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Abstract. We compare two concepts of stochastic stability in spatial games. The classical ap-

proach to stochastic stability, introduced by Foster and Young [8], involves single configurations

in the zero-noise limit. Ensemble stability discussed in [17] refers to ensembles of configurations

in the limit of an infinite number of players. The above two limits may not commute. We will

discuss reasons of such behaviour. We review some results concerning the effect of the number

of players and the noise level on the long-run behaviour of stochastic dynamics of spatial games.

1. Introduction. Many evolutionary and ecological processes can be modeled as sys-

tems of interacting players [16, 33, 32, 27, 12, 35, 5, 13, 24, 25]. In such models, players

have at their disposal certain strategies and their payoffs depend on strategies chosen

both by them and by their opponents. The central concept in game theory is that of

a Nash equilibrium. It is an assignment of strategies to players such that no player, for

fixed strategies of his opponents, has an incentive to deviate from his current strategy;

no change can increase his payoff. One of the fundamental problems in game theory is

the equilibrium selection in games with multiple Nash equilibria. One of the selection

methods is to construct an appropriate dynamical system where in the long run only one

equilibrium is played with a high frequency.

Here we will discuss spatial games with certain local interactions. In such games, play-

ers are located on vertices of certain graphs and they interact only with their neighbours;

see for example [21, 22, 23, 1, 6, 35, 7, 15, 30, 11] and a recent review [31] and references

therein. In discrete moments of time, players adapt to their neighbors by choosing with

a high probability the strategy which is the best response, i.e. the one which maximizes
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the sum of the payoffs obtained in individual games and with a small probability they

make mistakes.

To describe the long-run behavior of such stochastic dynamics, Foster and Young [8]

introduced a concept of stochastic stability. A configuration of a system—an assignment of

stategies to players—is stochastically stable if it has a positive probability in the stationary

distribution of the above dynamics in the limit of zero noise. It means that in the long

run we observe it with a positive frequency. In classical applications of stochastic stability

for equilibrium selection [14, 26, 32, 34, 35], the population size was fixed and the noise

level was taken to zero. However, we may also consider models with a fixed noise level in

the limit of an infinite number of players [27, 17, 18, 19, 20, 28]. Now, for any arbitrarily

low but fixed noise, if the number of players is big enough, then the probability of any

individual configuration is practically zero. It means that for a big number of players, to

observe a stochastically stable configuration we must assume that players make mistakes

with extremely small probabilities. On the other hand, it may happen that in the long run,

for a low but fixed noise and sufficiently big number of players, the stationary distribution

is highly concentrated on an ensemble consisting of one Nash configuration and its small

perturbations, i.e. configurations where most players play the same strategy. We will call

such configurations ensemble stable [17].

In Section 2, we formally introduce spatial games and two concepts of stochastic

stability. In Section 3, we discuss some other results and state an open problem.

2. Spatial games and stochastic stability. Let Λ be a finite subset of the simple

lattice Z
d (we may think about a square centered at the origin of the lattice). Every site

of Λ is occupied by one player who has at his disposal one of k different pure strategies.

Let S be a set of pure strategies, then ΩΛ = SΛ is the set of all possible configurations of

players, that is all possible assignments of pure strategies to individual players. For every

i ∈ Λ, Xi is the strategy of the i-th player in the configuration X ∈ ΩΛ and X−i denotes

strategies of all remaining players; X therefore can be represented as the pair (Xi, X−i).

U : S × S → R is a matrix of payoffs of our stage game. U(A, B), A, B ∈ S is the payoff

of the first (row) player playing the strategy A when the second one (a column player)

is playing B. We will consider here only symmetric games so the payoff of the second

player is given by U(B, A) (the payoff matrix of the second player is the transpose of the

payoff matrix U of the first one). Every player interacts only with his neighbours and his

payoff is the sum of the payoffs resulting from individual games. We assume that he has

to use the same strategy for all neighbours. Let Ni denote the neighbourhood of the i-th

player. For the nearest-neighbor interaction we have Ni = {j; |j − i| = 1}, where |i − j|

is the distance between i and j. For X ∈ ΩΛ we denote by νi(X) the payoff of the i-th

player in the configuration X:

(1) νi(X) =
∑

j∈Ni

U(Xi, Xj)

Definition 1. X ∈ ΩΛ is a Nash configuration if for every i ∈ Λ and A ∈ S

νi(Xi, X−i) ≥ νi(A, X−i).
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We describe now the deterministic dynamics of the best-response rule. Namely, at each

discrete moment of time t = 1, 2, ..., a randomly chosen player may update his strategy.

He simply adopts the strategy, Xt
i , which gives him the maximal total payoff νi(X

t
i , X

t−1
−i )

for given Xt−1
−i , a configuration of strategies of remaining players at time t − 1.

Now we allow players to make mistakes with a small probability, that is to say they

may not choose the best response. A probability of making a mistake may depend on the

state of the system (a configuration of strategies of neighboring players). We will assume

that this probability is a decreasing function of the payoff lost as a result of a mistake

[1, 2]. In the log-linear rule, the probability of chosing by the i-th player the strategy Xt
i

at time t is given by the following conditional probability:

(2) pǫ
i(X

t
i |X

t−1
−i ) =

e(1/ǫ)νi(X
t
i ,Xt−1

−i
)

∑
A∈S e(1/ǫ)νi(A,Xt−1

−i
)
,

where ǫ > 0 measures the noise level.

Let us observe that if ǫ → 0, pǫ
i converges to the best-response rule. Our stochastic

dynamics is an example of an ergodic Markov chain with |SΛ| states. Therefore, it has a

unique stationary distribution which we denote by µǫ
Λ.

The following definition was first introduced by Foster and Young [8]:

Definition 2. X ∈ ΩΛ is stochastically stable if limǫ→0 µǫ
Λ(X) > 0.

If X is stochastically stable, then the frequency of visiting X converges to a positive

number along any time trajectory almost surely. It means that in the long run we ob-

serve X with a positive frequency. In most models it is usually equal to 1. In examples

below, we consider symmetric games with symmetric Nash equilibria and homogeneous

Nash configurations. By stochastic stability of a strategy or a Nash equilibrium we mean

stochastic stability of the corresponding Nash configuration.

Example 1. Players are located on a finite subset Λ of Z (with periodic boundary

conditions) and interact with their two nearest neighbors. They have at their disposal

two strategies: A and B. The payoffs are given by the following symmetric matrix:

U =

A B

A 5 0

B 3 3

It is easy to see that the above stage game has two Nash equilibria: (A, A) and (B, B),

and the corresponding spatial game has two homogeneous Nash configurations: XA and

XB, in which all individuals play the same strategy, A or B respectively.

One can show that XB is stochastically stable [1, 34]. The reason for such a long-run

behavior is that the population needs many mistakes (actually the number of required

mistakes is proportional to the population size) to move from XB to XA. On the contrary,

one needs only one mistake to move from XA to XB; one A-player makes a mistake and

switches to B and then both his neighbours may switch to B by the noise-free dynamics of

the best-response rule. We see that no more mistakes are required for B strategy to invade

the whole population. One can make this argument rigorous using a tree representation

of stationary distributions of ergodic Markov chains [9, 14, 34, 26, 32, 35, 6, 7, 20].
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In general, we have to investigate all absorbing states of the noise-free dynamics.

When we start with any non-absorbing state, then after a finite number of steps of the

noise-free best-response dynamics we arrive at one of the absorbing states and then stay

there forever. It follows from the tree representation of the stationary distribution that any

state different from absorbing states has zero probability in the stationary distribution

in the zero-noise limit.

Stochastically stable states are those absorbing states from which it is relatively more

difficult to get out than from other absorbing states [6, 7].

The situation gets more complex when for a fixed noise level we are approaching the

infinite population limit. It may happen then that in the long run one sees configurations

from which it is relatively easier for a player to switch to a different strategy than from

other absorbing configurations. This is the case in the following example.

Example 2. Players are located on a finite subset Λ of Z
2 (with periodic boundary

conditions) and interact with their four nearest neighbours. They have at their disposal

three pure strategies: A, B, and C. The payoffs are given by the following symmetric

matrix:

U =

A B C

A 2 0 1

B 0 3 + α 0

C 1 0 3,

where α ≥ 0.

Our game has three Nash equilibria: (A, A), (B, B), and (C, C), and the corresponding

spatial game has three homogeneous Nash configurations: XA, XB, and XC .

The unique stationary distribution of the log-linear dynamics of the above game can

be explicitly constructed [35] and is given by

(3) µǫ
Λ(X) =

e(1/ǫ)
P

(i,j)∈Λ U(Xi,Xj)

∑
Z∈ΩΛ

e(1/ǫ)
P

(i,j)∈Λ U(Zi,Zj)
.

Let us start our discussion with the case of α = 0. It follows from (3) that

lim
ǫ→0

µǫ
Λ(Xk) = 1/2,

for k = B, C so B and C are stochastically stable.

Let us investigate the long-run behavior of our system for large Λ, that is for a big

number of players. Observe that

lim
Λ→Z2

µǫ
Λ(X) = 0

for every X ∈ Ω = SZ
2

.

Hence for large Λ and ǫ > 0 we may only observe, with reasonable positive frequencies,

ensembles of configurations and not particular configurations. We will be interested in

ensembles which consist of a Nash configuration and its small perturbations, that is

configurations, where most players adopt the same strategy.
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We perform first the limit Λ → Z
2 and obtain an infinite-population state, the so

called Gibbs state [10, 29],

(4) µǫ = lim
Λ→Z2

µǫ
Λ.

We use techniques of statistical mechanics and the concept of dominant ground states

[3, 4], modify proofs in [17] and get

(5) µǫ(Xi 6= C) < γ(ǫ)

for any i ∈ Z
2 and γ(ǫ) → 0 as ǫ → 0.

Let us sketch briefly the reason of such a result. While it is true that both XB and

XC have the same maximal total payoff (and therefore are stochastically stable), the

XC Nash configuration has lower-cost excitations. Namely, one player can change its

strategy and switch to A and the total payoff will decrease by 16 units. Players in the

XB Nash configuration can switch either to A or B to decrease the total payoff by 24.

Now, the probability of the occurrence of any configuration in the Gibbs state (which is

the stationary distribution of our stochastic dynamics) depends on the total payoff in an

exponential way. One can prove that the probability of the ensemble consisting of the

XC Nash configuration and configurations which are different from it at few sites only

is much bigger than the probability of the analogous XB-ensemble. On the other hand,

configurations which are outside XB and XC -ensembles appear with exponentially small

probabilities. It means that for large enough systems (and small but not extremely small

ǫ) we observe in the stationary distribution the XC Nash configuration with perhaps few

different strategies. The above argument was made into a rigorous proof for an infinite

system of the closely related lattice-gas model (the Blume-Capel model) of interacting

particles by Bricmont and Slawny in [3].

We see that for any low but fixed ǫ, if the number of players is big enough, then in the

long run, almost all players use C strategy. On the other hand, if for any fixed number

of players, ǫ is lowered substantially, then B and C appear with frequencies close to 1/2.

The above example motivates following definitions [17].

Definition 3. X ∈ ΩΛ is γ-ensemble stable if µǫ
Λ(Y ∈ ΩΛ; Yi 6= Xi) < γ for any i ∈ Λ if

Λ ⊃ Λ(γ) for some Λ(γ).

Definition 4. X ∈ ΩΛ is low-noise ensemble stable if for every γ > 0 there exists ǫ(γ)

such that if ǫ < ǫ(γ), then X is γ-ensemble stable.

The following theorem is a simple consequence of (5).

Theorem 1. If α = 0, then XC is low-noise ensemble stable.

If X is γ-ensemble stable with γ close to zero, then the ensemble consisting of X and

configurations which are different from X at at most few sites has the probability close

to one in the stationary distribution. It does not follow, however, that X is necessarily

low-noise ensemble or stochastically stable as it happens in our example in the case of

α > 0.

For α = 0, both XB and XC have the same total payoff. XC has lower-cost fluc-

tuations and therefore it is low-noise ensemble stable. For α > 0, XC has a smaller



250 J. MIĘKISZ

total payoff but nevertheless one can prove [17] that in the long run C is played with a

frequency close to 1 if the noise level is low but not extremely low.

Theorem 2. For every γ > 0, there exist α(γ) and ǫ(γ) such that for every 0 < α <

α(γ), there exists ǫ(α) such that for ǫ(α) < ǫ < ǫ(γ), XC is γ-ensemble stable, and for

0 < ǫ < ǫ(α), XB is γ-ensemble stable.

Observe that for α = 0, both XB and XC are stochastically stable (they appear with

the frequency 1/2 in the limit of zero noise) but XC is low-noise ensemble stable. For

small α > 0, XB is both stochastically (it appears with the frequency 1 in the limit of zero

noise) and low-noise ensemble stable. However, for an intermediate noise ǫ(α) < ǫ < ǫ(γ),

if the number of players is large enough, then in the long run, almost all players use the

strategy C (XC is ensemble stable). If we lower ǫ below ǫ(α), then almost all players

start to use the strategy B. ǫ = ǫ(α) is the line of the first-order phase transition. In the

infinite population limit there exist two stationary distributions on this line. We may say

that at ǫ = ǫ(α), the population of players undergoes a sharp equilibrium transition from

C to B-behaviour.

3. Discussion. We have discussed two concepts of stochastic stability in spatial games.

Classical stochastic stability involves single configurations in the limit of zero noise, en-

semble stability refers to ensembles of configurations in the infinite population limit. We

have shown that the above two limits may not commute. Therefore, to study the long-run

behavior of real populations, we should estimate the relevant parameters to be sure what

limiting procedures are appropriate in specific examples.

Similar ideas were recently discussed in two-player games in well-mixed populations

[28]. States of such systems are described by strategy frequencies. One takes first the

limit of an infinite number of players. Stationary distributions are then measures concen-

trated on single frequencies. It was shown in [28] that a stationary frequency may change

discontinously at a certain noise level.

Let us end our paper by presenting an open problem.

Open Problem. Construct a stochastic evolutionary spatial game with a unique sta-

tionary distribution µǫ
Λ such that

lim
ǫ→0

lim
Λ→Z2

µǫ
Λ(X) = 1,

lim
Λ→Z2

lim
ǫ→0

µǫ
Λ(Y ) = 1,

where X, Y ∈ Ω = Zd, X 6= Y .
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