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Abstract. This paper is a sequel to [vdP-Sa] and [vdP]. The two classes of differential modules

(0,−, 3/2) and (−,−, 3), related to PII, are interpreted as fine moduli spaces. It is shown that

these moduli spaces coincide with the Okamoto–Painlevé spaces for the given parameters. The

geometry of the moduli spaces leads to a proof of the Painlevé property for PII in standard form

and in the Flaschka–Newell form. The Bäcklund transformations, the rational solutions and the

Riccati solutions for PII are derived from these moduli spaces.

Introduction. It is well known that isomonodromic families of linear differential equa-
tions induce solutions of Painlevé equations. The families under consideration are, a priori,
given by a set S of differential modules M over C(z) with dimM = 2, Λ2M is the trivial
module and with prescribed singular points and their Katz invariants. A systematic study
of these families and the corresponding monodromy spaces is the theme of [vdP-Sa]. In
[vdP] a detailed study of two of these families, namely (−,−, 5/2) and (1/2,−, 1/2), is
presented and their relation to Okamoto’s geometric approach to Painlevé equations is
clarified. In the References we have tried to select some papers out of the extensive litera-
ture related to our work. We refer to papers [vdP-Sa, vdP] as background for the present
paper.

Each family has its own story. The first family studied here is denoted by (0,−, 3/2)
and corresponds to modules M as above with two singular points, namely 0 and ∞.
The point 0 is regular singular and ∞ is irregular singular with Katz invariant 3/2.
The generalized eigenvalues at ∞ are normalized to ±w with w = z3/2 + t

2z
1/2. The

monodromy space R is given by the formal monodromy and the three Stokes maps,
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represented by the matrices(
0 − 1
1 0

)
,

(
1 0
a1 1

)
,

(
1 a2

0 1

)
,

(
1 0
a3 1

)
.

ThusR has coordinate ring C[a1, a2, a3]. The topological monodromy at∞ is the product
of these matrices (in this order) and the trace s of the topological monodromy defines
the affine parameter space P with coordinate ring C[s]. The map R → P, given by
(a1, a2, a3) 7→ s, makesR into a family of affine cubic surfacesR(s), given by the equation
a1a2a3 + a1 − a2 + a3 + s = 0, for s ∈ P = C. The singularities of the fibers R(s) occur
only for the resonant case θ ∈ Z, where ±θ/2 are the local exponents at z = 0. Since
s = eπiθ + e−πiθ, this corresponds to s = ±2. For s = 2 one finds the singular point
(a1, a2, a3) = (−1, 1,−1) and for s = −2 one has the singular point (1,−1, 1).

The aim of this paper is to provide S with a structure of algebraic variety, by con-
structing a fine moduli space M (for families of the type under consideration) with
S = M(C). Further M is identified with the Okamoto–Painlevé space for PII in the
Flaschka–Newell form. The singular points of the fibers of R for s = ±2 are resolved by a
‘level structure’ added to the moduli problem. The Painlevé property is deduced for PII
in the Flaschka–Newell form.

The second family S is denoted by (−,−, 3). The modules M belonging to (−,−, 3)
have only one singular point namely∞. The Katz invariant of∞ is 3 and the generalized
eigenvalues at ∞ are normalized to ±(z3 + t

2z). The monodromy space R is obtained
from the formal monodromy and the six Stokes maps, given by the matrices(

α 0
0 1
α

)
,

(
1 0
b1 1

)
,

(
1 b2
0 1

)
, · · · ,

(
1 b6
0 1

)
.

The topological monodromy, which is the identity, is the product of the above matrices.
This yields a set of relations for α and the b∗. Further one has to divide by the action
(by conjugation) of Gm = {

(
λ 0
0 1

)
| λ ∈ C∗}. The affine parameter space P has coordinate

ring C[α, α−1]. The morphism R → P defines a family of affine cubic surfaces given by
the equation x1x2x3 − x1 − αx2 − x3 + α+ 1 = 0. This surface is not singular for α 6= 1.
For α = 1 there is one singular point (x1, x2, x3) = (1, 1, 1) and this corresponds to the
‘reducible locus’ which, in terms of the above matrices, is the union of the two closed sets
α = 1, b1 = b3 = b5 = 0 and α = 1, b2 = b4 = b6 = 0.

The results for this second family consist of the construction of fine moduli spaces
M(θ/2) replacing the set S. In each case, depending on θ with eπiθ = α, the fine moduli
space is identified with an Okamoto–Painlevé space. We note that the cases θ

2 ∈ {0,−1}
are rather subtle, since these involve reducible differential modules. As a corollary, one
obtains the Painlevé property for every PII equation (in standard form). The rational solu-
tions and the Riccati solutions follow from these moduli spaces. Moreover one obtains the
Bäcklund transformations in a natural way as isomorphisms between the various moduli
spaces. Finally, we discuss the relation between the two families (0,−, 3/2) and (−,−, 3).

1. The family (0,−, 3/2). S is the set of the isomorphy classes of the differential mod-
ules of type (0,−, 3/2) described in the Introduction. According to [vdP-Sa], Theorem
1.7, one has
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Proposition 1.1. The map S → R × T , which assigns to (an isomorphy class of) a
module M ∈ S its three Stokes maps at ∞ and the t ∈ T = C, which appears in the
generalized eigenvalues ±(z3/2 + t

2z
1/2), is bijective.

We want to replace M ∈ S be a connection (V,∇) on the projective line with ∇ :
V → Ω([0] + 3[∞]) ⊗ V and M is the generic fiber of (V,∇). Thus the given derivation
∂ on M is the one induced by ∇ d

dz
on the vector bundle V. A choice of (V,∇) induces

a C[[z]]-lattice V̂0 in C((z)) ⊗M which is invariant under z∂ and a C[[z−1]]-lattice in
C((z−1))⊗M which is invariant under z−1∂. We will call these lattices invariant lattices.

On the other hand (see [vdP-Sa] §1.8 or [vdP-Si] p. 176), given an invariant lattice
Λ(0) ⊂ C((z))⊗M (i.e., (z∂)Λ(0) ⊂ Λ(0)) and an invariant lattice Λ(∞) ⊂ C((z−1))⊗M
(i.e., (z−1∂)Λ(∞) ⊂ Λ(∞)), there is a unique connection (V,∇) with:

• ∇ : V → Ω([0] + 3[∞])⊗ V has generic fiber M ,
• (V̂0, z∇ d

dz
) is isomorphic to (Λ(0), z∂) and

• (V̂∞, z−1∇ d
dz

) is isomorphic to (Λ(∞), z−1∂).

The computation of the invariant lattices at ∞ is very similar to the one in [vdP],
Proposition 1.1 (see also [vdP-Sa] §1.2). We omit the proof.

Proposition 1.2. The invariant lattices of N := C((z−1)) ⊗M are {Nk}k∈Z with the
properties:

(1) N0 is represented for a suitable basis f1, f2 over C[[z−1]] by the matrix operator

δ +
(

1/4 z−1/2w

z1/2w −1/4

)
, where δ := z

d

dz
and w = z3/2 +

t

2
z1/2.

(2) N−1 has basis z−1f1, f2 and is represented by the matrix differential operator

δ +
(
−1 + 1/4 z1/2w

z−1/2w −1/4

)
.

(3) zkN0 = N2k, zkN−1 = N2k−1 and Λ2Nk = C[[z−1]]bk with δ(bk) = kbk.

Let N be a vector space over C((z)) of dimension 2. By 〈e1, e2〉 we denote the lattice
in N generated by e1, e2, i.e., 〈e1, e2〉 = C[[z]]e1 ⊕ C[[z]]e2.

Proposition 1.3. Let N be a regular singular differential module over C((z)) with
dimN = 2 and trivial Λ2N . On N we consider the operator δ = z∂. A C[[z]]-lattice
Λ is called invariant if δ(Λ) ⊂ Λ. The modules N are classified by the conjugacy class of
the (formal) monodromy mon0. The sets of invariant lattices are described as follows.

(1) Suppose mon0 =
(β 0

0 1
β

)
with β 6= 1,−1. Then δ has the matrix

(
θ/2 0
0 −θ/2

)
with eπiθ = β

on a certain basis e1, e2 of N . The invariant lattices are 〈zne1, z
me2〉 with m,n∈Z.

(2) Suppose mon0 =
(

1 0
0 1

)
. Then δe1 = δe2 = 0 for a certain basis e1, e2 of N . The

invariant lattices are 〈zna, zmb〉 with n ≤ m and {a, b} a basis of Ce1 ⊕Ce2. The lattice
〈zna, zmb〉 is determined by n ≤ m and the line Ca ⊂ Ce1 ⊕ Ce2 in case n < m.
(3) Suppose mon0 =

(
1 x
0 1

)
with x 6= 0. Then δ has the form δe1 = 0, δe2 = ye1, y 6= 0 for a

certain basis e1, e2 of N . The invariant lattices are 〈zne1, z
me2〉 with n,m ∈ Z and n ≤ m.
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(4) Suppose mon0 =
(−1 0

0 −1

)
. Then δ has the form δe1 = 1

2e1, δe2 = 1
2e2 for a certain

basis e1, e2 of N . The invariant lattices are 〈zna, zmb〉 with n ≤ m and {a, b} a basis of
Ce1 ⊕ Ce2. The lattice 〈zna, zmb〉 is determined by n ≤ m and the line Ca ⊂ Ce1 ⊕ Ce2

in case n < m.
(5) Suppose mon0 =

(−1 x
0 −1

)
with x 6= 0. Then δ has the form δe1 = 1

2e1, δe2 =
1
2e1 + ye1, y 6= 0 for a certain basis e1, e2 of N . The invariant lattices are 〈zne1, z

me2〉
with n,m ∈ Z and n ≤ m.

Proof. (1) is easily verified. Further (4) and (5) follow easily from (2), (3).
(2) Consider an invariant lattice Λ ⊂ C((z))e1 ⊕ C((z))e2. Write a λ ∈ Λ in the

form λ =
∑
i≥0 aiz

i with all ai ∈ Ce1 + Ce2. For any integer k ≥ 0 we have δk(λ) =∑
i≥0 i

kaiz
i ∈ Λ. It follows that each term aiz

i belongs to Λ. Thus any Λ is generated
by elements of the form azi with a ∈ Ce1 + Ce2 and i ∈ Z. One now easily verifies that
the invariant lattices have the form 〈azn, bzm〉 with n ≤ m and {a, b} forms a basis of V .
This lattice is uniquely determined by the integers n ≤ m and the line Ca ⊂ Ce1 + Ce2

in case n < m.
(3) Let Λ be an invariant lattice. After replacing Λ by zkΛ for a suitable integer k we

may suppose that Λ ⊂ 〈e1, e2〉 and Λ 6⊂ z〈e1, e2〉. If Λ 6= 〈e1, e2〉, then Λ ⊂ 〈e1, ze2〉 be-
cause δ has on the C-vector space 〈e1, e2〉/z〈e1, e2〉 only one invariant line. If Λ 6= 〈e1, ze2〉,
then Λ ⊂ 〈e1, z

2e2〉. Indeed, δ has on 〈e1, ze2〉/z〈e1, ze2〉 two invariant lines and Λ 6⊂
〈ze1, ze2〉. Repeating this reasoning one finds that Λ = 〈e1, z

ke2〉 for some integer k ≥ 0.
Thus we find that the invariant lattices are the 〈zne1, z

me2〉, with n,m ∈ Z, n ≤ m.

1.1. The choice of the connection for M ∈ S. Let (W,∇) be the connection corre-
sponding to M , the lattice N0 at ∞ and a lattice L at 0 with Λ2L is trivial. The second
exterior power of (W,∇) has no singularities and is therefore equal to d : O → Ω. Thus
W has degree 0 and is equal to O(k)⊕O(−k) for some integer k ≥ 0. Since the connection
is irreducible, the defect, which is k−(−k), is ≤ 2. Thus k = 0 or k = 1. Let (V,∇) be the
subconnection of (W,∇) given by the lattice N−1 at∞ and L at 0. Then V ∼= O⊕O(−1)
and can be identified with Oe1 ⊕O(−[∞])e2.

The operator δ := ∇z ddz w.r.t. e1, e2 has the form z d
dz +

(
a b
c −a

)
with a = a0 + a1z +

a2z
2, b = b0 + b1z + b2z

2 + b3z
3, c = c0 + c1z. The condition at infinity is

z
d

dz
+
(

a z−1b

zc −a− 1

)
= U−1(z

d

dz
+
(
−1 + 1/4 z1/2w

z−1/2w −1/4

)
)U

for some U ∈ GL(2,C[[z−1]]). This can be simplified to a(a + 1) + bc = w2 + r where r
is a polynomial of degree ≤ 1 and is equivalent to the equations

a2
2 + b3c1 = 0, 2a2a1 + b3c0 + b2c1 = 1, 2a0a2 + a2 + a2

1 + b2c0 + b1c1 = t.

Now we have to specify the choice of the lattice L at 0, or equivalently, the local
equation for C((z)) ⊗M in matrix form. For the cases of Proposition 1.3 we obtain the
following local equations.

(1) z d
dz +

(−θ/2 0
0 θ/2

)
and θ 6∈ Z.

(2) z d
dz +

(−m 0
0 m

)
with m ∈ Z≥0.

(3) z d
dz +

(−m ∗
0 m

)
with m ∈ Z≥0 and ∗ ∈ zC[[z]].
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(4) z d
dz +

(−m− 1
2 0

0 m+ 1
2

)
with m ∈ Z≥0.

(5) z d
dz +

(−m− 1
2 ∗

0 m+ 1
2

)
with m ∈ Z≥0 and ∗ ∈ zC[[z]].

Case (3) is rather subtle. The local equation has certainly the form z d
dz +

(−m+a b
c m−a

)
with a, b, c ∈ zC[[z]]. The equivalent equation:(

1 0
−α 1

){
z
d

dz
+
(
−m+ a b

c m− a

)}(
1 0
α 1

)
has the form z d

dz +
(
A B
C D

)
with C = z d

dz (α) + 2mα−2αa−α2b+ c. Since the integer m is
≥ 0, there exists (a unique) α ∈ zC[[z]] such that C = 0. After that the transformation
to z d

dz +
(−m ∗

0 m

)
is easily found. The case (5) is similar.

The condition at 0 is

z
d

dz
+
(
a b

c −a

)
= U−1

{
z
d

dz
+
(
−θ/2 ∗

0 θ/2

)}
U

for some U ∈ GL(2,C[[z]]) and ∗ ∈ C[[z]]. Equivalently a2
0 + b0c0 = θ2

4 . We note that in
the case θ ∈ Z, we have normalized to θ ≥ 0.

The affine variety A given by the nine variables a0, . . . , c1 and the above three equa-
tions has to be divided out by the automorphism group G acting on A and defined by
the base change e1 7→ e1, e2 7→ λe2 + (α+ βz)e1 with α, β ∈ C and λ ∈ C∗.

Proposition 1.4. For any choice of θ, the quotient M of A by the action of G is a good
quotient in the sense that there exists a G-equivariant isomorphism G×M→ A. Further
M is non-singular for θ 6= 0.

Proof. A is the union of two open subsets, namely A(c0 6= 0) and A(c1 6= 0). For
ξ ∈ A(c0 6= 0) there exists a unique element g ∈ G such that gξ is represented by the
matrix differential operator

z
d

dz
+
(

a2z
2 b0 + · · ·+ b3z

3

1 + c1
c0
z −a2z

2

)
,

where we have the equations

a0 = a1 = 0, a2
2 + b3

c1
c0

= 0, b3 + b2
c1
c0

= 1, b0 =
θ2

4
, a2 + b2 + b1

c1
c0

= t.

This defines a non-singular affine space M0 of dimension 3 with coordinate ring
C[a2, b2, b1,

c1
c0

]/(a2
2 + (1− b2 c1c0 ) c1c0 ).

For ξ ∈ A(c1 6= 0), there is a unique g ∈ G such that gξ is given by the matrix
differential operator

z
d

dz
+
(

a0 b0 + · · ·+ b3z
3

z + c0
c1

−a0

)
,

where the equations are

a1 = a2 = b3 = 0, b2 = 1, a2
0 + b0

c0
c1

=
θ2

4
,

c0
c1

+ b1 = t.
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The coordinate ring of this affine space is C[a0, b0, b1,
c0
c1

]/(a2
0 + b0

c0
c1
− θ2

4 ). This affine
space M1 is for θ 6= 0 non-singular of dimension 3. For θ = 0 one has one singular line,
namely a0 = b0 = c0

c1
= 0.

Now M is obtained by gluing M0 and M1 in the obvious way. The morphism G ×
M→ A, given by (g, ξ) 7→ gξ is by construction an isomorphism.

SinceM depends on θ2, we will writeM(θ2) in the sequel. Write q :M(θ2)→ P1 for
the morphism q(ξ) = − c1c0 in the notation of the proof of Proposition 1.4. The Riemann–
Hilbert map RH : M(θ2) → R(eiπθ + e−iπθ) associates to a connection its analytic
data and thus a point of R(eiπθ + e−iπθ). This map is known to be analytic. The fibers
of the Riemann–Hilbert map RH : M(θ2) → R(eiπθ + e−iπθ) are, by definition, the
isomonodromic families. These are parametrized by t ∈ T = C. Let q(t) denote the
function q restricted to an isomonodromic family. In [vdP-Sa] it is shown that q = q(t)
is a solution of the PII equation in Flaschka–Newell form (see also §2.2)

q′′ =
(q′)2

2q
+ 4q2 + 2tq − θ2

2q
.

1.2. The non-resonant case θ 6∈ Z. Let RH+ = (RH, t) :M(θ2)→ R(eiπθ+e−iπθ)×
T with T = C denote the extended Riemann–Hilbert map. From Proposition 1.1, part
(1) of Proposition 1.3 and the construction of M(θ2) one deduces that RH+ is bijective
and therefore an analytic isomorphism (see [KK]). As in [vdP] this has the following
consequences.

Theorem 1.5. Let θ 6∈ Z. Then t : M(θ2) → T with its foliation given by the fibers
of RH : M(θ2) → R(eiπθ + e−iπθ), i.e., the isomonodromic families, is isomorphic to
the Okamoto–Painlevé space corresponding to the equation q′′ = (q′)2

2q + 4q2 + 2tq − θ2

2q .
Moreover this equation has the Painlevé property.

1.3. The resonant case θ ∈ Z, θ > 0. We consider the case θ ∈ 2Z, θ > 0. Then
s = 2. An element (V,∇) ∈M(θ2) has more information than the value of t ∈ T and the
Stokes matrices, i.e., a point of R(s = 2). Namely, the local monodromy at z = 0 has the
form z d

dz +
(−θ ∗

0 θ

)
and there is given a uniquely determined ‘eigenline’, i.e., Ce where

e 6= 0 is an eigenvector for the eigenvalue −θ of the matrix differential operator.
This leads to the following definition of R+(2). As mentioned in the introduction,

the topological monodromy mon0 at z = 0 (or equivalently at z = ∞) is the product(
0 −1
1 0

)(
1 0
a1 1

)(
1 a2
0 1

)(
1 0
a3 1

)
. In this case a2a2a3 +a1−a2 +a3 = −2 and mon0 has eigenvalues

1, 1 and has an ‘eigenline’, i.e., an invariant line. A point of R+(2) consists of the tuple
(a1, a2, a3) ∈ R and an ‘eigenline’. Explicitly, consider the subspace of P1 × A3 given by
the equations

−a1a2a3 − a1 + a2 − a3 = 2 and

(1− a2)y0 − (a2a3 + 1)y1 = 0, (1 + a1a2)y0 + (a2 − 1)y1 = 0,

where y0, y1 are homogeneous coordinates of P1 and a1, a2, a3 are coordinates for A3.
The first equation is equivalent to mon0 has trace 2. The other equations mean that
(y0, y1) 6= 0 is an eigenvector of mon0 (for the eigenvalue 1). This defines R+(2).
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The canonical morphism R+(2) → R(2) is the minimal resolution. Indeed, R+(2)
is non-singular, outside the singular point (a1, a2, a3) = (−1, 1,−1) this map is an iso-
morphism (i.e., mon0 =

(
1 6=0
0 1

)
) and the preimage of the singular point (−1, 1,−1) (i.e.,

mon0 =
(

1 0
0 1

)
) is isomorphic to P1.

The morphism M(θ2) → R+(2) associates to ξ = (V,∇) the element RH(ξ) ∈ R
and the “eigenline” for mon0 which is the ‘eigenline’ of the local matrix

(−θ ∗
0 θ

)
. The

extended map M(θ2) → R+(2) × T is analytic and bijective and therefore an analytic
isomorphism.

The case θ ∈ 1 + 2Z can be analyzed in the same way. This leads to the following
result:

Theorem 1.6. Let θ ∈ 2Z, θ > 0. Then t : M(θ2) → T with its foliation given by
the fibers of RH : M(θ2) → R+(2), i.e., the isomonodromic families, is isomorphic to
the Okamoto–Painlevé space corresponding to the equation q′′ = (q′)2

2q + 4q2 + 2tq − θ2

2q .
Moreover this equation has the Painlevé property. For θ ∈ 1 + 2Z the same holds with
R+(2) replaced by R+(−2).

1.4. The resonant case θ = 0. For θ = 0 another construction is needed. Let M ∈
S(s = 2). We choose at first the connection (W,∇) corresponding to the invariant lattice
N0 at∞ and the invariant latticeW0 at 0 corresponding to the local equation z d

dz +
(

0 ∗
0 0

)
.

The action of δ on W0/zW0 is nilpotent (zero or not). We take a submodule F := C{z}a
with δa = 0. Then F + zW0 is a new invariant lattice. Define now the connection (V,∇)
by replacing at z = 0, the invariant lattice W0 by F + zW0. As before, V ∼= O ⊕ O(−1)
and can be represented as Oe1 ⊕O(−[0])e2. Once again we compute the form of ∇.

The operator δ := ∇z ddz has w.r.t. e1, e2 the form z d
dz +

(
a b
c −a

)
where

a = a0 + a1z + a2z
2, b = b−1z

−1 + b0 + · · ·+ b2z
2, c = c1z + c2z

2.

The condition at infinity is equivalent to a2 + bc = w2 + r = z3 + tz2 + r where r is a
polynomial of degree ≤ 1. One finds the equations

a2
2 + b2c2 = 0, 2a1a2 + b2c1 + b1c2 = 1, a2

1 + 2a0a2 + b0c2 + b1c1 = t.

The condition at z = 0 can be stated as

z
d

dz
+
(

a b−1 + b0z + · · ·+ b2z
2

c1 + c2z −a+ 1

)
= U−1

(
z
d

dz
+
(

0 ∗
0 − 1

))
U,

with some ∗ ∈ zC[[z]] and some U ∈ GL(2,C[[z]]). This yields the equivalent relation
a0(a0−1)+c1b−1 = 0. The group G consisting of the base transformations e1 7→ e1, e2 7→
λe2 +(α+βz−1)e1, λ 6= 0, acts on the above set of variables and relations. There is a good
quotientM which is the union of two open affine subsetsM1,M2 corresponding to c1 6=0
and c2 6= 0. We compute these two affine spaces, using the method of Proposition 1.4.

The c1 6= 0 normalization is

z
d

dz
+
(

a2z
2 b−1z

−1 + b0 + · · ·+ b2z
2

z + c2
c1
z2 −a2z

2

)
,

with equations

a0 = a1 = b−1 = 0, a2
2 + b2

c2
c1

= 0, b2 + b1
c2
c1

= 1, b0
c2
c1

+ b1 = t.
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The coordinate ring is

C
[
a2, b0, b1,

c2
c1

] / (
a2

2 +
(

1− b1
c2
c1

)
c2
c1

)
.

Thus M1 is connected, non-singular of dimension 3.
The c2 6= 0 case has normalization

z
d

dz
+
(

a0 b−1z
−1 + b0 + · · ·+ b2z

2

c1
c2
z + z2 −a0

)
,

with equations

a1 = a2 = b2 = 0, b1 = 1, b0 + b1
c1
c2

= t, a0(a0 − 1) + c1b−1 = 0.

The coordinate ring is

C
[
a0, b−1, b0,

c1
c2

] / (
a0(a0 − 1) + b−1

c1
c2

)
.

Thus M2 is connected, non-singular of dimension 3.
By gluing one obtains a non-singular connected variety M of dimension 3. The map

gen : M → S(s = 2), which associates to (V,∇) its generic fiber, is surjective. For
M ∈ S(s = 2) such that the monodromy mon0 =

(
1 6=0
0 1

)
the preimage under gen is one

point. For M ∈ S(s = 2) such that mon0 =
(

1 0
0 1

)
, the preimage under gen is isomorphic

to P1. Indeed, the elements in the preimage correspond, by part (2) of Proposition 1.3,
to the invariant lattices 〈a, zb〉 and thus correspond to the lines Ca ⊂ Ce1 + Ce2. One
concludes that the natural analytic mapM→R+(s = 2)× T is bijection and thus is an
analytic isomorphism. One finds

Theorem 1.7. Let M be as above. Then t :M→ T with its foliation given by the fibers
of RH : M→ R+(2), i.e., the isomonodromic families, is isomorphic to the Okamoto–
Painlevé space corresponding to the equation q′′ = (q′)2

2q +4q2+2tq. Moreover this equation
has the Painlevé property.

2. The family (−,−, 3). As in the Introduction, the set S consists of the isomorphy
classes of the differential modules M satisfying: dimM = 2, Λ2M is the trivial module,
∞ is the only singular point and r(∞) = 3, the generalized eigenvalues at ∞ are ±w,
w = z3 + t

2z. Further S(α) denotes the subset of S consisting of the modules with α

as eigenvalue of the formal monodromy. We start by computing connections with these
data.

2.1. The moduli spaces M( θ2 ) of connections. We consider the connections (V,∇)
with V = Oe1 + O(−[∞])e2, ∇ : V → Ω(4[∞]) ⊗ V and such that ∇z ddz is at z = ∞
isomorphic to the matrix differential operator z d

dz +
(
ω 0

0 −ω−1

)
with ω = z3 + t

2z + θ
2 .

The operator D := ∇ d
dz

has the form d
dz +

(
a b
c −a

)
with a = a2z

2 + a1z + a0, b = b3z
3 +

· · ·+ b0, c = c1z + c0. For the local basis e1, z
−1e2 the matrix of zD is

(
za b

z2c −za−1

)
. The

determinant of this matrix is equal to the determinant of
(
ω 0

0 −ω−1

)
, moduli z2C[[z−1]].
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Thus za(za+ 1) + z2bc = ω(ω + 1) + z2C[[z−1]]. This is equivalent to the equations

a2
2 + b3c1 = 1, 2a2a1 + b3c0 + b2c1 = 0, 2a2a0 + a2

1 + b2c0 + b1c1 = t,

2a1a0 + a2 + b1c0 + b0c1 = θ + 1.

The above variables and equations define an affine variety A( θ2 ). The basis e1, e2 is unique
up to a transformation e1 7→ λe1, e2 7→ µe2 + (x0 + x1z)e1 with λ, µ ∈ C∗, x0, x1 ∈ C.
For its action on the matrix

(
a b
c −a

)
, we may suppose λ = 1. Let G denote the group of

transormations, given by e1 7→ e1, e1 7→ µe2 + (x0 + x1z)e1. Then, in order to obtain a
moduli space, we have to divide A( θ2 ) by the action of G. As we will show, this works
well outside the subset of A( θ2 ) given by c0 = c1 = 0.

For the subset of A( θ2 ), given by c0 = c1 = 0, there are two possibilities:

a2 = 1, a1 = 0, a0 =
t

2
, θ = 0 or a2 = −1, a1 = 0, a0 = − t

2
, θ = −2.

In the first case, i.e. A(0), there is a unique element in G which transforms any element
d
dz +

(
a b
0 −a

)
of this closed subset into d

dz +
( z2+ t

2 0

0 −z2− t2

)
. Thus, this closed subset consists of

the connections which are a direct sum. Moreover this closed subset is one orbit under G.
The second case is similar. The closed subset of A(−1), given by c0 = c1 = 0, consists

of the connections which are direct sums and it is the orbit of d
dz+

( z2+ t
2−

1
z 0

0 −z2− t2 + 1
z

)
under G.

In the sequel we will avoid connections which are direct sums and write A∗( θ2 ) for the
open subset of A( θ2 ) given by (c0, c1) 6= (0, 0). Thus A∗( θ2 ) = A( θ2 ) except for θ

2 ∈ {0,−1}.
The space A∗( θ2 ) is the union of the two affine open subsets, given by c1 6= 0 and

c0 6= 0. On the open subset, given by c1 6= 0, one considers the closed subset M( θ2 )1,
defined by a1 = a2 = 0, c1 = 1. A computation (similar to the one in §1 and to
computations in [vdP]) shows that the map G×M( θ2 )1 → A∗( θ2 )c1 6=0 is an isomorphism.
The points of M( θ2 )1 are

∇ d
dz

=
d

dz
+
(

a0 b

z − q − a0

)
with b = z3 + qz2 + (t+ q2)z + θ + 1 + q(t+ q2).

Let M( θ2 )0 denote the closed subset of A∗( θ2 )c0 6=0, defined by a0 = a1 = 0, c0 = 1.
Then G×M( θ2 )0 → A∗( θ2 )c0 6=0 is an isomorphism. The points of M( θ2 )0 are

∇ d
dz

=
d

dz
+
(

a2z
2 b

cz + 1 − a0

)
with b = b3z

3 + · · ·+ b0 and

a2
2 + b3c = 1, b3 + b2c = 0, b2 + b1c = t, a2 + b1 + b0c = θ + 1.

The moduli space M( θ2 ) is defined by gluing the two affine spaces M( θ2 )1 and M( θ2 )0

(over the open subsets q 6= 0 and c 6= 0) in the obvious way.

Remarks 2.1. By construction M( θ2 ) is the good geometric quotient of A∗( θ2 ) by the
action of G. One easily verifies thatM( θ2 ) is a connected, non-singular variety of dimen-
sion 3. The fibers of the obvious morphism t : M( θ2 ) → T = C are non-singular and
connected.

2.2. Isomonodromy. A family d
dz + A with A =

(
a b
c −a

)
(in the space M( θ2 )), where

the coefficients of a, b, c are functions of t ∈ T = C, is isomonodromic if and only if there
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is an operator d
dt +B (the entries of the matrix B depend in a polynomial way on z and

their coefficients are functions of t), commuting with d
dz +

(
a b
c −a

)
. This is equivalent to

d
dt (A) = d

dz (B) + [A,B]. For the computation we work on M( θ2 ) and since B has also
trace 0, we will use the basis H =

(
1 0
0 −1

)
, E1 =

(
0 1
0 0

)
, E2 =

(
0 0
1 0

)
of sl2.

One writes A = aH + bE1 + (z− q)E2 with b = z3 + qz2 + (t+ q2)z+ q(t+ q2) + θ+ 1
and B = BHH + B1E1 + B2E2 with B∗ = B∗,0 + B∗,1z + B∗,2z

2 for ∗ = H, 1, 2 and all
B∗,∗ functions of t. Using the notation ′ = d

dt and o = d
dz one obtains the equations

a′ =
o

BH + bB2 − (z − q)B1, b
′ =

o

B1 + 2aB1 − 2bBH , −q′ =
o

B2 − 2aB2 + 2(z − q)BH .

A straightforward computation yields q′ = a and a′ = q(t+ 2q2) + θ
2 + 1

2 . One concludes
that the function q = q(t) in the isomonodromic family satisfies the standard PII equation

q′′ = 2q3 + tq +
θ

2
+

1
2
.

We note that the differential equation in Theorems 1.5, 1.6, 1.7 can be obtained in
the same way. For an isomonodromic family z d

dz +
(

a b
z−q −a

)
with b = z2 + (t + q)z +

q−1(a2 − θ2

4 ), one obtains the equations q′ = 2a, a′ = q−1(a2 − θ2

4 ) + q(t+ 2q).

2.3. The monodromy space and M( θ2 ) for α 6= 1. The monodromy data are given
by the variables α, b1, . . . , b6 and the matrix equation(

α 0
0 α−1

)(
1 0
b1 1

)(
1 b2
0 1

)
· · ·
(

1 b6
0 1

)
=
(

1 0
0 1

)
.

Fix α 6= 1. There is no 1-dimensional subspace, invariant under all Stokes maps and
the formal monodromy. One has to divide by the action (by conjugation) of the group
Gm = {

(
λ 0
0 1

)
| λ ∈ C∗}. The result R(α) is a geometric quotient and as a consequence the

map S(α)→ R(α)× T is bijective.
Choose θ with eπiθ = α. Let M ∈ S(α) and consider the connection (W,∇) with

the local matrix operator z d
dz +

( z3+ t
2 z+

θ
2 0

0 −z3− t2 z−
θ
2

)
at ∞ and generic fiber M . Since the

monodromy data for M is irreducible, M is irreducible, too. Then W ∼= O(k) ⊕ O(−k)
with k ∈ {0, 1}. Let (V,∇) be the sub-connection corresponding to the local operator
z d
dz +

( w+ θ
2 0

0 −w− θ2−1

)
. Then V ∼= O⊕O(−1) and can be identified with Oe1 +O(−[∞])e2. It

follows that the mapM( θ2 )→ S(α) is bijective. Therefore the extended Riemann–Hilbert
map M( θ2 )→ R(α)× T is bijective. As in Section 1, one obtains:

Theorem 2.2. Suppose θ
2 6∈ Z. Then the PII equation in standard form q′′ = 2q3 +

qt+ θ
2 + 1

2 has the Painlevé property. The space M(θ/2) is the Okamoto–Painlevé space
associated to this PII equation.

2.4. The monodromy space and M( θ2 ) for α = 1. Now we consider S(1) ⊂ S con-
sisting of the modules with α = 1. The (naive) monodromy space R(1) is the categorical
quotient of the subspace of A6 with variables b1, . . . , b6 and equations given by(

1 0
b1 1

)(
1 b2
0 1

)
· · ·
(

1 b6
0 1

)
=
(

1 0
0 1

)
,



SECOND PAINLEVÉ EQUATION 257

divided out by the group Gm = {
(
λ 0
0 1

)
| λ ∈ C∗}, acting by conjugation. R(1) is the affine

cubic surface given by the equation x1x2x3−x1−x2−x3+2 = 0 (the Cayley surface). The
preimage of its unique singular point (x1, x2, x3) = (1, 1, 1) under the map S(1)→ R(1)
is the reducible locus of S(1) consisting of the reducible modules. In terms of the Stokes
matrices, this preimage consists of the tuples (b1, · · · , b6) such that b1 = b3 = b5 = 0 or
b2 = b4 = b6 = 0.

The map S(1)→ R(1)×T is surjective and not bijective since the categorical quotient
R(1) is not a geometric quotient. A refinement of the categorical quotient and of S(1) is
needed for the construction of moduli spaces of connections. We first study the reducible
locus of S(1).

Lemma 2.3. Let M ∈ S(1) be reducible. Then one of the following holds.

(1) M is a direct sum and has the form d
dz +

(w
z 0
0 −wz

)
(with w = z3 + t

2z)

(2) M has the form d
dz +

(w
z 0
c −wz

)
and c 6= 0 has degree ≤ 1 (the odd case)

(3) M has the form d
dz +

(w
z b
0 −wz

)
and b 6= 0 has degree ≤ 1 (the even case)

Moreover c and b are unique up to multiplication by a nonzero scalar.

Proof. Let N be a 1-dimensional submodule of M ∈ S(1). Then N has a singularity only
at ∞ and thus has the operator form d

dz + p, where p is a polynomial. The condition at
∞ implies that z d

dz + (zp± w) is trivial over C((z−1)). Thus p = ±(z2 + t
2 ).

We consider the following case, which we will call “the odd case”: For a certain basis
e1, e2 of M the operator ∂ has the form D := d

dz +
( w

z 0
c −wz

)
with c ∈ C(z). After a change

of variables e1 7→ e1 +he2, e2 7→ e2 and h ∈ C(z) one finds the same form with c replaced
by c̃ = c+ h′− 2wz h. One can choose h such that c̃ has in C at most poles of order 1. We
continue with c having at most poles of order 1. The equation D

(
y1
y2

)
= 0 has a basis of

solutions
( 0

e
z3
3 + tz2

)
and

(e− z33 − tz2
Fe

z3
3 + tz2

)
, where F satisfies the equation F ′ = −ce− 2

3 z
3−tz. Since

the above equation has two independent solutions on C, the function c has no poles of
order one and thus c ∈ C[z]. By the same transformation one finds a c ∈ C[z] of degree
≤ 1. Let us write Dc for this operator. The first possibility is c = 0. We will show the
following statement.

Suppose that c 6= 0 and that Dc and Dc̃, for some c̃ ∈ C[z] of degree ≤ 1, are equivalent.
Then c̃ = λc for some λ ∈ C∗.

Indeed, suppose that there is an A =
(
a1 a2
a3 a4

)
∈ GL(2,C(z)) such that ADc = Dc̃A.

Then one computes that a2 = 0, a1, a4 ∈ C∗ and a4c = a′3 − 2a3
w
z + a1c̃. Then a3 has

no poles. Since c and c̃ have degree ≤ 1 one finds that a3 = 0 and the statement follows.
This proves (2). The “even case” is similar.

The cases of Lemma 2.3 have the translation for the Stokes matrices:

(1) is equivalent to all bi = 0.
(2) is equivalent to b2 = b4 = b6 = 0 and at least one of the b1, b3, b5 is not 0.
(3) is equivalent to b1 = b3 = b5 = 0 and at least one of the b2, b4, b6 is not 0.
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The set S(1) is refined as follows: Case (1), the direct sum case, will be omitted.
Further Sirr(1) is the locus of the irreducible modules. Sodd(1) is the set of modules
which are either irreducible or are reducible of type (2) of Lemma 2.3. Finally, Seven(1) is
the set of modules which are either irreducible or are reducible of type (3) of Lemma 2.3.

The monodromy space is refined as follows: We omit the most singular case b1 = · · · =
b6 = 0. Let Rirr(1) consists of the data (b1, . . . , b6) (with the relations) such that at least
one of the b1, b3, b5 is non-zero and also at least one of the b2, b4, b6 is non-zero, divided by
the group Gm. This is a geometric quotient and thus Sirr(1)→ Rirr(1)× T is bijective.
Rodd(1) consists of the data (b1, . . . , b6) such that at least one of the b1, b3, b5 is

non-zero, divided by the group Gm. This is a geometric quotient and the map Sodd(1)→
Rodd(1)× T is bijective.
Reven(1) consists of the data (b1, . . . , b6) such that at least one of the b2, b4, b6 is non-

zero, divided by the group Gm. This is a geometric quotient and the map Seven(1) →
Reven(1)× T is bijective.

Proposition 2.4. Let m := θ
2 ∈ Z. The map M(m) → S(1), which associates to a

connection its generic fiber, is injective. This map induces:

(1) for m 6= 0,−1, a bijection M(m)→ Sirr(1);
(2) for m = 0, a bijection M(0)→ Sodd(1);
(3) for m = −1, a bijection M(−1)→ Seven(1).

Proof. The map is injective since a connection in M(m) is determined by M and the
invariant lattice at ∞. Any M ∈ Sirr(1) lies in the image ofM(m) for any m ∈ Z. Using
Lemma 2.3 and the explicit formulas for A(m)∗ and M(m) one verifies that:

(1) d
dz +

( w
z 0

0 −wz

)
does not lie in the image of any M(m).

(2) d
dz +

( w
z 0
c −wz

)
with c ∈ C[z], deg c ≤ 1, c 6= 0, lies in the image of M(0) and does not

lie in the image of M(m) with m 6= 0.
(3) d

dz +
( w
z b

0 −wz

)
with b ∈ C[z], deg b ≤ 1, b 6= 0, lies in the image of M(−1) and does

not lie in the image of M(m) with m 6= −1.

Proposition 2.4 and the bijections Sirr(1)→ Rirr(1)×T , Sodd(1)→ Rodd(1)×T and
Seven(1)→ Reven(1)× T , lead to analytic isomorphisms

• RH+ :M(m)→ Rirr(1)× T for m 6= 0,−1,
• RH+ :M(0)→ Rodd(1)× T for m = 0 and
• RH+ :M(−1)→ Reven(1)× T for m = −1.

As before, q : M(m) → P1 is defined by q = − c0c1 and the restriction of q to an
isomonodromic family inM(m) satisfies, according to the computation in §2.2, the equa-
tion q′′ = 2q3 + qt+m+ 1

2 . This leads to the following result.

Theorem 2.5. Let m := θ
2 ∈ Z. The equation q′′ = 2q3 + qt + m + 1

2 has the Painlevé
property. Moreover, M(m), provided with the projection t :M(m)→ T and the foliation
given by {(RH+)−1({r} × T )|r} coincides with the Okamoto–Painlevé space for this PII
equation.
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Remark on the Painlevé property. For the convenience of the reader we give the proof of
the Painlevé property for the equation q′′ = 2q3 +qt+ θ

2 + 1
2 . Let Q denote a meromorphic

solution of this equation in the neighbourhood of t0. After shifting t0 we may suppose
that Q is holomorphic on some open disk D := {t ∈ C| |t − t0| < ε}. We may suppose
that Q is not constant. Consider the map

f : t ∈ D 7→ d

dz
+
(

a b

z −Q(t) − a

)
,

b = z3 +Q(t)z2 + (t+Q(t)2)z +Q(t)(t+Q(t)2) + θ + 1

and a = Q′(t). The formula in §2.1 shows that this matrix differential operator is not a
direct sum. Thus f is an analytic map D → M( θ2 ). There is an analytic isomorphism
M( θ2 ) → R(α)∗ × T , where ∗ = irr for θ 6= 0,−1, ∗ = odd for θ = 0 and ∗ = even for
θ = −1. Since Q is a solution of PII, the formulas from §2.2 imply that the composed
map D →M( θ2 ) → R(α)∗ is constant. Hence Q extends to a meromorphic function on
T = C.

3. Special features of the family (−,−, 3)

Riccati solutions of PII. Let M(0)red ⊂ M(0) denote the subspace of the reducible
connections. By Lemma 2.3, the points ofM(0)red are represented by d

dz +
(−wz 0
c w

z

)
with

c = c1z + c0 6= 0 (unique up to multiplication by a scalar). Thus M(0)red ∼= P1 × T .
The reducible locus Rodd(1)red of Rodd(1) consists of the tuples (b1, b3, b5) 6= 0 with
b1 + b3 + b5 = 0 modulo the action of multiplication by C∗. This space is again a P1.
Moreover, we have an analytic isomorphism M(0)red → Rodd(1)red × T , which is (after
suitable identification) the identity map P1 × T → P1 × T .

Now we study the isomonodromic families inM(0)red. One can normalize such a fam-
ily as d

dz+
( −wz 0
z−q w

z

)
, where q is a function of t. This operator has to commute (see [vdP-Sa]

§4.1) with an operator of the form d
dt+

(
b1 0
b2 −b1

)
, where b1, b2 are polynomials in z and with

coefficients depending on t. An easy computation shows that b1 = −(z + q)/2, b2 = 1/2
and q2 − q′ + t/2 = 0. This is the Riccati equation associated to the linear equation
y′′ + t

2y = 0 (by the substitution q = −y
′

y ), which is essentially the Airy equation.
Let y1, y2 be two independent solutions of this equation (holomorphic on C). Then the
solutions q have the form { c1y

′
1+c2y

′
2

c1y1+c2y2
| (c1 : c2) ∈ P1}.

Using M(−1)red one obtains in a similar way the Riccati equation q2 + q′ + t
2 = 0

and the corresponding P1-family of Riccati solutions.

Bäcklund transformations. Let M(θ/2)irr be the subspace corresponding to S(eiπθ)irr.
For θ/2 6= 0,−1, one has M(θ/2)irr = M(θ/2) and for θ/2 = 0,−1 the complement of
this Zariski open subset will be denoted by M(0)red and M(−1)red.

The isomorphisms M(θ/2)irr → R(α)irr × T and M(1 + θ/2)irr → R(α)irr × T

(with α = eπiθ) induce an isomorphism of the algebraic varieties f(θ) : M(θ/2)irr →
M(1 + θ/2)irr. This morphism commutes with the Riemann-Hilbert map and thus f(θ)
maps isomonodromic families to isomonodromic families. In particular, f(θ) provides a
map from the solutions q of the equation q′′ = 2q3 + qt+ θ

2 + 1
2 to the solutions Q of the
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equation Q′′ = 2Q3 + Qt + 1 + θ
2 + 1

2 , given by the formula Q = −q − θ+2
2q2+2q′+t . The

inverse of f(θ) has a similar formula q 7→ −q − θ+2
2q2−2q′+t .

Now 2q2 ± 2q′ + t 6= 0 follows from the fact that we work with the irreducible locus
of the space M(θ/2) (see Riccati solutions of PII).

The map z 7→ −z, sends, according to the explicit family in §2.1, the points ofM(θ/2)
to the points of M(−1 − θ/2). This is an isomorphism commuting with the Riemann–
Hilbert map. The corresponding map from the solutions of q′′ = 2q3 + qt+ θ

2 + 1
2 to the

solutions of q′′ = 2q3 + qt− θ
2 −

1
2 , is the obvious one q 7→ −q. The two operations above

generate the Bäcklund transformations for PII, which is the affine Weyl group of type A1.

The algebraic solutions of PII in standard form q′′ = 2q3+tq+ θ
2 + 1

2 . Let q be an algebraic
solution of PII. At a suitable point t0 ∈ T = C, a branch of q is a local solution. Since
the Painlevé property holds, this local solution extends to all of T . Thus the Riemann
surface of q has at most one branch point and therefore q is rational. We conclude that
the algebraic solutions are rational.

For any pole t0 ∈ T of a rational solution q of PII, the local expansion of q is q =
c−1(t0)(t− t0)−1 + ∗+ ∗(t− t0) + · · · with c−1(t0)2 = 1.

If q 6= 0, then its expansion at ∞ has the form c−1t
−1 + ∗t−2 + · · · with c−1 6= 0

and θ
2 + 1

2 = −c−1. Now q =
∑
t0

c−1(t0)
t−t0 , where the sum is taken over some finite subset

of T = C and c−1(t0) ∈ {−1, 1} for all t0. It follows that c−1 =
∑
c−1(t0) ∈ Z and

θ
2 + 1

2 ∈ Z, θ
2 + 1

2 6= 0.
The remaining case q = 0 gives 0 as the only algebraic solution of PII with θ = −1. The

equation q′′ = 2q3 + tq corresponds toM(−1/2). By the above Bäcklund transformations
one finds a single rational solution forM(n− 1

2 ) and equation q′′ = 2q3 + tq+n for every
n ∈ Z.

New transcendental solutions. In [O3] the possible principal differential ideals of the
differential algebra C(t)[q, q1], given by t′ = 1, q′ = q1, q

′
1 = 2q3+tq+ θ

2 + 1
2 , are computed.

It suffices to consider ideals generated by a non-zero prime element F . Reconsidering this
computation one finds (slightly different from [O3]) as the only possibilities θ

2 = −1,
F = q1 + q2 + t/2 and θ

2 = 0, F = q1 − q2 − t/2. All other solutions of PII are ‘new’
transcendental functions.

4. Comparing (0,−, 3/2) and (−,−, 3). The well known comparison between the cor-
responding equations is as follows. Let q be a solution of the standard PII equation
q′′ = 2q3 + tq + θ

2 + 1
2 . Define p by q′ = p− q2 − t

2 . One finds p′ = 2pq + θ
2 + 1 and the

Flaschka–Newell equation p′′ =
(p′)2

2p
+ 2p2 − tp−

(1 + θ
2 )2

2p
.

If p 6= 0 is a solution of the Flaschka–Newell equation, then q = p′− θ2−1

2p is a solution of
the standard PII equation. For the special case θ

2 = −1, the Riccati solutions are mapped
to the rational solution p = 0.

There is a similar transformation to a Flaschka–Newell equation with p defined by
q′ = p+q2 + t

2 . Now p′ = −2pq+ θ
2 and p′′ = (p′)2

2p −2p2−pt− ( θ2 )2

2p . If p 6= 0 is a solution,



SECOND PAINLEVÉ EQUATION 261

then q = −p
′− θ2
2p is a solution of the standard equation PII. For the special case θ

2 = 0,
the Riccati solutions are mapped to the rational solution p = 0.

We note that the Bäcklund transformations for the Flaschka–Newell equation can be
derived form these for the standard PII.

At present we do not know the full geometric interpretation of the above transforma-
tion. A partial result is the following. Let the differential module M belong to the class
(0,−, 3/2) such that its topological monodromy at z = 0 is ±

(
1 0
0 1

)
(i.e., s = ±2). Then

N := C(u) ⊗M , where z = u2, belongs to the class (−,−, 3) with α = −1, or, in other
words, the formal monodromy at u =∞ is

(−1 0
0 −1

)
.

Indeed, the monodromy data for M (at z =∞) are given by the formal monodromy
and the three Stokes matrices(

0 − 1
1 0

)
,

(
1 0
b1 1

)
,

(
1 b2
0 1

)
,

(
1 0
b3 1

)
.

By assumption, their product is±
(

1 0
0 1

)
. A computation, using the classification of [vdP-Si]

§9.2, shows that the monodromy data for N at u =∞, given by the formal monodromy
and the six Stokes matrices, is(

−1 0
0 − 1

)
,

(
1 0
b1 1

)
,

(
1 b2
0 1

)
,

(
1 0
b3 1

)
,

(
1 − b1
0 1

)
,

(
1 0
−b2 1

)
,

(
1 − b3
0 1

)
and their product is

(
1 0
0 1

)
.

An isomonodromic family of connections for the case (0,−, 3/2) and s = ±2 yields (see
Thm 1.6 and Thm 1.7) a solution q for q′′ = (q′)2

2q +4q2+2tq− θ
2

2q with θ ∈ Z. The morphism
P1 → P1, corresponding to C(z) ⊂ C(u) with z = u2, induced an isomonodromic family
for (−,−, 3) with α = −1. This produces a solution q of q′′ = 2q3 + tq+ θ. This coincides
(after normalization) with the above transformation from the Flaschka–Newell form to
the standard form of PII.
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Boutroux coordinates, arXiv:1010.5563v I [math.CA] 27 Oct. 2010

[In] M. Inaba, Moduli of parabolic connections on a curve and Riemann-Hilbert corre-

spondence, arXiv:math/0602004.

[IIS1] M. Inaba, K. Iwasaki and M.-H. Saito, Moduli of stable parabolic connections, Rie-

mann–Hilbert correspondence and geometry of Painlevé equation of type VI. I, Publ.
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