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Abstract. Here we present basic ideas and algorithms of Power Geometry and give a survey

of some of its applications. In Section 2, we consider one generic ordinary differential equation

and demonstrate how to find asymptotic forms and asymptotic expansions of its solutions. In

Section 3, we demonstrate how to find expansions of solutions to Painlevé equations by this

method, and we analyze singularities of plane oscillations of a satellite on an elliptic orbit. In

Section 4, we consider the problem of local integrability of a planar ODE system. In Section 5, we

expound the spacial generalizations of planar constructions. Power Geometry gives alternatives

to some methods of Algebraic Geometry, Differential Algebra, Nonstandard Analysis, Microlocal

Analysis, Group Analysis and to other algebraic methods in Dynamical Systems.

1. Introduction. Traditional differential calculus is effective for linear and quasilinear
problems. It is less effective for essentially nonlinear problems. A linear problem is the
first approximation to a quasilinear problem. The linear problem is usually solved by
methods of functional analysis, then the solution to the quasilinear problem is found as
a perturbation of the solution to the linear problem. For an essentially nonlinear prob-
lem, we need to isolate its first approximations, to find their solutions, and to construct
perturbations of these solutions. This is what Power Geometry (PG) is aimed at. For
equations and systems of equations (algebraic, ordinary differential, and partial differ-
ential), PG allows to compute asymptotic forms of solutions as well as asymptotic and
local expansions of solutions at infinity and at any singularity of the equation (including
boundary layers and singular perturbations) [1, 2].
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Indeed PG is the third level of Differential Calculus. Elements of plane PG were pro-
posed by Newton for algebraic equations (1670); and by Briot and Bouquet for ordinary
differential equations (1856). Space PG for a nonlinear autonomous system of ODEs was
proposed by the author (1962), and for a linear PDE, by Mikhailov (1963).

In this talk we intend to give basic notions of PG, present some of its algorithms,
results, and applications. It is clear that this calculus cannot be mastered during this
presentation. The Calculus is subject for one–year course of lectures “Nonlinear Analysis”
in Lomonosov Moscow State University.

2. Plane Power Geometry. Theory

2.1. Statement of the problem. First, consider one differential equation and power-
logarithmic expansions of its solutions (although there are possible more complex expan-
sions).

Let x be independent and y be dependent variables, x, y ∈ C. A differential monomial
a(x, y) is a product of an ordinary monomial cxr1yr2 , where c = const ∈ C, (r1, r2) ∈ R2,
and a finite number of derivatives of the form dly/dxl, l ∈ N.

A sum of differential monomials

f(x, y) =
∑

ai(x, y) (2.1)

is called a differential sum.
Let a differential equation be given

f(x, y) = 0, (2.2)

where f(x, y) is a differential sum. As x→ 0, or as x→∞, for solutions y = ϕ(x) to the
equation (2.2), find all expansions of the form

y = crx
r +

∑
csx

s, cr = const ∈ C, cr 6= 0, (2.3)

where cs are polynomials in log x, and power exponents r, s ∈ R,

ωr > ωs, (2.4)

and

ω =

{
−1, if x→ 0,

1, if x→∞.
(2.5)

The procedure to compute expansions (2.3) consists of two steps: computation of the
first approximations

y = crx
r, cr 6= 0 (2.6)

and computation of further expansion terms in (2.3) [3].

2.2. Computation of truncated equations. To each differential monomial a(x, y),
we assign its (vector) power exponent Q(a) = (q1, q2) ∈ R2 by the following rules:

Q(cxr1yr2) = (r1, r2); Q(dly/dxl) = (−l, 1);

when differential monomials are multiplied, their power exponents must be added as
vectors Q(a1a2) = Q(a1) +Q(a2).



ALGORITHMS OF POWER GEOMETRY 85

The set S(f) of power exponents Q(ai) of all differential monomials ai(x, y) present
in the differential sum (2.1) is called the support of f(x, y). Obviously, S(f) ∈ R2. The
convex hull Γ(f) of the support S(f) is called the polygon of f(x, y). Its boundary ∂Γ(f)
consists of the vertices Γ(0)

j and the edges Γ(1)
j . They are called (generalized) faces Γ(d)

j ,
where the upper index indicates the dimension of the face, and the lower one is its number.
Each face Γ(d)

j corresponds to the truncated sum

f̂
(d)
j (x, y) =

∑
ai(x, y) over Q(ai) ∈ Γ(d)

j ∩ S(f). (2.7)

Example. Consider the third Painlevé equation

f(x, y) def= − xyy′′ + xy′
2 − yy′ + ay3 + by + cxy4 + dx = 0, (2.8)

assuming the complex parameters a, b, c, d 6= 0. Here the first three differential monomials
have the same power exponent Q1 = (−1, 2), then Q2 = (0, 3), Q3 = (0, 1), Q4 = (1, 4),
Q5 = (1, 0). They are shown in Fig. 1 in coordinates q1, q2. Their convex hull Γ(f) is the

q2
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Γ
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Γ
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Fig. 1. Support S(f), polygon Γ(f) and its edges Γ
(1)
j for the third Painlevé equation (2.8)

triangle with three vertices Γ(0)
1 = Q1, Γ(0)

2 = Q4, Γ(0)
3 = Q5, and with three edges Γ(1)

1 ,
Γ(1)

2 , Γ(1)
3 . The vertex Γ(0)

1 = Q1 corresponds to the truncation

f̂
(0)
1 (x, y) = −xyy′′ + xy′

2 − yy′,
and the edge Γ(1)

1 corresponds to the truncation

f̂
(1)
1 (x, y) = f̂

(0)
1 (x, y) + by + dx.

Let the plane R2
∗ be dual to the plane R2 such that for P = (p1, p2) ∈ R2

∗ and
Q = (q1, q2) ∈ R2, the scalar product

〈P,Q〉 def= p1q1 + p2q2

is defined. Each face Γ(d)
j in R2

∗ corresponds to its own normal cone U(d)
j formed by

the outward normal vectors P to the face Γ(d)
j . For the edge Γ(1)

j , the normal cone U(1)
j

is the ray orthogonal to the edge Γ(1)
j and directed outward the polygon Γ(f). For the

vertex Γ(0)
j , the normal cone U(0)

j is the open sector (angle) in the plane R2
∗ with the

vertex at the origin P = 0 and limited by the rays which are the normal cones of the
edges adjacent to the vertex Γ(0)

j .
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Example. For the the equation (2.8), the normal cones U(d)
j of the faces Γ(d)

j are shown
in Fig. 2.
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Fig. 2. Normal cones U
(d)
j to the vertices and to the edges Γ

(1)
j of the polygon in Fig. 1

Thus, each face Γ(d)
j corresponds to the normal cone U(d)

j in the plane R2
∗ and to the

truncated equation
f̂

(d)
j (x, y) = 0. (2.9)

Theorem 2.1. If the expansion (2.3) satisfies the equation (2.2), and ω(1, r) ∈ U(d)
j ,

then the truncation y = crx
r of the solution (2.3) is the solution to the truncated equation

f̂
(d)
j (x, y) = 0.

Hence, to find all truncated solutions y = crx
r to the equation (2.2), we need to

compute: the support S(f), the polygon Γ(f), all its faces Γ(d)
j , and their normal cones

U(d)
j . Then for each truncated equation f̂

(d)
j (x, y) = 0, we need to find all its solutions

y = crx
r which have one of the vectors ±(1, r) lying in the normal cone U(d)

j . The vertex

Γ(0)
j = {Q} corresponds to the truncated equation f̂

(0)
j (x, y) = 0 the support of which

consists of one point Q = (q1, q2). Take g(x, y) = x−q1y−q2 f̂
(0)
j (x, y), then g(x, cxr) does

not depend on x and c, and it is a polynomial in r. Consequently, for the solution y = crx
r

to the equation f̂
(0)
j (x, y) = 0, the power exponent r is the root of the characteristic

equation
χ(r) def= g(x, xr) = 0, (2.10)

with an arbitrary coefficient cr. We need only those roots r of the equation (2.10) for
which the vector ω(1, r) lies in the normal cone U(0)

j of the vertex Γ(0)
j .

Example. For the equation (2.8), the vertex Γ(0)
1 = Q1 = (−1, 2) corresponds to the

truncated equation
f̂

(0)
1 (x, y) def= − xyy′′ + xy′

2 − yy′ = 0, (2.11)

and f̂ (0)
1 (x, xr) = x2r−1[−r(r− 1) + r2 − r] ≡ 0, i. e. any expression y = cxr is a solution

to the equation (2.11). Here ω = −1, and we are interested only in those solutions which
have the vector −(1, r) ∈ U(0)

1 . According to Fig. 2, this means that r ∈ (−1, 1). Thus,
the vertex Γ(0)

1 corresponds to the two-parameter family of power asymptotic forms of
solutions

y = cxr, arbitrary c 6= 0, r ∈ (−1, 1). (2.12)
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The edge Γ(1)
j corresponds to the truncated equation f̂

(1)
j (x, y) = 0, the normal cone

U(1)
j of the edge is the ray {P = λω′(1, r′), λ > 0}. The inclusion ω(1, r) ∈ U(1)

j means
the equalities ω = ω′ and r = r′. This determines uniquely the power exponent r of the
truncated solution y = crx

r and the value ω. To determine the coefficient cr, we need
to substitute the expression y = crx

r into the truncated equation f̂
(1)
j (x, y) = 0. After

cancelation of some power of x, we obtain an algebraic equation for the coefficient cr
˜̃
f(cr) def= x−sf̂

(1)
j (x, crxr) = 0. (2.13)

Each root cr 6= 0 of this equation corresponds to its own asymptotic form y = crx
r.

Example. For the equation (2.8), the edge Γ(1)
1 corresponds to the truncated equation

f̂1(x, y) def= − xyy′′ + xy′
2 − yy′ + by + dx = 0. (2.14)

Since U(1)
1 = {P = −λ(1, 1), λ > 0}, then ω = −1 and r = 1. Substituting y = c1x into

the truncated equation (2.14) and canceling x, we obtain the equation bc1 + d = 0 for c1,
whence c1 = −d/b. Thus, the edge Γ(1)

1 corresponds to a unique power asymptotic form
of solutions

y = −(d/b)x. (2.15)

2.3. Critical numbers of a truncated solution. If a truncated solution y = crx
r is

found, then the substitution y = crx
r + z reduces the equation f(x, y) = 0 to the form

f(x, cxr + z) def= f̃(x, z) def= L(x)z + h(x, z) = 0, (2.16)

where L(x) is a linear differential operator, and the support S(Lz) consists of only one
point (v, 1) that is the vertex Γ̃(0)

1 of the polygon Γ(f̃); the point (v, 1) is not in the
support S(h). The operator L(x) is computed as the first variation δf̂ (d)

j /δy on the curve
y = crx

r. Let ν(k) be the characteristic polynomial of the differential sum L(x)z, i. e.

ν(k) = x−v−kL(x)xk. (2.17)

The real roots k1, . . . , kκ of the polynomial ν(k) that satisfy the inequality ωr > ωki are
called the critical numbers of the truncated solution y = crx

r.

Example. For the truncated equation (2.11), the first variation is

δf̂
(0)
1

δy
= −xy′′ − xy d

2

dx2
+ 2xy′

d

dx
− y′ − y d

dx
.

On the curve y = crx
r, this variation gives the operator

L(x) = crx
r−1

[
−r(r − 1)− x2 d

2

dx2
+ 2rx

d

dx
− r − x d

dx

]
.

The characteristic polynomial of the sum L(x)z, i. e. L(x)xk, is

ν(k) = cr[−r(r − 1)− k(k − 1) + 2rk − r − k] = −cr(k − r)2.
It has one double root k1 = r, which is not a critical number, since it does not satisfy the
inequality ωr > ωk1. Consequently, truncated solutions (2.12) have no critical numbers.



88 A. D. BRUNO

For the truncated equation (2.14), the first variation is

δf̂ (1)

δy
=
δf̂

(0)
1

δy
+ b.

On the curve (2.15), i. e. y = c1x, c1 = −d/b, this variation gives the operator

L(x) = c1

[
−x2 d

2

dx2
+ 2x

d

dx
− 1− x d

dx
− b2

d

]
and the characteristic polynomial

ν(k) = −c1
[
k2 − 2k + 1 + b2/d

]
.

Its roots are k1,2 = 1 ± b/
√
−d. If Im(b/

√
−d) 6= 0, then real critical numbers are ab-

sent. If Im(b/
√
−d) = 0, then the inequality ωr > ωki is satisfied by only one root

k1 = 1+ | b/
√
−d | which is a unique critical number of the power asymptotic form (2.15).

2.4. Computation of asymptotic expansion (2.3). Using support S(f̃) of the equa-
tion (2.16) and numbers k1, . . . , kκ with ωr > ωki, we can find the set of numbers
K(k1, . . . , kκ) ⊂ R. Its elements s satisfy the inequality ωr > ωs.

Theorem 2.2. The equation (2.16) has an expansion of solutions of the form

z =
∑

cs(log x)xs over K(k1, . . . , kκ), (2.18)

where k1, . . . , kκ are critical numbers of the truncated solution y = crx
r; cs are polyno-

mials in log x, which are uniquely defined for s 6= ki. If all critical numbers k1, . . . , kκ
are simple roots, and each ki does not lie in the set K(k1, . . . , ki−1, ki+1, . . . , kκ), then
all coefficients cs are constant; for s 6= ki, they are uniquely determined; and for s = ki,
they are arbitrary.

Example. For the truncated solution (2.12)

K = {s = r + l(1− r) +m(1 + r), int. l,m > 0, l +m > 0}. (2.19)

Since there are no critical numbers, then all cs are constant and uniquely determined in
the expansion (2.18).

For the truncated solution (2.15) K = {s = 1 + 2l, int. l > 0}. If Im(b/
√
−d) 6= 0,

then there are no critical numbers, and all power exponents s are odd integers greater
than 1 in the expansion (2.18), and coefficients cs are constant and uniquely determined.
If Im(b/

√
−d) = 0, then there is a unique critical number k1 = 1+ | b/

√
−d |, and

K(k1) = {s = 1 + 2l +m(k1 − 1), int. l,m > 0, l +m > 0.} (2.20)

Consequently, if the number k1 is not odd, then all cs are constant and uniquely de-
termined in the expansion (2.18) for s 6= k1, and ck1 is arbitrary. Finally, if k1 is odd,
then K(k1) = K, and cs is a uniquely determined constant in the expansion (2.18) if
s < k1; ck1 is a linear function of log x with an arbitrary constant term; cs is a uniquely
determined polynomial in log x if s > k1.

2.5. Non-power asymptotic forms. The truncated equation f̂ (d)
j (x, y) = 0 may have

non-power solutions y = ϕ(x) which are the asymptotic forms for solutions to the original
equation f(x, y) = 0. These non-power solutions y = ϕ(x) may be found using power and
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logarithmic transformations. A power transformation is linear in logarithms

log x = α11 log u+ α12 log v,

log y = α21 log u+ α22 log v,
α =

(
α11 α12

α21 α22

)
, αij ∈ R, detα 6= 0.

It induces linear dual transformations in spaces R2 and R2
∗. The logarithmic transforma-

tion has the form
ξ = log u or η = log v.

Example. For the truncated equation (2.14) corresponding to the edge Γ(1)
1 with the

normal vector −(1, 1), we make power transformation

log x = log u

log y = log u+ log v,
α =

(
1 0
1 1

)
,

i. e. x = u, y = uv. Since y′ = xv′ + v, y′′ = xv′′ + 2v′, canceling x and collecting similar
terms, the equation (2.14) takes the form

−x2vv′′ + x2v′
2 − xvv′ + bv + d = 0. (2.21)

Its support consists of three points Q̃1 = (0, 2), Q̃2 = (0, 1), Q̃3 = 0 placed on the
axis q̃1 = 0. Now we make the logarithmic transformation ξ = log x. Since v′ = v̇/x,
v′′ = (v̈ − v̇)/x2, where ˙ = d/dξ, collecting similar terms, the equation (2.21) takes the
form

−vv̈ + v̇2 + bv + d = 0.

Applying the technique described below to this equation, we obtain the expansion of its
solutions

v = −(b/2)ξ2 + c̃ξ +
∞∑

k=0

ckξ
−k,

where c̃ is an arbitrary constant, and the constants ck are uniquely determined. In original
variables, we obtain the family of non-power asymptotic forms of solutions to the original
equation (2.8)

y ∼ x
[
−(b/2)(log x)2 + c̃ log x+

∞∑
k=0

ck(log x)−k

]
, x→ 0.

They give the complicated expansions (2.3), where cr and cs are power series in log x
(so called Psi series).

2.6. Complex power exponents. Expansions of solutions (2.3) with complex power
exponents r and s, where ωRe r > ωRe s, are found in a similar way.

Example. In the equation (2.8), for the truncated solution (2.12) with complex r, Re r ∈
(−1, 1), the expansions (2.18) are also found by the set (2.19). And for the truncated
solution (2.15) with Im(b/

√
−d) 6= 0 and Re k1 > 1, we obtain the expansion (2.18) by

the set (2.20).

Thus, in classical analysis, we encounter expansions in fractional powers and with
constant coefficients, but here we obtain expansions in rather arbitrary complex powers
of the independent variable with coefficients that are polynomials in logarithms of this
variable. However, there are possible even more complicated expansions of solutions.
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2.7. Types of expansions. As x → 0, consider asymptotic expansions of solutions to
the equation (2.2) of the form

y = crx
r +

∑
s

csx
s, (2.22)

where power exponents r and s are complex numbers without points of accumulation,
Re s > Re r, Re s increase.

We define four types of expansions (2.22):

Type 1. cr and cs are constant (power expansions) [3];
Type 2. cr is constant, cs are polynomials in log x (power-logarithmic expansions) [3];
Type 3. cr and cs are power series in decreasing powers of log x (complicated expan-

sions) [4];
Type 4. r and s are real (r, s ∈ R), cr and cs are power series in xi (exotic expan-

sions) [5];
Type 5.

y =
∞∑

k=0

bk(x)Ck exp(kϕ(x)),

where bk(x) and ϕ(x) are power series, and C is an arbitrary constant.

Similar technique is used for equations having small or big parameters. The power
exponents of these parameters are accounted for in the same way as power exponents of
variables tending to zero or infinity. Such parameter ε can be considered as a dependent
variable, satisfying the equation ε′ = 0.

2.8. Algorithms of Power Geometry. Thus, now we have the following algorithms
of Power Geometry.

1. Computation of truncated equations and accompanying objects.
2. Solution of truncated equations.
3. Power transformations.
4. Logarithmic transformations.
5. Introducing independent variable xi instead of x.
6. Computation of the first variation of a sum.
7. Computation of expansions of solutions to the initial equation, beginning by solu-

tions to a truncated equation.

All these algorithms, except 4 and 5, can be applied to resolve algebraic equations.

3. Plain Power Geometry. Applications

3.1. The sixth Painlevé equation. It has the form

y′′ =
(y′)2

2

(
1
y

+
1

y − 1
+

1
y − x

)
− y′

(
1
x

+
1

x− 1
+

1
y − x

)
+
y(y − 1)(y − x)
x2(x− 1)2

[
a+ b

x

y2
+ c

x− 1
(y − 1)2

+ d
x(x− 1)
(y − x)2

]
, (3.1)
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where a, b, c, d are complex parameters, x and y are complex variables, y′ = dy/dx. The
equation (3.1) has three singular points x = 0, x = 1, and x = ∞. After multiplying
by common denominator, we obtain the equation as a differential sum. Its support and
its polygon, in the case a 6= 0, b 6= 0, are shown in Fig. 3. We found all asymptotic

q2

q1Q1

Q2

Q3

Q4

Γ
(1)
1

Γ
(1)
2

Γ
(1)
3

Γ
(1)
4

0 1

1

Fig. 3. The support and the polygon of the sixth Painlevé equation multiplying on its common
denominator x2(x− 1)2y(y − 1)(y − x) when a · b 6= 0

expansions of solutions to the equation (3.1) near its three singular points. They comprise
117 families [6]. Among them, there are expansions of all first four types. In particular,
for a = 1 and c = 0, there is an expansion of the fourth type of the form

y = − 1
cos[log(C1x)]

+
∑

Re s>1

csx
s, (3.2)

where C1 is an arbitrary constant, the coefficients cs are constants and uniquely deter-
mined. Here

1
cos[log(x)]

=
1

xi + x−i
= xi

∞∑
k=0

(
−x−2i

)k
= x−i

∞∑
k=0

(
−x−2i

)k
.

For C1 = 1 and real x > 0, the solution (2.2) has infinitely many poles accumulating at
the point x = 0.

We found also all expansions of solutions to the equation (3.1) near its nonsingular
points. They comprise 17 families [7].

3.2. The Beletsky equation. The Beletsky equation (1956)

(1 + e cos ν)δ′′ − 2e sin νδ′ + µ sin δ = 4e sin ν (3.3)

describes plane motions of a satellite around its mass center which is moving along an
elliptic orbit with an eccentricity e = const ∈ [0, 1]. In the equation, ν is the independent
and δ is dependent variables, inertial parameter µ = const ∈ [−3, 3]. The equation (3.3)
is singular at e = 1, ν = π, since the coefficient at the higher derivative vanishes at this
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point. We introduce local coordinates x = ν − π and ε = 1 − e at the singularity. Then
the equation (3.3) takes the form[

ε+
1
2
x2 + o(x2, ε)

]
d2δ

dx2
+ 2 [x+ o(x, ε)]

dδ

dx
+ µ sin δ = −4[x+ o(x, ε)]. (3.4)

The support and the polygon of this equation for small coordinates x, ε is shown in Fig. 4.
The boundary of the polygon Γ consists of three edges and two vertices. The unit vector
along the edge Γ(1)

1 is (1, 0), which corresponds to the variable x. The unit vector along
the edge Γ2(1) is (1,−1/2), which corresponds to the variable x/

√
ε. Using a variable

with this type of behavior, we can regularize the equation (3.3) at the singularity and
compute its solutions as relaxation oscillations. In [8], we studied the limit equations

q2

−2 −1 0 1 2
q1

Γ
(0)
1

Γ
(0)
2

Γ
(1)
1

Γ
(1)
2

Γ
(1)
31

Fig. 4. The support and the polygon of the Beletsky equation near the singularity (3.4)

corresponding to the vertex Γ(0)
1 and to the edges Γ(1)

1 , Γ(1)
2 . Using their solutions, the

limits of solutions to the equation (3.3) are matched as e→ 1. We found that for e = 1,
the limit families of 2π-periodic solutions form a complicated structure: the family of
symmetric solutions is twisted into the spiral with infinite number of revolutions around
the solution C = {δ = −ν, µ = −2} and each convolution of the spiral corresponds to
its own family of asymmetric 2π-periodic solutions having 4 spirals [9]. Apparently, the
solution C is an accumulating point of infinitely many families of 2π-periodic solutions
and of infinitely many their spirals [10].

4. Integrability of a planar ODE system near a degenerate stationary point

4.1. Introduction. We consider an autonomous system of ordinary differential equa-
tions

dxi/dt
def= ẋi = ϕi(X), i = 1, 2, (4.1)

where X = (x1, x2) ∈ C2 and ϕi(X) are polynomials.
In a neighborhood of the stationary pointX = X0, the system (4.1) is locally integrable

if it has there first integral of the form

a(X)/b(X),

where functions a(X) and b(X) are analytic in a neighborhood of the point X = X0.
Otherwise we call the system (4.1) locally nonintegrable in this neighborhood. In the
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neighborhood of the stationary point X = 0 the system (4.1) can be written in the form

Ẋ = AX + Φ̃(X), (4.2)

where Φ̃(X) has no terms linear in X.
Let λ1, λ2 be eigenvalues of the matrix A. If at least one of them λi 6= 0, then

the stationary point X = 0 is called an elementary stationary point. In this case the
system (4.1) has a normal form which is equivalent to a system of lower order [1].

Theorem 4.1. Rationality of the ratio λ1/λ2 and the condition A (see below) are nec-
essary and sufficient conditions for local integrability of a system near an elementary
stationary point.

If all eigenvalues vanish, then the stationary point X = 0 is called a nonelementary
stationary point. In this case there is no normal form for the system (4.1). But by using
power transformations, a nonelementary stationary point X = 0 can be blown up to a
set of elementary stationary points. After that, it is possible to compute the normal form
and verify that the condition A is satisfied [1] in each elementary stationary point.

For local integrability of original system (4.1) near a degenerate (nonelementary)
stationary point, it is necessary and sufficient to have local integrability near each of
elementary stationary points, which are produced by the blowing up process described
above [1, Ch. II, Sec. 3]. A space generalization see in [24].

4.2. Normal form and condition A. Let the linear transformation

X = BY (4.3)

bring the matrix A to the Jordan form J = B−1AB and (4.2) to

Ẏ = JY + ˜̃Φ(Y ). (4.4)

Let the formal change of coordinates

Y = Z + Ξ(Z), (4.5)

where Ξ = (ξ1, . . . , ξn) and ξj(Z) are formal power series, transform (4.4) into the system

Ż = JZ + Ψ(Z). (4.6)

We write it in the form

żj = zjgi(Z) = zj

∑
gjQZ

Q over Q ∈ Nj , j = 1, 2, (4.7)

where Q = (q1, q2), ZQ = zq1
1 z

q2
2 , Nj = {Q : Q ∈ Z2, Q + Ej > 0}, j = 1, 2, Ej means

the unit vector. The diagonal Λ = (λ1, λ2) of J consists of eigenvalues of the matrix A.
System (4.6), (4.7) is called the resonant normal form if:

a) J is the Jordan matrix,
b) in (4.7), there are only the resonant terms, for which the scalar product

〈Q,Λ〉 def= q1λ1 + q2λ2 = 0. (4.8)

Theorem 4.2 (Bruno [1]). There exists a formal change (4.5) reducing (4.4) to its nor-
mal form (4.6), (4.7).
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In [1] there are conditions on the normal form (4.7), which guarantee the convergence
of the normalizing transformation (4.5).

Condition A. In the normal form (4.7)

gj = λjα(Z) + λ̄jβ(Z), j = 1, 2,

where α(Z) and β(Z) are some power series.

4.3. The simplest nontrivial example

Example. We consider the system

dx/dt = −y3 − bx3y + a0x
5 + a1x

2y2,

dy/dt = (1/b)x2y2 + x5 + b0x
4y + b1xy

3,
(4.9)

with arbitrary complex parameters ai, bi and b 6= 0.

After the power transformation

x = uv2, y = uv3 (4.10)

and time rescaling
dt = u2v7dτ,

we obtain the system (4.9) in the form

du/dτ = −3u− [3b+ 2/b]u2 − 2u3 + (3a1 − 2b1)u2v + (3a0 − 2b0)u3v,

dv/dτ = v + [b+ 1/b]uv + u2v + (b1 − a1)uv2 + (b0 − a0)u2v2.
(4.11)

Under the power transformation (4.10), the point x = y = 0 blows up into two straight
lines u = 0 and v = 0. Along the line u = 0 the system (4.11) has a single stationary
point u = v = 0. Along the second line v = 0 this system has three elementary stationary
points

u = 0, u = −1/b, u = −3b/2. (4.12)

In these points we computed normal forms of the system (4.11). If b2 6= 2/3, the condition
A is fulfilled for all normal forms in the four cases.

1) a0 = 0, a1 = −b0 b, b1 = 0, b2 6= 2/3,

2) b1 = −2 a1, a0 = a1b, b0 = b1b, b2 6= 2/3,

3) b1 = (3/2) a1, a0 = a1b, b0 = b1b, b2 6= 2/3,

4) b1 = (8/3) a1, a0 = a1b, b0 = b1b, b2 6= 2/3

In each of the cases analytical first integrals of system (4.11) were found. Thus if b2 6= 2/3
the system (4.9) is locally integrable only in these four cases [11].

5. Space Power Geometry

5.1. Theory. Let X ∈ Cm be independent and Y ∈ Cn be dependent variables. Sup-
pose Z = (X,Y ) ∈ Cm+n. A differential monomial a(Z) is the product of an ordinary



ALGORITHMS OF POWER GEOMETRY 95

monomial cZR = czr1
1 · · · z

rm+n

m+n , where c = const ∈ C, R = (r1, . . . , rm+n) ∈ Rm+n, and
a finite number of derivatives of the form

∂lyj

∂xl1
1 · · · ∂xlm

m

def=
∂lyj

∂XL
, lj > 0,

m∑
j=1

lj = l, L = (l1, . . . , lm).

A differential monomial a(X) corresponds to its vector power exponent Q(a) ∈ Rm+n

formed by the following rules

Q(cZR) = R, Q(∂lyj/∂X
L) = (−L,Ej),

where Ej is unit vector. A product of monomials a · b corresponds to the sum of their
vector power exponents:

Q(ab) = Q(a) +Q(b).

A differential sum is a sum of differential monomials

f(Z) =
∑

ak(Z).

A set S(f) of vector power exponents Q(ak) is called the support of the sum f(Z). The
closure of the convex hull Γ(f) of the support S(f) is called the polyhedron of the sum
f(Z). Consider a system of equations

fi(X,Y ) = 0, i = 1, . . . , n, (5.1)

where fi are differential sums. Each equation fi = 0 corresponds to: its support S(fi),
its polyhedron Γ(fi) with the set of faces Γ(di)

ij in the main space Rm+n, the set of

their normal cones U(di)
ij in the dual space Rm+n

∗ , and the set of truncated equations

f̂
(di)
ij (X,Y ) = 0. The set of truncated equations

f̂
(di)
iji

(X,Y ) = 0, i = 1, . . . , n (5.2)

is the truncated system if the intersection

U(d1)
1j1
∩ · · · ∩U(dn)

njn
(5.3)

is not empty. A solution
yi = ϕi(X), i = 1, . . . , n

to the system (5.1) is associated to its normal cone u ⊂ Rm+n. If the normal cone u
intersects with the cone (5.3), then the asymptotic form yi = ϕ̂i(X), i = 1, . . . , n of this
solution satisfies the truncated system (5.2), which is quasihomogeneous [2, 12].

5.2. The Euler-Poisson equations

Ap′ + (C −B)qr = Mg(y0γ3 − z0γ2), γ′1 = rγ2 − qγ3,

Bq′ + (A− C)pr = Mg(z0γ1 − x0γ3), γ′2 = pγ3 − rγ1,

Cr′ + (B −A)pq = Mg(x0γ2 − y0γ1), γ′3 = qγ1 − pγ2,

(5.4)

where ′ = d/dt, describes the motion of a rigid body with a fixed point. In (5.4), A,B,C,
x0, y0, z0, and Mg are real constants. The system (5.4) has three general first integrals.
In the case B 6= C, x0 6= 0, y0 = z0 = 0 N. Kowalewski (1908) reduced the system (5.4)
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to the system of two equations

f1
def= σ̈τ + σ̇τ̇ /2 + a1 + a2σ + a3τ̇ p+ a4τ + a5p

2 = 0,

f2
def= στ̈ + σ̇τ̇ /2 + b1 + b2σ̇p+ b3σ + b4τ + b5p

2 = 0,
(5.5)

where the dot means differentiation with respect to the new independent variable p, σ
and τ are new dependent variables, ai, bi = const.

This system has two general first integrals. Generically, the supports S(fi) and poly-
hedrons Γ(fi) of both equations (5.5) coincide; they are shown in Fig. 5.

Fig. 5. Support S(fi) and polyhedron Γ(fi) for each equation (5.5) (i = 1, 2) in general case

We found all power-logarithmic expansions of solutions to the system (5.5) as p→ 0
and as p → ∞ (they comprise 24 families) and 4 families of complicated expansions of
solutions [13]. Solutions to this system do not have expansions of the 4-th type. Using
power expansions we obtained all exact solutions of the form of finite sums of real powers
of the variable p with complex coefficients. They comprise 12 families. Among them, 7
families were known. All new families are complex.

In the case
A = B, Mgx0/B = 1, y0 = z0 = 0, C/B = c

the system (5.4) has a unique parameter c ∈ (0, 2]. The system (5.4) has 4 two-parameter
families of stationary solutions. On each of these families there are sets Dj of real sta-
tionary solutions near which the system (5.4) is locally integrable as well as the sets Rj

of stationary solutions near which the system (5.4) is locally nonintegrable. In Fig. 6,
there are shown the sets D1, D2, D3 and the curves R1–R4 for one of these four families
with x = 1/c and y = p0γ0

1 , where (p, q, r, γ1, γ2, γ3) = (p0, 0, 0,±1, 0, 0) is a stationary
solution [13].
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Fig. 6

5.3. Other applications of Power Geometry. Up till now Power Geometry has been
applied to the following problems.

1. Asymptotic forms of solutions to Painlevé equations [14–16].
2. Periodic solutions of the restricted three-body problem [17–21].
3. Analysis of the local integrability in space problems of ODE’s [22–24].
4. Boundary layer on a needle [25].
5. Evolution of the turbulent flow [12].
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Painlevé equations and Power Geometry, Doklady Mathematics 78 (2008), 681–685.

[15] A. D. Bruno and I. V. Goryuchkina, Asymptotic forms of solutions to the third Painlevé
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