from the Block group

[16, 17] and with the data on the P-dependence of the motor velocity as observed by the

Howard group in [18]. Thus, the 6-state network provides a good description for almost

all measured properties of kinesin’s processive motion. There is one exception, however:

the decrease of motor velocity with increasing ADP concentration, as calculated for the

6-state model, is not as fast as observed experimentally in [18]. In order to match the

observed velocity/ADP relationship, we found it necessary to include another motor

state in which both heads contain bound ADP. The resulting 7-state network is shown

in Fig. 6(b).
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Fig. 6. Network models for kinesin: (a) 6–state network with two chemomechanical cycles, the
forward cycle F = 〈12561〉 and the backward cycle B = 〈23452〉; and (b) 7-state network with
two additional chemomechanical cycles, the additional forward cycle FDD = 〈12712〉 and the
additional backward cycle BDD = 〈27452〉. In the limit of small ADP concentration, the observed
dependence of the motor properties on the load force arises from the competion of the forward
cycle F and the backward cycle B. In the limit of small load force, on the other hand, the
available experimental data on the ADP dependence of the motor velocity can be understood
from the concerted action of the two forward cycles F and FDD [3]. The unbinding of the motor
from the filament is most likely to occur from the weakly bound state (D,D).

Inspection of Fig. 6(b) shows that the 7-state network contains two additional chemo-

mechanical cycles, the additional forward cycle FDD = 〈12712〉 and the additional back-

ward cycle BDD = 〈27452〉. For small load forces, the motor dynamics is found to be

governed by the two forward cycles F and FDD. The observed reduction of the motor

velocity with increasing ADP concentration can be understood as follows. First, the in-

crease of [ADP] leads to an increase in the transition rates ω17 and ω65, which acts to

reduce the local excess fluxes ∆J st
12 = P1ω12 − P2ω21 and ∆J st

56 = P5ω56 − P6ω65, re-

spectively. As a consequence, the increase of [ADP] reduces the flux J st(F+) through

the forward dicycle F+. This reduction of J st(F+) is only partially compensated by the

new dicycle flux J st(F+
DD), since this latter flux is also impeded by the more frequent

transitions |17〉, which belong to the reverse dicycle F−
DD. As a result, the flux through

the di-edge |25〉, which is proportional to the motor velocity, decreases substantially with

increasing [ADP] as observed in experiment [3].

In summary, we have developed a network theory for the chemomechanical coupling

of the molecular motor kinesin [3] that is based on the chemical state space of this motor

and on the recent experimental observation [21] that its mechanical steps do not exhibit

substeps. Our theory provides a quantitative description of the functional dependencies

of motor velocity, ratio of forward to backward steps, and randomness parameter on the

external control parameters as observed in single molecule experiments [16, 17, 18, 21].

One important aspect of our theory is the presence and competition of several chemo-

mechanical motor cycles. For low [ADP], the motor properties are determined by the two
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cycles F and B, compare Fig. 6, which balance each other at the stall force. Therefore,

one has to go beyond the usual unicycle models in order to understand the motor prop-

erties of kinesin. For large [ADP], yet another cycle becomes relevant that involves the

weakly bound DD state. As will be described elsewhere [60], our theory can also be used

to calculate additional motor properties such as the hydrolysis rate and the efficiency of

the motor, which are difficult to measure experimentally.
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