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Abstract. The aim of the paper is to present results concerning the ρ-orthogonality and its
preservation (both accurate and approximate) by linear operators. We survey on the results
presented in [11] and [23], as well as give some new and more general ones.

1. Introduction. There is no unique way how to transfer the notion of orthogonality
from inner product spaces to normed spaces. Perhaps the most useful is the notion of
Birkhoff orthogonality; however many other can be used. One can also consider an ax-
iomatic definition of the orthogonality relation and the orthogonality space. Following
Rätz [21], a real linear space X with a binary relation ⊥ in X is called an orthogonality
space whenever

(i) x⊥0 and 0⊥x, x ∈ X;
(ii) if x, y ∈ X \ {0} and x⊥y, then x and y are linearly independent;
(iii) if x, y ∈ X and x⊥y, then αx⊥βy for all α, β ∈ R;
(iv) for any two-dimensional subspace P of X and for arbitrary x ∈ P , λ ∈ [0,∞), there

exists y ∈ P such that x⊥y and x+ y⊥λx− y.

One of the possible notions of orthogonality is connected with so called norm’s deriva-
tives. In papers [11] and [23] authors considered ρ and ρ±-orthogonalities as well as their
approximate counterparts. Some properties of those relations have been proved. The
classes of linear mappings which precisely or approximately preserve this kind of or-
thogonality were also considered in the above mentioned publications. Investigation on
such a class of linear mappings preserving orthogonality can be considered as a part of
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the theory of linear preservers. The present paper has an expository character in part;
however, many of the surveyed results will be essentially generalized.

Let (X, ‖ · ‖) be a normed space over K. If the norm is generated by an inner product
〈 · | · 〉, we consider the standard orthogonality relation: x⊥y ⇔ 〈x|y〉 = 0. In general case,
we may consider the definition introduced by Birkhoff [4] (cf. also James [16]):

x⊥By ⇐⇒ ∀λ ∈ K ‖x+ λy‖ ≥ ‖x‖.

The pair (X,⊥B) is an orthogonality space (cf. [1]).
Even if the norm in X does not come from an inner product there always exists (as

noticed by G. Lumer [18] and J. R. Giles [14], cf. also [13]) a mapping [ · | · ] : X×X → K
satisfying the properties:

• [λx+ µy|z] = λ [x|z] + µ [y|z] , x, y, z ∈ X, λ, µ ∈ K;
• [x|λy] = λ [x|y] , x, y ∈ X, λ ∈ K;
• | [x|y] | ≤ ‖x‖ ‖y‖, x, y ∈ X;
• [x|x] = ‖x‖2, x ∈ X.

Such a mapping is called a semi-inner product inX (generating the given norm ‖ · ‖ inX).
There may exist infinitely many different semi-inner products in X. Its uniqueness is
equivalent to the smoothness of the norm (which means that there is a unique supporting
hyperplane at each point of the unit sphere S or, equivalently, the norm is Gâteaux
differentiable on S—cf. [12, 13]). If X is an inner product space, the only semi-inner
product on X is the inner product itself.

The semi-orthogonality of vectors x and y in X (with respect to a given semi-inner
product) is defined as follows:

x⊥sy ⇐⇒ [y|x] = 0.

Of course, in an inner product space we have ⊥B = ⊥s = ⊥.

2. ρ-orthogonality. From now on we assume that the considered normed spaces are
real and their dimensions are not less than 2. We define norm derivatives:

ρ′±(x, y) := lim
t→0±

‖x+ ty‖2 − ‖x‖2

2t
= ‖x‖ lim

t→0±

‖x+ ty‖ − ‖x‖
t

, x, y ∈ X.

Convexity of the norm yields that the above definition is meaningful. The mappings ρ′+
and ρ′− are sometimes called the superior and inferior semi-inner products and their
following properties can be found, e.g., in [2, 3, 13].

• There is always ρ′− ≤ ρ′+;
• ρ′+ = ρ′− if and only if X is smooth;

• for all x, y ∈ X one has ρ′±(αx, y) = ρ′±(x, αy) =

{
αρ′±(x, y), α ≥ 0,

αρ′∓(x, y), α ≤ 0;
• in particular, for all x, y ∈ X one has ρ′±(−x, y) = ρ′±(x,−y) = −ρ′∓(x, y) and
ρ′±(x, 0) = ρ′±(0, y) = 0;

• the mappings ρ′± are continuous with respect to the second variable;
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• for all x, y ∈ X, α ∈ R:

ρ′±(x, αx+ y) = α‖x‖2 + ρ′±(x, y); (1)

• in particular, for all x ∈ X,
ρ′±(x, x) = ‖x‖2;

• for all x, y ∈ X
|ρ′±(x, y)| ≤ ‖x‖ ‖y‖;

• if [ · | · ] is a given semi-inner product in X, then

ρ′±(x, y) = lim
t→0±

[y|x+ ty] , x, y ∈ X,

and moreover, if X is smooth, then

ρ′±(x, y) = [y|x] , x, y ∈ X;

• if [ · | · ] is a given semi-inner product in X, then

ρ′−(x, y) ≤ [y|x] ≤ ρ′+(x, y), x, y ∈ X.

Let us define

ρ′(x, y) :=
1
2
(
ρ′+(x, y) + ρ′−(x, y)

)
, x, y ∈ X.

(The above functional ρ′ is also denoted by 〈y|x〉g and called anM -semi-inner product—
cf. Miličić [19] and also [13].) As a consequence of (1) we have

ρ′(x, αx+ y) = α‖x‖2 + ρ′(x, y), x, y ∈ X,

and, in particular,
ρ′(x, x) = ‖x‖2, x ∈ X.

We have also
|ρ′(x, y)| ≤ ‖x‖ ‖y‖, x, y ∈ X.

Moreover, ρ′ is continuous with respect to the second variable. A normed space X is
called semi-smooth if ρ′ is additive with respect to the second variable, i.e.,

ρ′(z, x+ y) = ρ′(z, x) + ρ′(z, y), x, y, z ∈ X.

Each smooth space is semi-smooth in the above sense but not conversely (l1 can serve
as an example). If X is a real semi-smooth space, then 〈 · |�〉g = ρ′(�, · ) is a semi-inner
product in the sense of Lumer–Giles.

Now we define orthogonality relations related to ρ′± (cf. [1, 2, 19]):

x⊥ρ+
y ⇐⇒ ρ′+(x, y) = 0;

x⊥ρ−y ⇐⇒ ρ′−(x, y) = 0;

x⊥ρy ⇐⇒ ρ′(x, y) = 0.

It is obvious that for a real inner product space all the above relations coincide with
the standard orthogonality given by the inner product, i.e., ⊥ρ = ⊥ρ+

= ⊥ρ− = ⊥. It is
proved in [1] that (X,⊥ρ) is an orthogonality space in the sense of Rätz.

The relations ⊥ρ+
, ⊥ρ− and ⊥ρ are generally (unless X is smooth) incomparable.
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Theorem 2.1. In a real normed space X the following conditions are equivalent :
(a) ⊥ρ+

⊂ ⊥ρ− (b) ⊥ρ+
⊃ ⊥ρ− (c) ⊥ρ+

= ⊥ρ−

(d) ⊥ρ+
⊂ ⊥ρ (e) ⊥ρ+

⊃ ⊥ρ (f) ⊥ρ+
= ⊥ρ

(g) ⊥ρ− ⊂ ⊥ρ (h) ⊥ρ− ⊃ ⊥ρ (i) ⊥ρ− = ⊥ρ

(j) ρ′+ = ρ′− (k) X is smooth.

This result was proved in [11, Theorem 1] and its generalization will be given in the
subsequent section (Theorem 3.3).

In a real normed space X we have for arbitrary x, y ∈ X and α ∈ R (cf. [16, 3, 13]):

x⊥B(y − αx) ⇐⇒ ρ′−(x, y) ≤ α‖x‖2 ≤ ρ′+(x, y). (2)

In particular, we have for arbitrary x, y ∈ X:

x⊥By ⇐⇒ ρ′−(x, y) ≤ 0 ≤ ρ′+(x, y). (3)

In the next section we will generalize the above result (Theorem 3.1). It yields ⊥ρ ⊂ ⊥B

and, if X is smooth, then ⊥ρ = ⊥B. The next result (cf. [11, Theorem 2]) establishes the
connection between ⊥ρ and ⊥s.

Theorem 2.2. Let X be a real normed space and let [ · | · ] be a given semi-inner product
in X. Then the following conditions are equivalent :

(a) ⊥ρ ⊂ ⊥s (b) ⊥ρ ⊃ ⊥s (c) ⊥ρ = ⊥s

(d) ρ′(x, y) = [y|x], x, y ∈ X.

We will extend also this result in the next section (Theorem 3.5). Condition (d)
yields that ρ′ is additive with respect to the second variable, thus each of the (equiva-
lent) conditions (a)–(d) implies semi-smoothness of X. For a non-semi-smooth norm, the
orthogonalities ⊥ρ and ⊥s are incomparable.

3. Approximate ρ-orthogonality. In an inner product space an approximate orthog-
onality (ε-orthogonality, with ε ∈ [0, 1)) of vectors x and y is naturally defined by:

x⊥ε y ⇐⇒ | 〈x|y〉 | ≤ ε‖x‖ ‖y‖.
In a normed space with a given semi-inner product [ · | · ] one can define analogously:

x⊥εsy ⇐⇒ | [y|x] | ≤ ε‖x‖ ‖y‖.
For an approximate Birkhoff orthogonality, we will follow the definition from [6]:

x⊥εBy ⇐⇒ ∀λ ∈ K ‖x+ λy‖2 ≥ ‖x‖2 − 2ε‖x‖‖λy‖.
The notions of an approximate ρ±- and ρ-orthogonality were defined in [11] as follows.

x⊥ερ+
y ⇐⇒ |ρ′+(x, y)| ≤ ε‖x‖ ‖y‖;

x⊥ερ−y ⇐⇒ |ρ′−(x, y)| ≤ ε‖x‖ ‖y‖;
x⊥ερy ⇐⇒ |ρ′(x, y)| ≤ ε‖x‖ ‖y‖.

It is easy to see that x⊥ερ+
y ⇒ −x⊥ερ−y and x⊥ερ−y ⇒ −x⊥

ε
ρ+
y. Moreover, if x⊥ερ+

y

and x⊥ερ−y, then x⊥
ε
ρy. Obviously, if the norm in X comes from an inner product, then

⊥ερ+
= ⊥ερ− = ⊥ερ = ⊥ε and for ε = 0 all the above approximate orthogonalities coincide

with the related exact orthogonalities.
Now, we generalize (2) and (3).
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Theorem 3.1. Let X be a real normed space and let ε ∈ [0, 1). Then, for arbitrary
x, y ∈ X and α ∈ R we have

x⊥εB(y − αx) ⇐⇒ ρ′−(x, y)− ε‖x‖ ‖y − αx‖ ≤ α‖x‖2 ≤ ρ′+(x, y) + ε‖x‖ ‖y − αx‖.
In particular, we have for x, y ∈ X:

x⊥εBy ⇐⇒ ρ′−(x, y)− ε‖x‖ ‖y‖ ≤ 0 ≤ ρ′+(x, y) + ε‖x‖ ‖y‖. (4)

Obviously, with ε = 0 one gets (2) and (3).

Proof. Assume x⊥εB(y − αx). Then, from the definition of ⊥εB, for λ > 0 we have

−ε‖x‖ ‖y − αx‖ ≤ ‖x+ λ(y − αx)‖2 − ‖x‖2

2λ
.

Letting λ→ 0+ one gets −ε‖x‖ ‖y − αx‖ ≤ ρ′+(x, y − αx) = ρ′+(x, y)− α‖x‖2. Similarly,
for λ < 0 one gets ρ′−(x, y)− α‖x‖2 ≤ ε‖x‖ ‖y − αx‖.

Now we prove the converse. For x = 0 or y = 0 it is obvious, so assume that x 6= 0 6= y.
From the inequality ρ′−(x, y)−α‖x‖2 ≤ ε‖x‖ ‖y−αx‖ we get ρ′−(x, y−αx) ≤ ε‖x‖ ‖y−αx‖
and

2 lim
t→0−

‖x+ t(y − αx)‖2 − ‖x‖2

2t
≤ 2ε‖x‖‖y − αx‖.

Fix γ ∈ (0, 1) to obtain

lim
t→0−

‖x+ t(y − αx)‖2 − ‖x‖2

t
< 2(ε+ γ)‖x‖‖y − αx‖.

There exists δ1 < 0 such that

∀ t ∈ [δ1, 0)
‖x+ t(y − αx)‖2 − ‖x‖2

t
< 2(ε+ γ)‖x‖‖y − αx‖,

whence

∀ t ∈ [δ1, 0) ‖x‖2 < ‖x+ t(y − αx)‖2 + 2(ε+ γ)‖x‖‖t(y − αx)‖. (5)

From the inequality −ε‖x‖ ‖y − αx‖ ≤ ρ′+(x, y)− α‖x‖2 = ρ′+(x, y − αx) we get

−2ε‖x‖‖y − αx‖ ≤ 2 lim
t→0+

‖x+ t(y − αx)‖2 − ‖x‖2

2t
.

For the same γ as above we have

−2(ε+ γ)‖x‖‖y − αx‖ < lim
t→0+

‖x+ t(y − αx)‖2 − ‖x‖2

t
,

whence there exists δ2 > 0 such that

∀ t ∈ (0, δ2] − 2(ε+ γ)‖x‖‖y − αx‖ < ‖x+ t(y − αx)‖2 − ‖x‖2

t
and equivalently

∀ t ∈ (0, δ2] ‖x‖2 < ‖x+ t(y − αx)‖2 + 2(ε+ γ)‖x‖‖t(y − αx)‖. (6)

Define ϕ : R→ R by ϕ(t) := ‖x+ t(y−αx)‖2 +2(ε+γ)‖x‖‖t(y−αx)‖. The mapping
ϕ is convex. To see this define f : R→ R by f(t) := ‖x+ t(y−αx)‖ and g : [0,+∞)→ R
by g(t) := t2. Let h : R → R be defined by h(t) := 2(ε + γ)‖x‖‖t(y − αx)‖. Each of
the functions f, g, h is convex and g is also nondecreasing. Thus g ◦ f is convex. Since
ϕ(t) = (g ◦ f)(t) + h(t), and the sum of two convex mappings is convex, we get that ϕ is
convex.
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Inequalities (5) and (6) yield ϕ(0) = min{ϕ(t) : t ∈ [δ1, δ2]}. Since ϕ is convex on R,
we have ϕ(0) = min{ϕ(t) : t ∈ R}. Thus

‖x‖2 < ‖x+ t(y − αx)‖2 + 2(ε+ γ)‖x‖‖t(y − αx)‖, t ∈ R \ {0}. (7)

Fix an arbitrary λ 6= 0. From (7) we get

‖x‖2 < ‖x+ λ(y − αx)‖2 + 2(ε+ γ)‖x‖‖λ(y − αx)‖. (8)

Since γ was arbitrarily chosen from the interval (0, 1), letting γ → 0+ in (8) we obtain

‖x‖2 ≤ ‖x+ λ(y − αx)‖2 + 2ε‖x‖‖λ(y − αx)‖. (9)

Obviously, (9) holds also for λ = 0, thus finally we get x⊥εB(y − αx).

Theorem 3.2. For an arbitrary real normed space X and ε ∈ [0, 1) we have

⊥ερ+
⊂ ⊥εB; (10)

⊥ερ− ⊂ ⊥
ε
B; (11)

⊥ερ ⊂ ⊥εB; (12)

⊥εs ⊂ ⊥εB. (13)

Moreover, if the norm is smooth, then

⊥ερ = ⊥εs = ⊥εB. (14)

Proof. To prove (10) suppose x⊥ερ+
y. Using inequalities −ε‖x‖ ‖y‖ ≤ ρ′+(x, y) ≤ ε‖x‖ ‖y‖

and ρ′− ≤ ρ′+, we get ρ′−(x, y) ≤ ε‖x‖ ‖y‖ and −ε‖x‖ ‖y‖ ≤ ρ′+(x, y). Then (4) yields
x⊥εBy. Similarly one proves (11).

Inclusion (12) has been proved in [11, Theorem 3]; however, Theorem 3.1 enables us
to present much simpler proof. Let x⊥ερy. From the inequalities

−ε‖x‖ ‖y‖ ≤ 1
2

(ρ′−(x, y) + ρ′+(x, y)) ≤ ε‖x‖ ‖y‖ and ρ′− ≤ ρ′+
we get

1
2

(ρ′−(x, y) + ρ′−(x, y)) ≤ ε‖x‖ ‖y‖ and − ε‖x‖ ‖y‖ ≤ 1
2

(ρ′+(x, y) + ρ′+(x, y)).

An appeal to (4) verifies x⊥εBy.
Inclusion (13) has been proved in [6] whereas (14) in [6] and [11].

Generally, equalities (14) need not to hold—examples are provided in [6, Example
3.1] and [11, Example 5].

It is known (cf. [2, 13]) that the equality ⊥ρ = ⊥B yields the smoothness of the norm.
In [11] the authors asked whether the smoothness of X resulted also from ⊥ερ = ⊥εB with
some ε ∈ (0, 1). We will answer this question in Theorem 3.4. But first we need to prove
the following generalization of Theorem 2.1.

Theorem 3.3. Let X be a real normed space and let ε ∈ [0, 1). Then the following
conditions are equivalent :

(a) ⊥ερ+
⊂ ⊥ερ− (b) ⊥ερ+

⊃ ⊥ερ− (c) ⊥ερ+
= ⊥ερ−

(d) ⊥ερ+
⊂ ⊥ερ (e) ⊥ερ+

⊃ ⊥ερ (f) ⊥ερ+
= ⊥ερ

(g) ⊥ερ− ⊂ ⊥
ε
ρ (h) ⊥ερ− ⊃ ⊥

ε
ρ (i) ⊥ερ− = ⊥ερ

(j) ρ′+ = ρ′− (k) X is smooth.
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Obviously, taking ε = 0 we get Theorem 2.1 as a particular case.

Proof. We start with proving (a)⇒(k). Let [ · | · ]1 , [ · | · ]2 : X×X → R be two semi-inner
products in X. Fix x ∈ X such that ‖x‖ = 1 and choose B ⊂ X such that {x}∪B forms
a Hamel basis of X. Without loss of generality, we assume that ‖b‖ = 1 for all b ∈ B.

Now, fix b ∈ B. Suppose that ρ′+(x, b) > −ε. Then we define a mapping ϕ : [0, 1]→ R
by ϕ(t) := ρ′+

(
x, t(−x)+(1−t)b
‖t(−x)+(1−t)b‖

)
. Since ϕ is continuous, ϕ(0) = ρ′+ (x, b) > −ε and

ϕ(1) = −1, it follows that there exists t0 ∈ (0, 1) such that ϕ(t0) = −ε.
Since ϕ(t0) = −ε, defining α := t0

‖t0(−x)+(1−t0)b‖ , β := (1−t0)
‖t0(−x)+(1−t0)b‖ and y :=

α(−x) + βb we get ‖y‖ = 1 and ρ′+(x, y) = −ε, thus x⊥ερ+
y.

(In case ρ′+(x, b) < −ε, we define ψ : [0, 1] → R by ψ(t) := ρ′+
(
x, tx+(1−t)b
‖tx+(1−t)b‖

)
and

show that with some t0 ∈ (0, 1), ψ(t0) = −ε. Then we define α := t0
‖t0x+(1−t0)b‖ , β :=

(1−t0)
‖t0x+(1−t0)b‖ and y := αx + βb to obtain x⊥ερ+

y. In case ρ′+(x, b) = −ε we may take
t0 := 0 and y := b.)

Using (a), we get x⊥ερ−y, which means −ε ≤ ρ′−(x, y) ≤ ε. These inequalities, together
with ρ′− ≤ ρ′+, yield ρ′−(x, y) = −ε.

Define now x∗1, x
∗
2 ∈ X∗, by x∗1( · ) := [ · |x]1, x∗2( · ) := [ · |x]2. For an arbitrary semi-

inner product we have ρ′−( · , �) ≤ [�| · ] ≤ ρ′+( · , �), thus [y|x]1 = [y|x]2, because of
ρ′−(x, y) = ρ′+(x, y). Hence x∗1(y) = x∗2(y), i.e., x∗1(α(−x) + βb) = x∗2(α(−x) + βb). Since
α, β > 0 and x∗1(−x) = −1 = x∗2(−x), there is x∗1(b) = x∗2(b). We have shown that x∗1 and
x∗2 coincides on the basis, thus they are equal: x∗1 = x∗2. That means [ · |x]1 = [ · |x]2. Since
x was arbitrarily chosen from the unit sphere, [u|v]1 =

[
u
∣∣ v
‖v‖
]
1
‖v‖ =

[
u
∣∣ v
‖v‖
]
2
‖v‖ =

[u|v]2, i.e., [ · | · ]1 = [ · | · ]2. We have proved that each two semi-inner products are equal,
i.e., there is only one semi-inner product on X. Thus X is smooth.

The proof of (b)⇒(k) runs similarly and we may consider (a)⇔(b)⇔(c)⇔(j)⇔(k) as
shown (some of the implications are trivial).

Implication (d)⇒(k) can be shown similarly. In the first part of the above proof
one should consider ρ′ instead of ρ′−. Then one applies inequality ρ′ ≤ ρ′+ instead of
ρ′− ≤ ρ′+. On showing ρ′(x, y) = −ε = ρ′+(x, y), one derives ρ′−(x, y) = −ε = ρ′+(x, y),
since ρ′(x, y) = 1

2

(
ρ′−(x, y) + ρ′+(x, y)

)
. The second part is the same. Thus we get

(d)⇔(e)⇔(f)⇔(j)⇔(k) and similarly (g)⇔(h)⇔(i)⇔(j)⇔(k).

Now, we can answer the question from [11] and give a sufficient condition for the
smoothness of the space X.

Theorem 3.4. Let X be a real normed space and let ε ∈ [0, 1). If ⊥εB ⊂ ⊥ερ+
or ⊥εB ⊂ ⊥ερ−

or ⊥εB ⊂ ⊥ερ, then X is smooth.

Proof. Since the proofs are similar we present only one. Assume that ⊥εB ⊂ ⊥ερ. From
Theorem 3.2 we have ⊥ερ+

⊂ ⊥εB. Thus ⊥ερ+
⊂ ⊥ερ and it follows from Theorem 3.3

((d)⇔(k)) that X is smooth.

Now, we are ready to present a generalization of Theorem 2.2.



24 J. CHMIELIŃSKI AND P. WÓJCIK

Theorem 3.5. Let X be a real normed space and let [ · | · ] be a fixed semi-inner product
in X. Then the following conditions are equivalent :

(a) ⊥ερ ⊂ ⊥εs (b) ⊥ερ ⊃ ⊥εs (c) ⊥ερ = ⊥εs
(d) ρ′(x, y) = [y|x] , x, y ∈ X.

Moreover, each of the above conditions yields semi-smoothness of X.

Proof. For the proof of (a)⇒(d) fix arbitrarily two linearly independent vectors x, y ∈ X
such that ‖x‖ = ‖y‖ = 1. In a similar way as in the proof of Theorem 3.3 we obtain a
vector z ∈ lin {x, y} such that ‖z‖ = 1 and ρ′(x, z) = −ε (hence x and z are linearly
independent). Now, we define mappings µ, γ : [0, 1]→ R as follows:

µ(t) := ρ′
(
x,

(1− t)z + tx

‖(1− t)z + tx‖

)
; γ(t) :=

[
(1− t)z + tx

‖(1− t)z + tx‖

∣∣∣∣x].
Both mappings are continuous. Moreover, µ(0) = −ε and µ(1) = 1, whence there exists
t1 ∈ (0, 1) such that µ(t1) = ε. Since we assume ⊥ερ ⊂ ⊥εs, we have

µ(0) ≤ γ(0) and µ(t1) ≥ γ(t1).
Using the Darboux property again we get for some t0 ∈ [0, t1]: µ(t0) = γ(t0). Thus for
the vector

w :=
(1− t0)z + t0x

‖(1− t0)z + t0x‖
we have ρ′(x,w) = [w|x]. Notice that w ∈ lin{x, y}, w 6= x, w 6= −x and ‖w‖ = 1. Thus
x,w are linearly independent, whence for some α, β ∈ R we have y = αx+ βw. Applying
properties of functionals ρ′ and [ · | · ] we get

ρ′(x, y) = ρ′(x, αx+ βw) = αρ′(x, x) + βρ′(x,w) = α [x|x] + β [w|x]
= [αx+ βw|x] = [y|x] .

We have shown that functionals ρ′ and [ · | · ] are equal on unit, linearly independent
vectors x, y. Now, let x, y be arbitrary vectors. If y = αx, then ρ′(x, y) = α‖x‖2 = [y|x].
Suppose that x, y are linearly independent. Then we have

ρ′(x, y) = ‖x‖ ‖y‖ρ′
( x

‖x‖
,
y

‖y‖

)
= ‖x‖ ‖y‖

[
y

‖y‖

∣∣∣∣ x‖x‖
]

= [y|x] .

Hence ρ′ = [ · | · ]. In a similar way one can prove (b)⇒(d). The rest is clear.

Remark 3.6. The semi-smoothness implies none of the conditions (a)–(d). To see this
consider a semi-smooth but not smooth space X. Then one can find two different semi-
inner products. Thus at least one of them differs from ρ′.

4. Orthogonality preserving mappings. It is not difficult to prove that a linear
mapping f : X → Y between inner product spaces which preserves orthogonality (x⊥y ⇒
fx⊥fy for all x, y ∈ X) has to be a similarity (scalar multiple of an isometry); cf. e.g. [7].
It is much harder to see that the same is true for linear mappings between normed spaces,
preserving the Birkhoff orthogonality, i.e., satisfying

x⊥By =⇒ fx⊥Bfy, x, y ∈ X.
For real spaces it has been proved by Koldobsky [17]; a proof including both real and
complex spaces has been given by Blanco & Turnšek [5]. The same assertion can be also
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derived for linear mappings preserving a semi-orthogonality, i.e., satisfying

x⊥sy =⇒ fx⊥sfy, x, y ∈ X
with respect to some semi-inner product in X (cf. [5, Remark 3.2]).

4.1. ρ-orthogonality preserving mappings. Let us consider now linear mappings
f : X → Y (between normed spaces X and Y ) that preserve the ρ(ρ±)-orthogonalities:

x⊥ρ+
y =⇒ fx⊥ρ+

fy, x, y ∈ X;

x⊥ρ−y =⇒ fx⊥ρ−fy, x, y ∈ X;

x⊥ρy =⇒ fx⊥ρfy, x, y ∈ X.
The following characterization of ρ±-orthogonality preserving mappings is in our disposal.

Theorem 4.1. Let X,Y be real normed spaces, f : X → Y a nonzero, linear mapping.
Then, the following conditions are equivalent :

(a) f preserves ρ+-orthogonality;
(b) f preserves ρ−-orthogonality;
(c) f preserves ρ-orthogonality;
(d) ‖fx‖ = ‖f‖ ‖x‖, x ∈ X;
(e) ρ′+(fx, fy) = ‖f‖2 ρ′+(x, y), x, y ∈ X;
(f) ρ′−(fx, fy) = ‖f‖2 ρ′−(x, y), x, y ∈ X;
(g) ρ′(fx, fy) = ‖f‖2 ρ′(x, y), x, y ∈ X.

The proof of this result was given in [11] and [23]. In [11, Theorem 5] the authors
proved that (a), (b), (d), (e), (f), (g) are mutually equivalent and each of them implies (c).
The lacking link was given in [23, Theorems 4.2, 4.3]. Thus in particular, linear mappings
preserving ρ+, ρ−, ρ-orthogonality are similarities.

4.2. Equivalent norms and ρ-orthogonal sets. Now, we are going to present some
new applications of the above theorem, which generalize some results from [2].

For the whole present subsection we assume that X is a real linear space endowed
with two norms ‖ · ‖1, ‖ · ‖2, which generate respective functionals (ρ′±)1,2. We will
consider only functionals (ρ′+)1,2 and to shorten the notation we will write ρ1 := (ρ′+)1
and ρ2 := (ρ′+)2. Following [2, Definition 2.4.1], we say that functionals ρ1 and ρ2 are
equivalent if there exist constants 0 < A ≤ B such that

A |ρ1(x, y)| ≤ |ρ2(x, y)| ≤ B |ρ1(x, y)|, x, y ∈ X. (15)

The above defined equivalency can be characterized as follows (cf. [2, Theorem 2.4.2]).

Theorem 4.2. The functionals ρ1 and ρ2 are equivalent if and only if the norms ‖ · ‖1
and ‖ · ‖2 are equivalent and

ρ1(x, y)
‖x‖21

=
ρ2(x, y)
‖x‖22

, x, y ∈ X, x 6= 0.

In two theorems below, we generalize the above result. The “only if” part of Theorem
4.2 can be strengthen as follows.

Theorem 4.3. If there exists a constant B > 0 such that

|ρ2(x, y)| ≤ B |ρ1(x, y)|, x, y ∈ X, (16)
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then there exists γ > 0 such that

‖x‖2 = γ‖x‖1 and ρ2(x, y) = γ2ρ1(x, y), x, y ∈ X.

Proof. Define a linear mapping h : (X, ‖ · ‖1) → (X, ‖ · ‖2) by h(x) := x. It follows
from (16) that h preserves ρ+-orthogonality. According to Theorem 4.1, h is a similarity.
Now it is enough to take γ := ‖h‖ to obtain the assertion.

The “if” part of Theorem 4.2 can also be generalized.

Theorem 4.4. If
ρ1(x, y)
‖x‖21

=
ρ2(x, y)
‖x‖22

, x, y ∈ X, x 6= 0, (17)

then the norms ‖ · ‖1 and ‖ · ‖2 are equivalent, the functionals ρ1, ρ2 are equivalent and
there exists γ > 0 such that

‖x‖2 = γ‖x‖1 and ρ2(x, y) = γ2ρ1(x, y), x, y ∈ X.

Proof. Define linear mapping h : (X, ‖ · ‖1) → (X, ‖ · ‖2) by h(x) := x. It follows
from (17) that h preserves ρ+-orthogonality, whence (applying again Theorem 4.1) h is
a similarity. Now the assertion follows with γ := ‖h‖.

Bearing in mind the above proofs, we notice that the inequalities in (15) cannot be
sharp. Indeed, repeating the above reasonings and applying Theorem 4.1, one gets:

Theorem 4.5. The following conditions are equivalent :

(i) ρ1(x,y)
‖x‖21

= ρ2(x,y)
‖x‖22

, x, y ∈ X, x 6= 0;
(ii) there exist A,B > 0 such that A |ρ1(x, y)| ≤ |ρ2(x, y)| ≤ B |ρ1(x, y)|, x, y ∈ X;
(iii) there exists B > 0 such that |ρ2(x, y)| ≤ B |ρ1(x, y)|, x, y ∈ X;
(iv) there exists A > 0 such that A |ρ1(x, y)| ≤ |ρ2(x, y)|, x, y ∈ X;
(v) there exist A,B ∈ R such that Aρ1(x, y) ≤ ρ2(x, y) ≤ B ρ1(x, y), x, y ∈ X;
(vi) there exists B > 0 such that ρ2(x, y) = B ρ1(x, y), x, y ∈ X;
(vii) there exists B > 0 such that |ρ2(x, y)| = B |ρ1(x, y)|, x, y ∈ X;
(viii) there exists γ > 0 such that ‖x‖2 = γ ‖x‖1, x, y ∈ X.

In particular, from implication (ii)⇒(vi) we derive the following result.

Corollary 4.6. If there exist 0 < A ≤ B such that

A |ρ1(x, y)| ≤ |ρ2(x, y)| ≤ B |ρ1(x, y)|, x, y ∈ X,
then there exists η ∈ [A,B] such that

ρ2(x, y) = η ρ1(x, y), x, y ∈ X.

Equivalency (ii)⇔(viii) can be interpreted as follows.

Corollary 4.7. Functionals ρ1 and ρ2 are equivalent if and only if the spaces (X, ‖ · ‖1)
and (X, ‖ · ‖2) are isometrically isomorphic.

Let us adopt the notion of B and ρ+-orthogonal sets from [2, pp. 39–40]:

[x]B‖ · ‖ := {y ∈ X : x⊥By} , [x]ρ+‖ · ‖ :=
{
y ∈ X : x⊥ρ+

y
}
.

Theorems 2.5.1 and 2.5.2 from [2] can be extended.
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Theorem 4.8. Each of the conditions (i)–(viii) from Theorem 4.5 is equivalent to each
of the two below:

(A) [x]B‖ · ‖1 = [x]B‖ · ‖2 for all x ∈ X;
(B) [x]ρ+‖ · ‖1 = [x]ρ+‖ · ‖2 for all x ∈ X.

Proof. It is visible that (viii) implies both (A) and (B). Define h : (X, ‖ · ‖1)→ (X, ‖ · ‖2)
by h(x) = x. Assuming (A) we get that h preserves Birkhoff orthogonality, thus it is
a similarity (theorems of Koldobsky [17] and Blanco–Turnšek [5]), i.e., (viii) is true.
Assuming (B) in turn, h preserves ρ+-orthogonality and (viii) follows from Theorem 4.1.

4.3. Another characterization of smooth spaces. A mapping f : X → Y between
two normed spaces X and Y changes orthogonality, if it satisfies one of the following
conditions (for all x, y ∈ X):

x⊥ρ+
y =⇒ fx⊥ρ−fy;

x⊥ρ−y =⇒ fx⊥ρ+
fy;

x⊥ρ+
y =⇒ fx⊥ρfy;

x⊥ρy =⇒ fx⊥ρ+
fy;

x⊥ρ−y =⇒ fx⊥ρfy;

x⊥ρy =⇒ fx⊥ρ−fy.

Let us quote a result from [23, Theorem 5.1].

Theorem 4.9. A real normed space X is smooth if and only if there exists a normed space
Y and a nonvanishing linear mapping f : X → Y , such that f changes orthogonality.

It follows that there is no mapping which essentially changes the orthogonality. If f
changes orthogonality, then X is smooth, so ⊥ρ = ⊥ρ+

= ⊥ρ− . Thus, in fact, f preserves
ρ-orthogonality.

5. Approximately orthogonality preserving mappings. The class of linear map-
pings preserving orthogonality can be enlarged by admitting those mappings which only
approximately preserve this relation. For inner product spaces X,Y one can consider
linear mappings f : X → Y satisfying, for all x, y ∈ X,

x⊥y =⇒ fx⊥ε fy.
For X,Y being normed spaces one can consider the condition

x⊥By =⇒ fx⊥εBfy. (18)

Similar classes of mappings can be considered for other orthogonality relations. The
natural problems are: to describe such a class of approximately orthogonality preserving
mappings (how far are they from similarities?) and to answer the stability question. By
the latter we mean whether each approximately orthogonality preserving mapping has to
be approximated by an orthogonality preserving one.

Investigations in this topic were carried out in inner product spaces [7, 8, 22], Hilbert
C∗-modules [15] and in normed spaces with isosceles orthogonality [10] and Birkhoff
orthogonality [20]. The respective results are extensively surveyed in [9].
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As for ρ-orthogonality, one can consider the classes of linear mappings f : X → Y

satisfying one of the following conditions (for all x, y ∈ X):

x⊥ρy =⇒ fx⊥ερfy;
x⊥ρ+

y =⇒ fx⊥ερ+
fy; (19)

x⊥ρ−y =⇒ fx⊥ερ−fy. (20)

The latter two are equivalent. Indeed, suppose that f approximately preserves ρ+-ortho-
gonality and let x⊥ρ−y. Thus −x⊥ρ+

y, hence

−fx⊥ερ+
fy

and finally
fx⊥ερ−fy,

i.e., f approximately preserves ρ−-orthogonality. The proof of the reverse is the same.
We will prove that any linear mapping which approximately preserves ρ+ (or ρ−)

orthogonality, also approximately preserves Birkhoff orthogonality.

Theorem 5.1. Let X,Y be real normed spaces and let f : X → Y be linear and satisfy
(19) or (20). Then f satisfies (18).

Proof. Assuming (19) or (20) we have both of them. Fix x, y ∈ X \ {0} and notice that,
due to (1), we have

x⊥ρ±

(
−
ρ′±(x, y)
‖x‖2

x+ y
)
.

Therefore

fx⊥ερ±
(
−
ρ′±(x, y)
‖x‖2

fx+ fy
)
,

and hence ∣∣∣∣ρ′±(fx, −ρ′±(x, y)
‖x‖2

fx+ fy
)∣∣∣∣ ≤ ε ‖fx‖ ∥∥∥−ρ′±(x, y)

‖x‖2
fx+ fy

∥∥∥
≤ ε ‖fx‖

( |ρ′±(x, y)|
‖x‖2

‖fx‖+ ‖fy‖
)

= ε ‖fx‖ ‖fy‖+ ε
‖fx‖2

‖x‖2
|ρ′±(x, y)|.

Thus we have∣∣∣∣ρ′±(fx, fy)− ‖fx‖
2

‖x‖2
ρ′±(x, y)

∣∣∣∣ ≤ ε ‖fx‖ ‖fy‖+ ε
‖fx‖2

‖x‖2
|ρ′±(x, y)|.

It follows from the above inequality that
‖fx‖2

‖x‖2
ρ′+(x, y)− ε ‖fx‖

2

‖x‖2
|ρ′+(x, y)| − ε ‖fx‖ ‖fy‖ ≤ ρ′+(fx, fy) (21)

and

ρ′−(fx, fy) ≤ ε ‖fx‖ ‖fy‖+ ε
‖fx‖2

‖x‖2
|ρ′−(x, y)|+ ‖fx‖

2

‖x‖2
ρ′−(x, y), (22)

for all x, y ∈ X \ {0}.
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Now, fix u,w ∈ X \ {0} and assume that u⊥Bw. By (3) we have

ρ′−(u,w) ≤ 0 ≤ ρ′+(u,w)

and consequently |ρ′−(u,w)| = −ρ′−(u,w) and |ρ′+(u,w)| = ρ′+(u,w). From (21) we have

(1− ε) ‖fu‖
2

‖u‖2
ρ′+(u,w)− ε‖fu‖ ‖fw‖ ≤ ρ′+(fu, fw).

Similarly, using (22) one gets

ρ′−(fu, fw) ≤ ε‖fu‖ ‖fw‖+ (1− ε) ‖fu‖
2

‖u‖2
ρ′−(u,w).

Finally, we obtain

ρ′−(fu, fw) ≤ ε‖fu‖ ‖fw‖ and − ε‖fu‖ ‖fw‖ ≤ ρ′+(fu, fw)

and by (4) (Theorem 3.1),
fu⊥εBfw.

Thus f approximately preserves Birkhoff orthogonality.

Turnšek & Mojškerc [20, Theorem 3.5, Remark 3.1] proved the following result.

Theorem 5.2. Let X,Y be real normed spaces, ε ∈ [0, 1
8 ) and T : X → Y a linear

mapping satisfying x⊥By ⇒ Tx⊥εBTy. Then

(1− 8ε) ‖T‖ ‖x‖ ≤ ‖Tx‖ ≤ ‖T‖ ‖x‖, x ∈ X.

Combining this result with our Theorem 5.1 we obtain the following corollary.

Theorem 5.3. Let X,Y be real normed spaces and let f : X → Y be a nonzero linear
mapping satisfying (19) or (20) with ε ∈ [0, 1

8 ). Then f is injective, continuous and

(1− 8ε) ‖f‖ ‖x‖ ≤ ‖fx‖ ≤ ‖f‖ ‖x‖, x ∈ X.

Corollary 5.4. Let ε ∈ [0, 1
8 ). Let ‖ · ‖a and ‖ · ‖b be two norms in a linear space X.

By ⊥a and ⊥b we denote the ρ±-orthogonality with respect to one of the two norms. If
⊥a ⊂ ⊥εb, then both norms are equivalent and, with some γ > 0, we have

(1− 8ε)γ‖x‖a ≤ ‖x‖b ≤ γ‖x‖a, x ∈ X.

Proof. Define a linear mapping h : (X, ‖ · ‖a)→ (X, ‖ · ‖b) by hx := x. Then h approx-
imately preserves ρ±-orthogonality and the assertion follows from Theorem 5.3.

It is known from [20] that for the Birkhoff orthogonality the stability problem has
an affirmative answer for some class of spaces (including finite-dimensional ones). Thus
Theorem 5.3 extends these results to ρ+ and ρ− orthogonality. If we assume that the
space X is smooth then we have also

⊥ρ+
= ⊥ρ− = ⊥ρ = ⊥B

and
⊥ερ+

= ⊥ερ− = ⊥ερ = ⊥εB
for all ε ∈ [0, 1). Thus, in this case, the stability problems for ρ, ρ+, ρ− and Birkhoff
orthogonality preserving mappings are equivalent.



30 J. CHMIELIŃSKI AND P. WÓJCIK

References

[1] C. Alsina, J. Sikorska, M. S. Tomás, On the equation of the ρ-orthogonal additivity, Com-
ment. Math. Prace Mat. 47 (2007), 171–178.

[2] C. Alsina, J. Sikorska, M. S. Tomás, Norm Derivatives and Characterizations of Inner
Product Spaces, World Scientific, Hackensack, NJ, 2010.

[3] D. Amir, Characterization of Inner Product Spaces, Oper. Theory Adv. Appl. 20, Birk-
häuser, Basel, 1986.

[4] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), 169–172.
[5] A. Blanco, A. Turnšek, On maps that preserve orthogonality in normed spaces, Proc. Roy.

Soc. Edinburgh Sect. A 136 (2006), 709–716.
[6] J. Chmieliński, On an ε-Birkhoff orthogonality, JIPAM. J. Inequal. Pure Appl. Math. 6

(2005), Article 79, 7 pp. (electronic).
[7] J. Chmieliński, Linear mappings approximately preserving orthogonality, J. Math. Anal.

Appl. 304 (2005), 158–169.
[8] J. Chmieliński, Stability of the orthogonality preserving property in finite-dimensional in-

ner product spaces, J. Math. Anal. Appl. 318 (2006), 433–443.
[9] J. Chmieliński, Orthogonality preserving property and its Ulam stability, in: Functional

Equations in Mathematical Analysis, Springer Optimization and Its Applications 52,
Springer, New York, NY, 2012, 33–58.

[10] J. Chmieliński, P. Wójcik, Isosceles-orthogonality preserving property and its stability,
Nonlinear Anal. 72 (2010), 1445–1453.

[11] J. Chmieliński, P. Wójcik, On a ρ-orthogonality, Aequationes Math. 80 (2010), 45–55.
[12] M. M. Day, Normed Linear Spaces, Ergeb. Math. Grenzgeb. 21, Springer, New York-

Heidelberg, 1973.
[13] S. S. Dragomir, Semi-Inner Products and Applications, Nova Science Publishers, Haup-

pauge, NY, 2004.
[14] J. R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1967),

436–446.
[15] D. Ilišević, A. Turnšek, Approximately orthogonality preserving mappings on C∗-modules,

J. Math. Anal. Appl. 341 (2008), 298–308.
[16] R. C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer.

Math. Soc. 61 (1947), 265–292.
[17] A. Koldobsky, Operators preserving orthogonality are isometries, Proc. Roy. Soc. Edin-

burgh Sect. A 123 (1993), 835–837.
[18] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43.
[19] P. M. Miličić, Sur la g-orthogonalité dans les espaces normés, Mat. Vesnik 39 (1987),

325–334.
[20] B. Mojškerc, A. Turnšek, Mappings approximately preserving orthogonality in normed

spaces, Nonlinear Anal. 73 (2010), 3821–3831.
[21] J. Rätz, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35–49.
[22] A. Turnšek, On mappings approximately preserving orthogonality, J. Math. Anal. Appl.

336 (2007), 625–631.
[23] P. Wójcik, Linear mappings preserving ρ-orthogonality, J. Math. Anal. Appl. 386 (2012),

171–176.

http://dx.doi.org/10.1215/S0012-7094-35-00115-6
http://dx.doi.org/10.1017/S0308210500004674
http://dx.doi.org/10.1016/j.jmaa.2004.09.011
http://dx.doi.org/10.1016/j.jmaa.2005.06.016
http://dx.doi.org/10.1016/j.na.2009.08.028
http://dx.doi.org/10.1007/s00010-010-0042-1
http://dx.doi.org/10.1090/S0002-9947-1967-0217574-1
http://dx.doi.org/10.1016/j.jmaa.2007.10.028
http://dx.doi.org/10.1090/S0002-9947-1947-0021241-4
http://dx.doi.org/10.1017/S0308210500029528
http://dx.doi.org/10.1090/S0002-9947-1961-0133024-2
http://dx.doi.org/10.1016/j.na.2010.08.007
http://dx.doi.org/10.1007/BF02189390
http://dx.doi.org/10.1016/j.jmaa.2007.03.016
http://dx.doi.org/10.1016/j.jmaa.2011.07.062

	Introduction
	rho-orthogonality
	Approximate rho-orthogonality
	Orthogonality preserving mappings
	rho-orthogonality preserving mappings
	Equivalent norms and rho-orthogonal sets
	Another characterization of smooth spaces

	Approximately orthogonality preserving mappings

