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Abstract. The classical theory of the sex-ratio evolution, known as the sex-ratio game, is based

on the maximization of the number of grandchildren, treated as a fitness measure of a female

producing offspring of the sex ratio that is coded in her genes. The theory predicts that it is more

profitable to produce offspring with less numerous sex. We can find in the literature mutually

exclusive conclusions based on this prediction: some textbooks say that populations with the

equal number of sons and daughters are evolutionarily stable, others identify this ratio as a

stable state of a population with different individual strategies being allowed. It is also not clear

whether a primary or secondary sex ratio is a target of evolution. Moreover, the classical theory

ignores the role of males, who host non-expressed sex-ratio genes. Our new approach, based

on multipopulation dynamic evolutionary games, shows that in populations of players with

individual strategies, the secondary sex ratio is attracted by the current value of the primary sex

ratio, which slowly converges to the unique stable value of 0.5. Male hosts of the sex-ratio gene

are important because perturbations of a stable state of males subpopulation can destabilize the

whole system.

1. Introduction. In nature, the observed ratio of males to females is in most cases 0.5.

However, a single male individual can fertilize many females. In many species, dominant

males can monopolize all females in the population, thus making reproduction of other

males impossible. Nevertheless, also in this case the 0.5 sex ratio can be observed. The

question is: what mechanism is responsible for what seems to be a suboptimal sex ratio?

When males, unlike females, do not produce offspring, half of individuals are excluded

from reproduction. Such a population has a lower mean fitness than a population in

which majority of individuals reproduce. The question arises: what is the origin of the
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0.5 sex ratio? This problem was considered by Darwin. Unfortunately, he has not solved

it. First attempts to explain this phenomenon were made in the end of the 19-th century.

They were also the first applications of mathematical methods in evolutionary biology.

Their author was a German biologist, Carl Dusing. Using the mathematical reasoning,

he argued that the natural selection could lead to the stabilization of the sex ratio on the

level of 0.5. His results are founded on one basic assumption - the number of grandchildren

is assumed as a fitness measure of a female who produces offspring of a sex ratio that is

coded in her genes. It is known that the sex of an offspring is an effect of both a mother

and a father. But a female can express her individual strategy by spontaneous abortions

of foetuses with a wrong sex. This assumption has become the cornerstone of sex-ratio

models. Ronald A. Fisher used a similar argument in his book and the concept is often

attributed to him (see Fisher [4], Queller [9]). The Dusing-Fisher approach produces

the following predictions. In the case of a shift of the population sex ratio to males, a

female who produces proportionally more female offspring than other females will have

a higher number of grandchildren. Similarly, when the population sex ratio is shifted to

females, the production of a higher proportion of males will ensure a higher number of

grandchildren. Formalization of this reasoning can be obtained by the construction of a

fitness function whose arguments are: an individual strategy (that is the sex ratio in a

female brood) and the population sex ratio. It can be done in the following way.

Let us take a game-theoretic perspective. Players are females, and the proportion of

males in the brood of a single female, described by Pind is her individual strategy. Let P

denote the population sex ratio (interpreted as the proportion of males), N the number of

all individuals in the population, and x the number of children of a single female. Now we

can derive a payoff function which describes the number of grandchildren of a female with

a strategy Pind. A female with the strategy Pind will have Pindx sons, and these sons will

produce Pindx
2 (1−P )N

PN
grandchildren. This female will also have (1 − Pind)x daughters,

who will produce x2(1−Pind) grandchildren. Hence the total number of grandchildren is

given by the following expression:

Pindx
2((1 − P )N/PN) + x2(1 − Pind) = x2

[

Pind(1 − P )

P
+ (1 − Pind)

]

= x2(1 − P )

[

Pind

P
+

1 − Pind

1 − P

]

. (1)

Let us assume for simplicity that x = 1, then the right-hand side of (1) can be written

as (1 − P )F (Pind, P ), where F (Pind, P ) = Pind

P
+ 1−Pind

1−P
.

As we can see, F (Pind, P ) can be used to compare numbers of grandchildren of females

with different individual strategies. This function is a payoff function of an evolutionary

game, which in the literature is called the SEX-RATIO GAME (see [2], [3], [7], [8],

[9], [11]). In a situation when P = 0.5, all strategies will obtain equal payoffs, hence

this is an equilibrium. When this equilibrium is disturbed to the advantage of one of

the sexes, it is more profitable to produce more individuals of the less numerous sex.

In the biological literature we can find different conclusions based on this mathematical

reasoning, sometimes mutually exclusive. Generally, in textbooks there exist two main

variants:
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• Natural selection promotes females with an individual strategy Pind = 0.5 (see [5]).

• Natural selection leads to the 0.5 population sex ratio without favoring any individ-

ual strategy. Population is non-homogenous, there are different individual strategies

(see [10]).

In biology, there is a very important distinction between the sex ratio among zy-

gotes (called the primary sex ratio) and the sex ratio among adult individuals (called

the secondary sex ratio). In textbooks, two types of relations between the primary and

secondary sex ratio can be found:

• Primary sex ratios converge to 0.5 and there are no compensations of the secondary

sex ratio perturbations (see [10]).

• The primary sex ratio can be biased away from 0.5, but the secondary sex ratio

converges to 0.5 (see [6]).

An advantage of the Dusing-Fisher approach is its simplicity. As we have seen above,

the derivation of this model takes only a few lines of text. Still, there are some questions.

Does an arbitrary assumption that the number of grandchildren is a measure of fitness

allows to extrapolate a reproductive success to future generations? If a female P̂ind has

more grandchildren than a female Pind, then in the following generations, will P̂ind also

have more descendants than Pind? Let us recall that the classical model depends on two

variables: the individual strategy Pind and the population sex ratio P . It is obvious that

the value of P is determined by a combined influence of all individual strategies in the

population. However, this effect is not present in the classical approach. If an individual

strategy P̂ind will spread in the population, then we can expect convergence of P to the

value of P̂ind. The Dusing-Fisher model analyzes only the effect of the population sex

ratio P on the fitness of individual strategies; the effect of individual strategies on P is not

considered. The second problem with the classical model is that it takes into account only

female reproductive success. An individual strategy is interpreted as a decision process

performed by a female. But since a fitness measure is assumed to be the total number of

grandchildren, the gene transfer takes place through sons as well. This is an inconsistency

because the fitness function is constructed for females only. It is possible that a male

carrier of genes for a strategy Pind will have a greater reproductive success than a female

having this strategy. The question is: what influence the unconsidered effects described

above will have on the predictions of the Dusing-Fisher model?

2. Multipopulation model. In order to address the above problems we need to con-

struct an alternative model which would involve both males and females effects on the

gene proliferation. The new model is very complicated from the mathematical point of

view and therefore in this paper we limit ourselves to an overview of the new approach. It

is based on a multi-population evolutionary game with a replicator dynamics (Argasiński

[1]). We assume here that there are 3 different individual strategies in the population, for

example P1 = 0.5, P2 = 0.2, and P3 = 0.8. As in the classical approach, the individual

strategy is the sex ratio (proportion of males) in a female brood. Now we construct a

two-population model. The first subpopulation consists of males and the second of fe-
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males. Individuals are distinguished by their sex and the strategy coded in their genes.

A strategy is expressed only in females; male individuals are only its carriers. Current

population state is described by

• F = [f1, f2, f3] – a vector of proportions of individual strategies in the female

subpopulation,

• M = [m1, m2, m3] – a vector of proportions of individual strategies in the male

subpopulation,

• P – a proportion of males in the population (or the population sex ratio).

The space of states of the population can be described as the product of two three-

dimensional simplexes and a unit interval (one-dimensional simplex). Our model focuses

on the dynamics of changes of the population state described by the replicator dynamics.

Therefore, the fitness function does not describe the number of grandchildren but the

number of direct descendants. The derivation of the fitness function is based on the

computation of the probability of the number of descendants of an individual of a given sex

and strategy. We assume that the production of a single descendant is a single Bernoulli

trial, where the success means the transfer of the strategy gene to the new individual. For a

male with the strategy Pi, the probability of such transfer to a male descendant is equal

to θm
m(Pi) = 0.5 (0.5f1 + 0.2f2 + 0.8f3) , an analogous value for a female descendant

is θf
m(Pi) = 0.5 (1 − (0.5f1 + 0.2f2 + 0.8f3)) (a haploid probability of a gene transfer

multiplied by a probability of a proper sex choice according to the mean strategy of a

potential mothers population). Analogously for a female we have θf
f (Pi) = 0.5 (1 − Pi)

and θm
f (Pi) = 0.5 (Pi) . A female makes x trials (a number of her kids) and a male

individual makes afx trials (a number of his kids), where af is the number of females per

one male (analogously am is the number of males per one female, later on an additional

upper index Pi will mean that we take into account only hosts of this strategy). Then

we can calculate mean values of numbers of male and female descendants produced by a

single male or a female parent with the strategy Pi denoted by µy
x(Pi), where the lower

index describes the sex of a parent and the upper index describes the sex of an offspring.

Hence for the strategy Pi we have µf
f (Pi) + aPi

m µf
m(Pi) new female individuals per a

single female parent, and an analogous value for males equals to µm
m(Pi) + aPi

f µm
f (Pi).

The mortality of parents may be treated as a negligible background fitness, so these

values can be interpreted as per capita growth rates. According to Argasiński [1], these

functions can be described in variables F, M and P. Therefore, depending on the sex of

an individual, we obtain two kinds of the fitness (payoff) functions,

Ff (Pi, F, M, P ) =
x

2

(

(1 − Pi) +
mi

fi

(1 − (0.5f1 + 0.2f2 + 0.8f3))

)

for females,

Fm(Pi, F, M, P ) = x
1 − P

2P

(

0.5f1 + 0.2f2 + 0.8f3 +
fi

mi

Pi

)

for males.

(2)

These functions describe per capita growth rates of an individual characterized by the

sex and an inherited strategy. Arguments of these functions are: the strategy Pi inherited

by the individual and the population state described by vectors F, M and the value of P .

Payoffs are interpreted as the per capita growth rate of an individual described by the
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sex and its strategy at the moment when the population is in the state F, M, P . We can

now derive the mean fitness function for the female subpopulation

F̄f (F, M, P ) = f1Ff (P1, F, M, P ) + f2Ff (P2, F, M, P ) + f3Ff (P3, F, M, P ),

and the mean fitness function for the male subpopulation

F̄m(F, M, P ) = m1Fm(P1, F, M, P ) + m2Fm(P2, F, M, P ) + m3Fm(P3, F, M, P ).

Subsequently, we can derive the mean fitness function for the whole population

F̄ (F, M, P ) = PF̄m(F, M, P ) + (1 − P )F̄f (F, M, P ).

We may now form the multi-population replicator equations (see [1]) which describe

changes in proportions of strategies among females:

ḟi = fi(Ff (Pi, F, M, P ) − F̄f (F, M, P )); i = 1, 2,

changes in proportions of strategies among males:

ṁi = mi(Fm(Pi, F, M, P ) − F̄m(F, M, P )); i = 1, 2,

and the evolution of sex ratio:

Ṗ = P (F̄m(F, M, P )− F̄ (F, M, P ))

Then we obtain the following system of equations:

ḟi = x

(

fi

2
(1 − Pi) +

(mi

2
− fi

)

(1 − (0.5f1 + 0.2f2 + 0.8f3))

)

for i = 1, 2,

ṁi = x
1

2

(

1

P
− 1

)

(fiPi − mi (0.5f1 + 0.2f2 + 0.8f3)) for i = 1, 2,

Ṗ = x(1 − P ) (0.5f1 + 0.2f2 + 0.8f3 − P ) .

(3)

Solutions of the above equations show that:

• Natural selection does not favor the individual strategy 0.5 (or any other strat-

egy). Trajectories of the system converge to restpoints. For every rest point, the mean

strategy of the female subpopulation (that is the primary sex ratio) is equal 0.5 and

the proportion of carriers of a strategy Pi must satisfy the following condition: fiPi =

mi (0.5f1 + 0.2f2 + 0.8f3) .

• A trajectory of the population sex ratio (the secondary sex ratio) P can pass the

value 0.5, which is stable from the point of view of the classical theory. P is attracted by

the current value of the primary sex ratio and follows it until the whole system reaches

a stable state. This happens when the primary sex ratio (and in effect the secondary sex

ratio) is equal to 0.5.

• Changes of initial conditions of the male subpopulation may affect the behavior of

the whole system.

3. Conclusions. Our model shows that superiority based on the number of grandchil-

dren of a female cannot be extrapolated to future generations. Trajectories of the evo-

lution of the male subpopulation may strongly affect the behavior of the whole system.

Our major conclusion is that the role of male hosts of sex-ratio genes has been completely

disregarded in the classical theory. Numerical solutions of replicator equations show that
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dynamics of this system is very complex. Continuation of this work may provide new

interesting results.
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