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Abstract. In this paper we present the extension of the kinetic logic proposed by René Thomas
for analysis of genetic regulatory gene networks. We consider the case with a Gaussian noise
added to the regulation function and propose a method of analyzing the resulting model with a
discrete time Markov model.

1. Introduction. Understanding the regulatory mechanisms of gene expression is one of

the key problems in molecular biology. Since such mechanisms are extremely hard to study

in vivo, many mathematical models were proposed to help understanding the principles

of regulatory network operation. The pioneering work in the field of regulatory network

modelling was done in the 1960s by S. Kauffman [2] who showed that such fundamental

phenomena of gene regulation as epigenesis and stable convergence can be modelled with

a very simple mathematical framework of Boolean networks. This model was extended

by Rene Thomas and co-workers [11, 12] leading to formulation of generalized logical

description of regulatory networks.

Generalized logical modeling approach was applied to many experimentally studied

biological regulatory circuits (e.g. [6, 10, 5, 4, 7]) showing that this formalism may be use-

ful in regulatory network modelling. However, it is difficult to reconstruct such networks

from experimental data. The problem with reconstruction of such networks lies in the

lack of a natural scoring function for different models for a given dataset. Even though

there are computational ways to effectively simulate such models (i.e. GINSim software

package [3]), it doesn’t help us with choosing the right model from many possibilities.

Another approach to this problem is using a stochastic dynamical system to model

the dependencies of expression levels of genes. Chen et al. [1] managed to reconstruct
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parameters for a system of stochastic differential equations from Yeast cell cycle expres-

sion data [9]. This was possible with the assumption that the expression of genes depends

linearly on the expression of its regulators preventing the method to predict correct de-

pendencies in cases where the regulation is non-linear.

In this work we present a novel modelling framework for regulatory networks, called

Stochastic Logical Networks (referred to as SLNs). It is based on the formalism of gen-

eralized logical description of networks as introduced by Thomas [11] extended with the

stochastic factor leading to a simple scoring function based on the likelihood of the model

given the observed data.

2. Genetic network modelling

2.1. Gene networks as dynamical systems. In order to describe the formalism of SLNs,

we provide a brief introduction into the way of modelling introduced by R. Thomas [11].

It is based on the assumption that a regulatory system can be accurately described as

a dynamical system of ordinary differential equations. We treat the state of the cell, i.e.

concentrations of all interesting gene products, as a vector of non-negative real values

~v = 〈v1, v2, . . . , vn〉 ∈ Rn
+, dependent on time t, so the equations have the following form:

∂vi

∂t
= −vi · λi + Fi(~v), (1)

where Fi(~v) denotes the production rate of gene vi depending on the state of all genes,

whereas λi represents the decay constant responsible for degrading the gene product pro-

portionally to its current concentration. To account for non-linearity and combinatorial

nature of the dependence of the production rate on the state of regulators, the production

rate of gene i is defined by Snoussi [8] as a linear combination of products of sigmoid

functions of expression of regulators:

Fi(~v) =
∑

G⊆{1...n}
IG,i ·

∏

j∈G

Si,j(vj , θi,j), (2)

where IG,i ∈ R+ is the regulatory influence of the set of regulators G on gene i, θi,j ∈ R
are the activation thresholds and Si,j is the sigmoid activation function of gene i by gene

j being one of the following:

S+(x, θ) = sigmk(x − θ) (3)

S−(x, θ) = 1 − sigmk(x − θ), (4)

where sigmk(x) = (1 + e−kx)−1 with a notable case of sigm∞ equal to the Heaviside

step function. Different forms of Si,j represent different possible regulatory interactions.

If Si,j = S− we say that j is a repressor of i, otherwise j is an enhancer of i.

2.2. Qualitative approach. René Thomas observed, that qualitative behaviour of such

systems can be modelled as a non deterministic discrete process whose states correspond

to discretized states of the original dynamical system. This is due to the fact that the

production rates of genes change substantially only around the threshold values θi,j . If we

consider the case with sigm∞ step function, the hyperplanes vj = θi,j divide the phase

space of the dynamical system into a finite set of disjoint parts on which the production
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rates of all genes are constant. In such case, the behavior of the system is determined by

the choice of production rates of all genes in all discretized states. A simplistic example

of a 2-gene negative feedback loop with its phase space, dependency graph and discrete

state graph is depicted in Figure 1.

Fig. 1. An example of a dynamical system consisting of two genes: X and Y (a). Its phase
space (b), ODEs (c) and state graph (d).

We use the notion of a discretization mapping δ(~v) = 〈δ1(v1) . . . δn〉, where each δi is

a mapping of the i-th variable into its discrete values using the thresholds {θi,j}j=1..n.

We also denote the space of all discrete states by Σn = {0 . . . n}n

Evolution of the qualitative system can be derived from equations governing the dy-

namical system. If we assume that Si,j are indeed Heaviside step functions, the value of

the regulation functions Fi(~v) is constant between the thresholds θi,j . Therefore for each

discrete state σ, corresponding to the discretization domain δ−1(σ), there exist constant

production rates Fi(σ) of all genes, such that:

∀~v∈δ−1(σ)Fi(~v) = Fi(σ).

However, the Heaviside regulatory functions introduce discontinuity in the right-hand side

of ordinary differential equations for points in the state-space where vj = θi,j . We call

such points singular, and exclude them from further analysis. This can be done without

loss of generality since the measure of the set of singular points is 0.

After Thomas [11], we use the notion of an image function R of a discrete state σ:

R(σ) = 〈δ1(F1/λ1), . . . , δn(Fn/λn)〉.
If a state is the image of itself, we call it stable. Otherwise, since there may be differ-

ent trajectories of the dynamical system traversing this discretization domain, the state

succession is non-deterministic. For each discrete non-stable state σ we define a set of

successor states succσ containing all neighbouring discrete states σ′ such that there exists

a trajectory in the dynamical system going from δ−1(σ) directly to δ−1(σ′). We use the

notation of σ → σ′ to denote the fact that σ′ ∈ succσ. The generalization of a successor

state is its transitive closure: the reachability relation σ →+ σ′.

2.3. Stochastic logical networks. We propose to introduce a stochastic factor to the dif-

ferential equations describing regulatory systems. To this aim, we follow the common
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practice of adding white noise in the form of an independent Wiener processes Wi(t)

scaled for each variable by ǫi to the right-hand side of differential equations (1) obtaining

the following

dvi = (Fi(~v) − vi · λi)dt + ǫidWi(t). (5)

If we use the regulation functions Fi as defined in equation (2) and apply the same

discretization mapping δ we obtain a stochastic system consisting of a finite set of disjoint

domains. In each of these domains we observe a multivariate Brownian motion with linear

drift – a very well studied mathematical model. What we are interested in, is a discrete

stochastic process representing the movements of the Brownian motion between domains

through time that correspond to the changes of qualitative behaviour of the whole system.

Because of the singularities in the right-hand side of stochastic equations at domain

borders, we cannot analyze the exact dynamics of such systems in general. However, if

we limit our analysis to the qualitative behaviour of the discrete system, we may make

a simplifying assumption that the discretized process is Markovian. This is analogous to

the definition of kinetic logic which assumes that successor states depend only on the

current qualitative state of the system. It should be noted here, that at this point we

trade the ability to analyze the subtle behaviour that may occur at the boundaries of

domains for the simplicity of the discrete model.

For our considerations it is important to find the relationship between the parameters

of the discrete process and the dynamical system. We need to answer the question: given a

multidimensional Brownian motion with drift and a discretization of its state space into a

set of disjoint domains what is the natural probability distribution of exiting from any of

the domains to each of its neighbours. It is clear that the probability of Brownian motion

exiting from any finite domain is equal to 1 and that the probability of moving directly

to any non-adjacent domain is 0. We need to calculate the probabilities of travelling to

all adjacent states for any given state.

Let us first examine the simple case of one dimensional Brownian motion with drift

∂x

∂t
= F (x) + ǫ

∂w

∂t

and a finite closed interval [a, b]. We are interested in the probability pa(x0) of exiting

from [a, b] through the barrier a starting from x0. In general, we can determine this by

solving the following differential equation

∂2pa

∂x2
· ǫ2

2
+ F (x)

∂pa

∂x
= 0

assuming that pa(a) = 1 and pa(b) = 0. The solution of this equation depends heavily

on F . In our case in each domain of continuity of the regulation function, F (x) = C−x·λ.

In this case we can obtain the following solution:

pa(x) =

erf

(√
2 (b λ−C)

ǫ2
q

−λ/ ǫ2

2

)

− erf

(√
2 (λ x−C)

ǫ2
q

−λ/ ǫ2

2

)

erf

(√
2 (b λ−C)

ǫ2
q

−λ/ ǫ2

2

)

− erf

(√
2 (a λ−C)

ǫ2
q

−λ/ ǫ2

2

)
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where erf is the error function:

erf(x) =
2√
π

∫ x

0

e−t2dt.

After simplifications we obtain the formula

pa(x) =

∫ b

x
e
−(λ ( it

ǫ
√

λ
−C))2

dt
∫ b

a
e
−(λ ( it

ǫ
√

λ
−C))2

dt
.

Since the result is not elementary and we would like to have a reversible function

we assume that the drift is constant and equal to c (it is reasonable in cases of small

intervals). In this case our solution is

pa(x) =
e−

2 b c

ǫ2 − e−
2 x c

ǫ2

e−
2 b c

ǫ2 − e−
2 a c

ǫ2

.

Now in order to have a solution not depending on the starting point, we integrate it

over all possible starting points:
∫ b

a

pa(x)dx =
ǫ2

2c
− b − a

e
2c·(b−a)

ǫ2 − 1
.

2.4. Multidimensional case. Now as we have the solution for one-dimensional case, we

shall take multiple dimensions into account. As the stochastic components for different

variables are independent, we can consider them as independent in each discretization

domain.

Let us introduce, for each variable xi, the probability pi,a,b(x, t) that the process

starting from x will not leave the interval (a, b) in time t. What we want to know is, for

each variable, what is the probability that it will be the first to leave the domain,

qi(x) =

∫ ∞

0

p̂i,ai,bi
(x, t)

∏

j 6=i

pj,aj ,bj
(x, t)dt,

where p̂i,a,b(x, t) denotes the probability of the ith process reaching one of the points

{ai, bi} at time t starting from x.

In our case, in which the influence of drift is stronger than the influence of stochastic

noise, pi,a,b(x, t) can be approximated by the probability p′i,a,b(x, t) of the ith process

being in the interval (a, b) at time t. This can be computed from normal cumulative

distribution function.

3. Conclusion. We present an approach extending the kinetic logic model of regulatory

networks. We describe the continuous regulatory function as Langevin equations and

under the simplifying assumption that the discrete process is Markovian, we are able to

calculate the discrete state change probabilities using the Fokker-Planck equation. Even

though such a simplified model is not suitable for quantitative analysis it may be useful

in applications requiring more qualitative description. One such application is the task

of network topology reconstruction from data. We have used this model for this task [13]

with satisfactory results.
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