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Abstract. The biological theory of adaptive dynamics proposes a description of the long-time

evolution of an asexual population, based on the assumptions of large population, rare mutations

and small mutation steps. Under these assumptions, the evolution of a quantitative dominant

trait in an isolated population is described by a deterministic differential equation called ‘canon-

ical equation of adaptive dynamics’. In this work, in order to include the effect of genetic drift

in this model, we consider instead finite, randomly fluctuating populations and weak selection.

We consider a trait-structured population subject to mutation, birth and competition of

logistic type, where the number of coexisting types may fluctuate. Applying a limit of rare mu-

tations to this population while keeping the population size finite leads to a jump process, the

so-called ‘trait substitution sequence’, where evolution proceeds by successive invasions and fixa-
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tions of mutant types. The probability of fixation of a mutant is interpreted as a fitness landscape

that depends on the current state of the population. Rescaling mutation steps (weak selection)

then yields a diffusion on the trait space christened ‘canonical diffusion of adaptive dynamics’,

in which genetic drift (diffusive term) is combined with directional selection (deterministic term)

driven by the fitness gradient.

Finally, in order to compute the coefficients of this diffusion, we seek explicit first-order

formulae for the probability of fixation of a nearly neutral mutant appearing in a resident popu-

lation. The first-order term is a linear combination of products of functions of the initial mutant

frequency times ‘invasibility coefficients’ associated with fertility, defence, aggressiveness and

isolation, which measure the robustness (stability with respect to selective strengths) of the

resident type. Some numerical results on the canonical diffusion are also given.

1. Introduction. The recent biological theory of adaptive dynamics [6,9] proposes a

description of the long term evolution of an asexual population by putting emphasis

on the ecological interactions between individuals, in contrast with classical population

genetics models which focus on the genetic structure of the population. The basic models

are individual-based models in which the population dynamics is precisely described and

includes birth, death, competition and mutation. The basic idea of the theory of adaptive

dynamics is to try to get insights about the interplay between ecology and evolution by

studying the invasion of a single mutant type appearing in a simplified (monotype stable)

resident population. The evolution of the population can then be described as a sequence

of mutant invasions in the population. If the resident type goes extinct when the mutant

type invades (we say that the mutant type becomes fixed), the evolution is described by

the so-called ‘trait substitution sequence’ (TSS) [10]. This approach has revealed powerful

to predict the qualitative behaviour of complex evolutionary dynamics. In particular, it

allows one to determine the (local) direction of evolution in the space of phenotypic

traits (or simply traits) from the individual ecological parameters, and to predict and

explain the phenomenon of evolutionary branching [10], where a population, initially

composed of individuals with traits concentrated around a single trait value, divides

into two (or more) subpopulations concentrated around distinct trait values that stably

coexist because of their ecological interactions. The description of this phenomenon is

an important achievement of this theory, as well as the ‘canonical equation of adaptive

dynamics’ [3], which describes the evolution of the dominant trait of the population as a

deterministic “hill-climbing” process on a fitness landscape which depends on the current

state of the population (see (1) below).

More formally, as soon as eternal coexistence of two or more types is not permit-

ted by the model, the evolution can be described by the sequences (Tn)n and (Vn)n,

where Tn is the n-th time where the population becomes monomorphic (i.e. composed

of only one type) and Vn is the surviving type at time Tn. The sequence (Vn) is the

above-mentionned TSS. It is possible to prove the convergence of an individual-based

model to the TSS under two biologically motivated assumptions [10,1]. First, the as-

sumption of rare mutations guarantees that, in the timescale of mutations, the widths

of time intervals during which the population is polymorphic vanish, so that there is

only one type surviving at any time t. To prevent the population from rapidly becoming
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extinct in the new timescale, one also has to rescale population sizes, thereby making the

assumption of large populations.

Subsequently, the TSS is a Markov jump process on the trait space whose semigroup

is shown [1] to depend on the invasion fitnesses ([9]) f(x, y), x, y ∈ X , where f(x, y)

is defined as the expected growth rate of a single individual of type y — the mutant —

entering a monomorphic population of type x ‘at equilibrium’ — the residents. Note that

this fitness is not given a priori, but derived from the microscopic model of individual

interactions. Because of the assumption of large population, the sign of this fitness de-

termines the possibility of invasion of a mutant type: if f(x, y) < 0, the mutant type y

cannot invade a resident population of type x. Thus, evolution proceeds by successive

invasions of (only) advantageous mutant types replacing the resident one.

The ‘canonical equation of adaptive dynamics’ [3], which describes the evolution of a

one-dimensional trait x as the solution of the following ODE, is obtained from the TSS

in the limit of small mutations :

dx

dt
=

1

2
σ(x)2µ(x)n̄(x)

∂

∂y
f(x, x), (1)

where σ(x)2 stands for the (rescaled) variance of the mutation step law, n̄(x) for the

equilibrium size of a pure x-type population, and f(x, y) for the invasion fitness men-

tioned above. Note how only advantageous types get fixed (the trait follows the fitness

gradient) and how the fitness landscape y 7→ f(x, y) depends on the current state x of

the population.

However, it is well-known that slightly deleterious types can be fixed by chance in fi-

nite populations. This phenomenon is known under the name of genetic drift. Depending

on the strength of genetic drift, selection is said to be strong (genetic drift has negligible

effects) or weak. In the large population asymptotic from which the TSS of adaptive dy-

namics is derived, genetic drift has negligible impact compared to the action of selection.

Therefore, the fixation of slightly deleterious types cannot be observed. Our goal here is

to include genetic drift in the adaptive dynamics models by considering finite populations

under weak selection. We continue using the bottom-up approach of adaptive dynamics;

that is, model (macroscopic) evolution from (microscopic) populations. In particular, we

allow the population sizes to fluctuate randomly through time and we aim to reconstruct

a fitness function from the microscopic parameters.

After the description of the model (Section 2), we derive a new TSS in the limit of

rare mutations (Section 3), from which a limit of small mutations gives what we call the

‘canonical diffusion of adaptive dynamics’ (Section 4). The coefficients of this diffusion

involve the first-order derivatives of the fixation probabilities, which are computed in

Section 5 as a linear combination of four fundamental components associated to fertility,

defence, aggressiveness and isolation. New numerical results on the robustness of the

population with respect to these fundamental components are also given, as well as some

consequences on the canonical diffusion of adaptive dynamics in large populations.

2. The microscopic model. We will restrict here to logistic interaction. More general

models are considered in [2].
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A monotype (binary) logistic branching process (LBP, see [7]) with dynamical pa-

rameters (b, c) is a Markov chain in continuous time (Xt; t ≥ 0) with nonnegative integer

values and transition rates

qij =























bi if j = i + 1,

ci(i − 1) if j = i − 1,

−i(b + c(i − 1)) if j = i,

0 otherwise.

The non-linear term ci(i− 1) describes competition mortality due to random encounters

between individuals. Other terms correspond to independent birth events with constant

individual rates. This Markov chain is positive-recurrent and converges in distribution to

a r.v. ξ, where ξ is a Poisson variable of parameter θ := b/c conditioned on being nonzero

P(ξ = i) =
e−θ

1 − e−θ
,

θi

i!
, i ≥ 1. (2)

We consider a multitype asexual birth and death process with mutation, generalizing

this LBP. At any time t, the population is composed of a finite number N(t) of individuals

characterized by their phenotypic traits x1(t), . . . , xN(t)(t) belonging to a given trait space

X , assumed to be a closed subset of R
k. The population state at time t is represented by

the counting measure on X

νt =

N(t)
∑

i=1

δxi(t).

The population dynamics is governed by the following parameters.

• b(x) is the rate of birth from an individual of type x. The function b is assumed to

be C2
b .

• c(x, y) is the rate of death of an individual of type x due to the competition with

another individual of type y. Therefore, the total death rate of an individual of type

x in a population ν may be written as
∫

c(x, y)(ν(dy)− δx(dy)). In this expression,

the Dirac mass at x substracted to the measure ν means that the individual does

not compete with himself. The function c is assumed to be C2
b and bounded away

from 0 on X 2.

• γµ(x) is the probability that a birth from an individual with trait x produces a

mutant individual, where µ(x) ∈ [0, 1] and where γ ∈ (0, 1] is a parameter scaling

the frequence of mutations. When there is no mutation, the new individual inherits

the trait of its progenitor. In Section 3, we will be interested in the limit of rare

mutations (γ → 0).

• M(x, dh) is the law of the trait difference h = y−x between a mutant individual with

trait y and the trait x of his progenitor. We assume that M(x, dh) has 0 expectation

(no mutation bias), i.e.
∫

hM(x, dh) = 0, and has a density on R
k which is uniformly

bounded in x ∈ X by some function M̄(h) with finite third-order moment.

We will denote the dependence of νt on the parameter γ with the notation νγ
t . Observe

that such a population cannot become extinct because the death rate is 0 when there is

only one individual in the population. Since we want to apply a limit of rare mutations
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while keeping the population size finite, this is necessary to prevent the population to

become extinct before any mutations occur.

Let ξ(x) be a random variable whose law is the stationary distribution of a pure x-type

population with no mutation (µ ≡ 0). This law is given by (2) where θ is replaced by

θ(x) := b(x)/c(x, x).

The last notation needed concerns a population with initially only two types x and

y and with no mutation. Then νt = Xtδx + Ytδy, where (Xt, Yt : t ≥ 0) is a bivariate

Markov chain. For this Markov chain, P(T < ∞) = 1, where T is the first time where

either Xt or Yt reach 0. We call fixation (of the mutant y) the event {XT = 0}. The

probability of fixation will be denoted by un,m(x, y)

un,m(x, y) := P(XT = 0 | X0 = n, Y0 = m).

3. The trait substitution sequence in finite populations. In this section, we apply

the limit of rare mutations (γ → 0) to the process νγ , in order to describe the evolution of

the population as a TSS in finite population. This limit requires to rescale time properly,

as t/γ, to describe the evolution on the mutation timescale.

Theorem 1. Fix x ∈ X . Assume that νγ
0 = Nγ

0 δx where supγ∈(0,1) E((Nγ
0 )p) < ∞ for

some p > 1. Then, for any 0 < t1 < . . . < tn, the n-tuple (νγ
t1/γ , . . . , νγ

tn/γ) converges in

law for the weak topology to (Nt1δSt1
, . . . , Ntn

δStn
) where

(1) (St; t ≥ 0) is a Markov jump process on X with initial value S0 = x and whose

jumping rates q(x, dh) from x to x + h are given by

q(x, dh) = β(x)χ(x, x + h)M(x, dh),

where β(x) = µ(x)b(x)E(ξ(x)) = µ(x)b(x)θ(x)/(1− e−θ(x)) and

χ(x, y) =
∑

n≥1

nP(ξ(x) = n)

E(ξ(x))
un,1(x, y) =

∑

n≥1

e−θ(x) θ(x)n−1

(n − 1)!
un,1(x, y). (3)

(2) Conditional on (St1 , . . . , Stn
) = (x1, . . . , xn), the Nti

are independent and respec-

tively distributed as ξ(xi).

Therefore, in the limit of rare mutations, on the mutation timescale, the population is

always monomorphic and the dominant trait of the population evolves as a jump process

over the trait space, where a jump corresponds to the appearance and fixation of a mutant

type. Moreover, at any time, the population size is stationary (i.e. has the stationary

distribution corresponding to the dominant trait of the population). The fixation rate of

a mutant is governed by the function χ(x, y), which is therefore the random analogue of

the traditional invasion fitness [9], defined as the probability of invasion of a mutant type

y in a resident population of type x at equilibrium. Observe that, as usual in adaptive

dynamics, the fitness landscape depends on the current state of the population. Moreover,

in contrast with the classical TSS [10], from a given monomorphic resident population,

any mutant trait has a positive probability to invade (genetic drift). Therefore, evolution

is possible in any direction of the trait space. However, selection still acts in a preferential

direction, as will appear in the next section.
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We refer to [2] for the proof of this result. However, this convergence is natural in

view of the following interpretation of each parameter. The quantity β(x) can be seen

as the mean mutant production rate of a stationary x-type population (i.e. with size

ξ(x)), and χ(x, y) is the probability of fixation of a single y-type mutant entering a pure

x-type population with size-biased stationary size. The size bias comes from the fact

that the mutant appears at a birth time in the stationary population (since the birth

rate is proportional to the population size, the population size after a birth event in the

stationary population is given by the size-biaised stationary population size).

4. The canonical diffusion of adaptive dynamics. Let us assume for simplicity that

X = R
k. Let σ(x) be the square root matrix of the covariance matrix of M(x, ·). We also

need to assume that the matrix σ(x) is a Lipschitz function of x.

In order to obtain the equivalent of the canonical equation of adaptive dynamics in

a finite population, we want to apply a limit of small mutation steps (weak selection)

to the TSS S. To this aim, we introduce a parameter ǫ > 0 and replace the mutation

kernels M(x, ·) by their image by the application h 7→ ǫh. Time also has to be rescaled

in order to obtain a non-degenerate limit. The correct time scaling is 1/ǫ2, which leads

to the following generator for the rescaled TSS (Sǫ
t ; t ≥ 0)

Aǫϕ(x) =
1

ǫ2

∫

Rk

(ϕ(x + ǫh) − ϕ(x))β(x)χ(x, x + ǫh)M(x, dh).

Using the assumption that the mutation kernels M(x, ·) have 0 expectation, it is elemen-

tary to compute the limit of this expression as ǫ → 0 (for sufficiently regular ϕ). This

limit, which takes the form of a diffusion generator, explains the following result (its full

proof can be found in [2]).

Theorem 2. If the family (Sǫ
0)ǫ>0 has bounded first-order moments and converges in law

as ǫ → 0 to a random variable Z0, then the process Sǫ with initial state Sǫ
0 converges in

law for the Skorohod topology on D(R+, Rk) to the diffusion process (Zt; t ≥ 0) with initial

state Z0, the unique solution to the stochastic differential equation

dZt = β(Zt)σ
2(Zt) · ∇2χ(Zt, Zt) dt +

√

β(Zt)χ(Zt, Zt)σ(Zt) · dBt (4)

where ∇2χ denotes the gradient w.r.t. the second variable y of χ(x, y) and B is a standard

k-dimensional Brownian motion.

This result gives the equivalent form of the canonical equation of adaptive dynam-

ics (1) when the population is finite. It is no longer a deterministic ODE, but a diffusion

process, in which the genetic drift remains present (in the form of a stochastic diffusion

term), as a consequence of the population finiteness and of the limit of weak selection.

The deterministic drift part of (4) is very similar to the standard canonical equation of

adaptive dynamics (1), and involves in particular the gradient of the fitness function χ.

The process (4) provides a diffusion model describing the evolution of the dominant trait

value in a population [8, 5], grounded on a precise microscopic density-dependent mod-

elling of the population dynamics. It also gives the precise balance between directional

selection and genetic drift as a function of the individual’s dynamical parameters.



ADAPTIVE DYNAMICS IN BRANCHING POPULATIONS 241

5. Fixation probability near neutrality. The SDE (4) involves the fixation proba-

bility χ(x, x) and the fitness gradient with respect to the second variable ∇2χ(x, x). In

this section, we explain how these quantities can be explicitly computed.

We need to compute the derivatives of the fixation probabilities un,m(x, y) when y

is close to x. Recall that the law of the two-type LBP without mutation (X, Y ) used

to define un,m in the end of Section 2 is characterized by the birth vector B and the

competition matrix C

B =

(

b(x)

b(y)

)

, C =

(

c(x, x) c(x, y)

c(y, x) c(y, y)

)

.

We will say that the mutant is neutral if all individuals are exchangeable, i.e. when

b(y) = b(x) and c(x, y) = c(y, x) = c(y, y) = c(x, x) (this holds in particular when y = x).

As will appear below, using the notation (b, c) := (b(x), c(x, x)), it is natural to focus on

deviations from the neutral case expressed as

B = b1 +

(

0

λ

)

, C = c1−

(

0 0

δ δ

)

+

(

0 α

0 α

)

−

(

0 ε

ε 0

)

.

In words, deviations from the neutral case are a linear combination of four fundamental

selection coefficients λ, δ, α, ε, that are chosen to be positive when they confer an

advantage to the mutant. It is convenient to assess these deviations to the neutral case

in terms of

1. fertility (λ): positive λ means increased mutant birth rate;

2. defence capacity (δ): positive δ means reduced competition sensitivity of mutant

individuals w.r.t. the total population size;

3. aggressiveness (α): positive α means raised competition pressure exerted from

any mutant individual onto the rest of the population;

4. isolation (ε): positive ε means lighter cross-competition between the two different

types, that would lead, if harsher, to a greater probability of exclusion of the less

abundant one.

Under neutrality, an elementary martingale argument shows that the fixation probability

un,m, further denoted u, equals the initial mutant frequency p := m/(m+n). This implies

in particular that

χ(x, x) =
e−θ(x) − 1 + θ(x)

θ(x)2
. (5)

The following theorem unveils the dependence of u upon λ, δ, α, ε, when they slightly

deviate from 0, and explains why these four selection coefficients provide a natural basis

to decompose the gradient of the fixation probability.

Theorem 3. As a function of the multidimensional selection coefficient s = (λ, δ, α, ε),

the probability u is differentiable, and in a neighbourhood of s = 0 (selective neutrality),

u = p + v′.s + o(s), (6)
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where the selection gradient v = (vλ, vδ, vα, vε) can be expressed as

vι
n,m = p (1 − p)gι

n+m, ι 6= ε,

vε
n,m = p (1 − p) (1 − 2p) gε

n+m

where the g’s depend solely on the resident’s characteristics b, c, and on the total initial

population size n + m. They are called the invasibility coefficients.

The invasibility coefficients of a pure resident population are interesting to study, as

they provide insights about how the fixation probability deviates from p as the selection

coefficients of the mutant deviate from 0. They provide information about the robustness

of the resident population, i.e. its resistance to mutant invasions. In the simplest case

where mutations in the parameter space are isotropic, the biggest invasibility coefficient

gives the direction of the parameter space where a mutant is more likely to invade. More

generally, when there are correlations between mutations in the parameter space, the

likeliest direction of evolution in the trait space is given by the deterministic coefficient

of the canonical diffusion (4), in which the fitness gradient is given by

∇2χ(x, x) = aλ(x)∇b(x) − aδ(x)∇1c(x, x) + aα(x)∇2c(x, x), (7)

where, for ι = λ, δ, α,

aι(x) = e−θ(x)
∞
∑

n=1

ngι
n+1(x)θ(x)n−1

(n + 1)2(n − 1)!
.

It is possible to obtain explicit expressions for the invasibility coefficients gι as series.

We refer to [2] for the exact expressions. In particular, these expressions yield that aι(x) =

âι(θ(x))/c(x, x) for some function âι. Moreover, they allow one to compute numerically

the invasibility coefficients, and therefore the quantities âι for ι = λ, δ, α as functions

of the parameter θ(x). These numerical results can be used to make simulations of the

canonical diffusion of adaptive dynamics in various ecological examples. In particular, in

contrast with the classical canonical equation of adaptive dynamics, the presence of a

genetic drift can induce the evolutionary dynamics to drift away from evolutionary stable

strategies, where the fitness gradient is zero. When the fitness gradient admits several

zeros, it can visit several basins of attraction on various timescales.

This numerical study is a work in progress, that is quite delicate because the series

involved in the computation of gι are slowly converging, with first terms that grow ex-

ponentially fast with θ. We shall give here some preliminary results. Fig. 1 shows the

functions âι for ι = λ, δ, α. Several comments can be made from this figure. First, for any

θ > 0, âδ(θ) > âα(θ) > âλ(θ). This means that, for equal mutation steps in the parameter

space, a mutation is always more advantageous in the direction δ than in the direction

α, which is itself more advantageous than in the direction λ. In other words, in a given

population, a better defence capacity is more beneficial than a harsher aggressiveness,

which is more beneficial than a greater fertility.

Moreover, as θ goes to infinity, these functions have different asymptotic behaviours.

âδ seems to converge to 1/2, whereas âλ(θ) and âα(θ) are both equivalent to 1/2θ (see

Fig. 2). However, this does not mean that mutations are more likely to become fixed in

the δ direction when θ is large, because the fact that b = θc must be taken into account.



ADAPTIVE DYNAMICS IN BRANCHING POPULATIONS 243

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40
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âλ(θ)
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Fig. 1. The functions âλ, âδ and âα as functions of θ
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Fig. 2. The functions θ 7→ θâλ(θ) and θ 7→ θâα(θ)

The precise balance between the functions aι in (7) when the population is large can be

computed as follows: introduce a parameter K in the microscopic model by dividing c(·, ·)

by K and consider the limit K → +∞ in the canonical diffusion. Denoting by χK(·, ·)

the fitness function obtained this way and using the asymptotic behaviours given above,

one gets that

lim
K→+∞

∇2χK(x, x) =
1

2b(x)
(∇b(x) − θ(x)∇1c(x, x)).

Moreover, by (5), χK(x, x) converges to 0 when K → ∞. Now, as proved in [1], the

fitness function of the canonical equation of adaptive dynamics (1) is given by f(x, y) =

b(y) − c(y, x)θ(x). Therefore, as K → +∞, the canonical diffusion converges to a deter-

ministic ODE which is precisely the canonical equation of adaptive dynamics. This gives

a new justification of this equation, and allows one to study the fluctuations around the
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canonical equations when K is large but finite. In particular, our diffusion equation with

small diffusion term enters the framework of Freidlin-Wentzell’s theory [4], which can be

applied to predict the long time behaviour of the diffusion, and its chain of visit of basins

of attractions when K is large. This kind of information is biologically very relevant,

since it allows one to predict in which order all the evolutionary stable strategies will be

visited by the population and on which timescale.
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