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Abstract. In the paper [3] the determinant criterion of solvability for the Kuczma equation [4]

was given. This criterion appeared in the natural way as barycenter of some mass system. It

turned out that determinants do appear in many different situations as solvability criteria. The

present article is aimed to review the mostly classical results in the theory of functional equations

from this point of view. We begin with classical results of the linear functional equations and

the determinant equations solved by F. Neuman. Using natural hierarchy we select some class of

well-known equations in order to catch a pattern in the solvability criteria. This approach gives

some sort of hypothesis.

1. Introduction. In the review a hierarchy of functional equations of polynomial type
on the function of two arguments is proposed. The main results in the theory of such
equations were obtained in the seventies. The solution spaces of a few series of cyclic type
equations were described, and some individual equations were investigated. The most fa-
mous equation was the one finally solved by F. Neuman, this equation is a determinant
of values. This review was inspired by the complete solution of the Kuczma equation
for the generalized mean, received recently by the author. The class of such means is
the solution space of the third degree homogeneous equation, which is the equality of
two determinants. Indeed, there is a natural reason why determinants occur in the equa-
tions possessing a nontrivial solution space. The main trick in solution of the functional
equation is the reduction—equating the independent variables. With the reduction the
expression either becomes tautological or gives a new equation with fewer variables. In
the latter case, if at least one of the reduced equation is not solvable, then the origi-
nal equation is not. If all reductions are solvable, then a system of functional equations
appears, which is quite strong constraint on the unknown functions. That is, reducible
equations are generally unsolvable. However, among polynomial equations there are those
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almost all reductions of which are tautological, those containing determinants. Each such
equation might have a nontrivial solution space.

This review cannot claim to be complete, even citations are given not for all equations
mentioned in the review.

2. Hierarchy of polynomial functional equations. Let us consider the system of
independent variables {xi}ni=1. An equation on a function of two variables F : S×S →M

p(F (xi, xj)) = 0,

where S is a specified set, M is a module over some ring K, p(νij) is a polynomial of
matrix variables with coefficients from K, is called a polynomial functional equation.

For every polynomial of matrix variables we can calculate quantity of the left indexes
in nonzero coefficients, say k, and analogously the right indexes, s, and indexes which are
in both sides, d (d 6 min(k, s)).

Definition 2.1. The number dim p = k+ s− d is called the dimension of the functional
equation (dim p > max(k, s)). The equation with n = dim p is called effective, with d = 0
— free, with d = n — complete.

Remark. Any free equation could be considered for a function F : S1 × S2 →M where
the sets are different and independent variables are divided in two groups. We will apply
our notation for such equations.

For example, for the Sincov equation

F (x, y) + F (y, z) = F (x, z)

we have p(x11, . . . , x33) = x12+x23−x13, k = 2, s = 2, d = 1, dim p = 3. It is clear that we
can renumber variables and get an equivalent equation, but with the same characteristics
(k, s; d) which is called the type of the equation. Generally, we can assume that k 6 s. It is
easy to calculate that the quantity m(s) of types for the effective equations of dimension s
is

m(s) =
[s2 + 4s

4

]
.

Definition 2.2. The polynomial is called solvable if there is at least one nontrivial
solution in prescribed settings.

It means that the notion of solvability is relative.

Definition 2.3. The reduction of the functional equation is the system{
p(F ) = 0

xi = xj , i 6= j

We will denote such a reduction by (ij).

If any function satisfies the reduction (ij) it is called tautological. The reduction
decreases the dimension of the equation. If some reduction of the equation is unsolvable
then the equation also is unsolvable. So, if we investigate hierarchy of equations from
lower to higher dimension (so called pexiderization process) we get rather wide class of
equations with the solution space described in a new way.
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3. Known series of equations

3.1. Linear equations of any dimension. The equation corresponding to the poly-
nomial of degree 1 is called linear. The complete classification of solvable linear equations
of dimension 6 n ∑

16i,j6n

aijF (xi, xj) = a0

was given by D. D. Adamović [1]. In his paper S = M is a linear space over a field of
characteristic not equal to 2.

Theorem 3.1 ([1]). For a homogeneous linear equation of dimension 2

aF (x, y) + bF (y, x) + cF (x, x) + dF (y, y) = 0

there are ten classes of equations with equal solution space. The non-homogeneous case
is trivially reduced to the homogeneous one.

It is remarkable that for any higher dimension there are only finite set of classes with
different solution spaces.

3.2. Free determinant equations of even dimension. In the paper of F. Neuman [9]
the solution of the homogeneous determinant equation of dimension 2n (type (n, n; 0))

Fn(x,y) = det ‖F (xi, yj)‖ni,j=1 = 0

was given under some regularity condition.

Theorem 3.2 ([9]). For arbitrary sets X and Y (intervals, discrete sets, etc.) a function
F : X × Y → R (or C) is of the form

F (x, y) =
n−1∑
i=1

ϕi(x)ψi(y) (3.1)

with linearly independent sets {ϕi} and {ψi} if and only if the maximal rank of the
matrices ‖F (xi, yj)‖ni,j=1 is n− 1 for all x ∈ Xn and y ∈ Y n.

The degree of polynomial is here n.
The equations described by J. Šimša [10] have the same solution space. The dimension

of the free equation (3.2) is 4n and the degree is equal to 2n (type (2n, 2n; 0)).

Theorem 3.3 ([10]). If a function F : X×Y → K has the form (3.1), then the equality

Fn(x,y)Fn(u,v) = Fn(x,v)Fn(u,y) (3.2)

holds for all (x,y) ∈ Xn × Y n and all (u,v) ∈ Xn × Y n. Conversely, if (3.2) holds for
all (x,y) ∈ Xn × Y n and some (u,v) ∈ Xn × Y n such that Fn(u,v) 6= 0, then F is of
the form (3.1).

Remark. The functions of the form (3.1) satisfy all reductions of the determinant equa-
tion. In particular, if X = Y (type (n, n;n))

Fn(x,x) = det ‖F (xi, xj)‖ni,j=1 = 0.
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But even in the case n = 2 the solution space is more rich. The general solution can be
described by

F (x, y) = S(x, y)±
√
S2(x, y)− S(x, x)S(y, y),

where S is any symmetrical function satisfying the inequality S2(x, y) > S(x, x)S(y, y)
and the signs in the formula are taken different in the domains x > y and x < y. Further
we will denote this solution space by D.

3.3. Determinant equation of type (2n, 3n; 2n). In the same article [10] the
3n-dimensional equation of type (3n, 2n; 2n) was solved.

Theorem 3.4 ([10]). If a function F : X ×X → K is of the form

F (x, y) =
n∑

i,j=1

αijfi(x)fj(y), (3.3)

then the equality
Fn(x,y)Fn(z, z) = Fn(x, z)Fn(y, z) (3.4)

holds for any x,y, z ∈ Xn. Conversely, if Fn(z, z) 6= 0 for some z = (z1, z2, . . . , zn) ∈ Xn

and (3.4) holds for all x,y ∈ Xn, then F is of the form (3.3), with constants αij =
F (zi, zj), 1 6 i, j 6 n.

3.4. Nonlinear cyclic equations. Some series of nonlinear functional equations of
cyclic type were investigated in the articles of D. S. Mitrinović, S. B. Prešić, P. M. Vasić,
and R. R. Janić.

The first series of type (2n− 1, 2n; 2n− 1), investigated in [6],

F (x1, x2)F (x3, x4) . . . F (x2n−1, x2n)

+ F (x1, x3)F (x4, x5) . . . F (x2n, x2)

. . .

+ F (x1, x2n)F (x2, x3) . . . F (x2n−2, x2n−1) = 0

has only trivial solution for n > 2 and, as shown in [11] for n = 2, the general solution
has the form F (x, y) = ϕ(x)ψ(y)−ψ(x)ϕ(y). P. M. Vasić [12] noted that the equation of
type (3, 3; 2)

F (x1, x2)F (x3, x4)− F (x1, x3)F (x2, x4)− F (x1, x4)F (x3, x2) = 0

is equivalent (has the same solution space) to the above one.
In order to describe the next series of cyclic type equations let us consider the func-

tional equation

ψ(x1, x2, . . . , x2n) + ψ(x1, x3, . . . , x2n, x2) + . . .+ ψ(x1, x2n, . . . , x2n−1) = 0,

where ([7])

ψ(x1, . . . , x2n) =
(
F (x1, x2) + F (x3, x4) + . . .+ F (x2k−1, x2k)

)
×
(
F (x2k+1, x2n) + F (x2k+2, x2n−1) + . . .+ F (xk+n, xk+n+1)

)
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or

ψ(x1, . . . , x2n) = F (x1, x2)
n−3∑
j=0

Aj(F (xj+3, xj+4) + F (x2n−j−1, x2n−j))

+An−2F (x1, x2)F (xn+1, xn+2),

here
∑n−2
j=0 Aj 6= 0, or, more general ([8])

ψ(x1, . . . , x2n) =
(
F (x1, u0) + F (x2, u1) + . . .+ F (x2k−2, uk−1)

)
×
(
F (x2k, v0) + F (x2k+2, v1) + . . .+ F (x2n−2, vn−k−1)

)
,

where ui ∈ {x2l−1}kl=1, vj ∈ {x2l−1}nl=k+1, and uν 6= uµ, vν 6= vµ for ν 6= µ, and
finally ([2])

ψ(x1, . . . , x2n) =
(
F (x1, x2) + F (x3, x4) + . . .+ F (x2k−1, x2k)

)
×
(n+k−1∑

j=0

AjF (x2k+j+1, x2n−j)
)
.

All these equations are solvable.

4. Determinant equations of the second degree. All functions are supposed to be
real, continuous and with monotone sections for simplicity. We consider many equations
of the second degree, but in contrast to those solved by D. S. Mitrinović, S. B. Prešić,
P. M. Vasić, and R. R. Janić they are not cyclic. Let us consider the simple equation of
type (2, 2; 1)

F (x1, x4)F (x2, x1)− F (x1, x1)F (x2, x4) = 0.

It is easy to see that it has the general solution F (x, y) = ϕ(x)ψ(y). Let us denote the
solution space of this equation by F . Note that the only nontrivial reduction x4 = x2

leads to the determinant equation considered in Section 3.2 and has more rich solution
space D. Now apply the “pexiderization” replacing some variables by new ones in such
a way that the general solution still satisfies it. This process gives some new equations
with the same solution space.

Theorem 4.1. A general solution of all equations listed below is F (x, y) = ϕ(x)ψ(y)

(i)
∣∣∣∣F (x1, x5) F (x8, x7)
F (x2, x6) F (x3, x4)

∣∣∣∣ =
∣∣∣∣F (x3, x5) F (x8, x6)
F (x2, x7) F (x1, x4)

∣∣∣∣ (type (4, 4; 0),

(ii)
∣∣∣∣F (x1, x5) F (x3, x7)
F (x2, x6) F (x3, x4)

∣∣∣∣ =
∣∣∣∣F (x3, x5) F (x3, x6)
F (x2, x7) F (x1, x4)

∣∣∣∣ (type (3, 4; 0)),

(iii)
∣∣∣∣F (x1, x5) F (x3, x4)
F (x2, x6) F (x3, x4)

∣∣∣∣ =
∣∣∣∣F (x3, x5) F (x3, x6)
F (x2, x4) F (x1, x4)

∣∣∣∣ (type (3, 3; 0)),

(iv)
∣∣∣∣F (x1, x5) F (x3, x4)
F (x2, x1) F (x3, x4)

∣∣∣∣ =
∣∣∣∣F (x3, x5) F (x3, x1)
F (x2, x4) F (x1, x4)

∣∣∣∣ (type (3, 3; 1)),

(v)
∣∣∣∣F (x1, x2) F (x3, x4)
F (x2, x1) F (x3, x4)

∣∣∣∣ =
∣∣∣∣F (x3, x2) F (x3, x1)
F (x2, x4) F (x1, x4)

∣∣∣∣ (type (3, 3; 2)).
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Proof. All equations are just the sequence of reductions applied to the first one, namely
x8 = x3, x7 = x4, x6 = x1, x5 = x2, x3 = x1.

Let us now describe the full hierarchy of the item (iii). We took this equation just
to demonstrate the method and because the amount of work is not great for it. The
reduction x1 = x2, x3 = x4 = x5 = x6 will be denoted by (12)(3456) and the type of
such reduction by 2|4.

I. Six reductions of type 1|5 are tautological, 15 ones of type 2|4 and 10 ones of type
3|3 are tautological or D.

II. 15 reductions 1|1|4 are tautological or D. 60 ones of type 1|2|3 give three equations
(if not tautological)

F :
∣∣∣∣F (x1, x2) F (x1, x4)
F (x2, x1) F (x1, x4)

∣∣∣∣ =
∣∣∣∣F (x1, x2) F (x1, x1)
F (x2, x4) F (x1, x4)

∣∣∣∣ ;
A :

∣∣∣∣F (x1, x2) F (x2, x3)
F (x1, x1) F (x2, x3)

∣∣∣∣ =
∣∣∣∣F (x2, x2) F (x2, x1)
F (x1, x3) F (x1, x3)

∣∣∣∣ ;
B :

∣∣∣∣F (x1, x3) F (x2, x2)
F (x1, x1) F (x2, x2)

∣∣∣∣ =
∣∣∣∣F (x2, x3) F (x2, x1)
F (x1, x2) F (x1, x2)

∣∣∣∣ .
The reductions of type 2|2|2 (15 variants) give four exceptional equations besides

F- and D-equations

H :
∣∣∣∣F (x1, x2) F (x3, x3)
F (x2, x1) F (x3, x3)

∣∣∣∣ =
∣∣∣∣F (x3, x2) F (x3, x1)
F (x2, x3) F (x1, x3)

∣∣∣∣ ,
this is the only equation whose any reduction is tautological;

A′ ⊂ D :
∣∣∣∣F (x1, x3) F (x3, x2)
F (x2, x1) F (x3, x2)

∣∣∣∣ =
∣∣∣∣F (x3, x3) F (x3, x1)
F (x2, x2) F (x1, x2)

∣∣∣∣ ;
B′ ⊂ D :

∣∣∣∣F (x1, x1) F (x3, x3)
F (x2, x2) F (x3, x3)

∣∣∣∣ =
∣∣∣∣F (x3, x1) F (x3, x2)
F (x2, x3) F (x1, x3)

∣∣∣∣ ;
C′ ⊂ D :

∣∣∣∣F (x1, x1) F (x3, x2)
F (x2, x3) F (x3, x2)

∣∣∣∣ =
∣∣∣∣F (x3, x1) F (x3, x3)
F (x2, x2) F (x1, x2)

∣∣∣∣
So we have the complete list of reductions up to three variables. For every reduction

except F-equation we should write down all equations reducible to them. The quantity
of such reductions is 260. It is easy to check that all of them except 8 tautological ones
are reducible to F-equation. The last step is to check these 8 reductions in the same way.
All 27 equations over them are reducible to F-equation.

Now let us solve the exceptional equations.

Theorem 4.2. The H-equation∣∣∣∣F (x1, x2) F (x3, x3)
F (x2, x1) F (x3, x3)

∣∣∣∣ =
∣∣∣∣F (x3, x2) F (x3, x1)
F (x2, x3) F (x1, x3)

∣∣∣∣ (4.1)
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is solvable in continuous real functions and the general solution has locally the form

F (x, y) =

∣∣∣∣∣∣
a ϕ(y) b

ψ(x) 0 ϕ(x)
c ψ(y) d

∣∣∣∣∣∣ ,
where a, b, c, d ∈ R and ϕ(x), ψ(x) are arbitrary functions.

Proof. It is easy to check that symmetric and skew-symmetric functions satisfy the equa-
tion. Let us decompose the function into symmetric and skew-symmetric parts

F (x, y) = S(x, y) + Ω(x, y). (4.2)

The equation can be rewritten now in the form

S(x, x)Ω(b, a) + S(a, x)Ω(x, b) + S(x, b)Ω(a, x) = 0. (4.3)

Suppose now that in some domain, say (α, β)× (γ, µ), S 6= 0 and Ω 6= 0, but S(x, x) ≡ 0
over (α, β). Fix a ∈ (α, β). Then in this domain S(a, x) 6= 0 and

Ω(x, b) =
S(x, b)Ω(x, a)

S(a, x)
= λa(x)S(x, b).

Therefore Ω(b, x) = λa(b)S(b, x), i.e. (λa(x) − λa(b))S(x, b) ≡ 0. This implies that
λa(x) ≡ 0 and function is symmetric despite our assumption. Now we will solve the
equation over some domain where three functions S, Ω, and S(x, x) are bounded away
from zero. Fix now two different points a, b ∈ (α, β) and consider five nonzero functions

ϕ(x) = Ω(a, x); ψ(x) = Ω(b, x); s1(x) = S(x, x); sa(x) = S(a, x); sb(x) = S(b, x).

Our aim is to express successively sa, sb, s1, S, and Ω via ϕ,ψ and some constants.
Change x and b in (4.3) and express sb as

sb(x) =
s1(b)ϕ(x)− sb(a)ψ(x)

ϕ(b)
. (4.4)

Analogously after changing a and b in (4.3) we have

sa(x) =
sb(a)ϕ(x)− s1(x)ψ(x)

ϕ(b)
. (4.5)

Immediately from (4.3) we get

s1(x) =
sb(x)ϕ(x)− sa(x)ψ(x)

ϕ(b)
.

Now we can substitute (4.4) and (4.5) here:

s1(x) =
1

ϕ2(x)
(
s1(b)ϕ2(x)− 2sb(a)ϕ(x)ψ(x) + s1(a)ψ2(x)

)
. (4.6)

Let us change now in the main identity (4.3) b → x, a → y, and x → b, and express
Ω(x, y) as

Ω(x, y) =
sb(x)ψ(y)− sb(y)ψ(x)

s1(b)
.

Substituting (4.4) here we obtain

Ω(x, y) =
ϕ(x)ψ(y)− ϕ(y)ψ(x)

ϕ(b)
. (4.7)
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Finally after changing b→ y in (4.3) we get

S(x, y) =
s1(x)ϕ(y)− sa(x)Ω(x, y)

ϕ(x)
.

Substituting the known expressions here we get the formula

S(x, y) =
1

ϕ2(b)
[
s1(b)ϕ(x)ϕ(y) + s1(a)ψ(x)ψ(y)− sb(a)(ϕ(y)ψ(x) + ϕ(x)ψ(y))

]
. (4.8)

Summing (4.7) and (4.8) we get the final result. Any solution of (4.1) locally has the
form

F (x, y) = aϕ(x)ϕ(y) + bψ(x)ψ(y) + cϕ(x)ψ(y) + dϕ(y)ψ(x). (4.9)

The last formula can be written in the form of determinant. A straightforward calculation
shows that any function of such form satisfies the equation (4.1).

It is easy to solve the rest of exceptional equations. A-, A′-, B-, and C′-equations have
the solution space F . B′-equation is of type D. Now we can formulate the final result.

Theorem 4.3. Every equation of 4 or 5 variables which can be reduced from the equation
(iii) (Theorem 4.1) has the solution space F . There is the only exceptional equation of
three variables (H, Theorem 4.2) reduced from (iii), whose solution space differs from F
and D.

5. Some determinant equations of the third degree. In the paper [3] of the author
the following theorem was proved.

Theorem 5.1. The equation of type (3, 3; 2)∣∣∣∣∣∣
F (x1, x2) F (x1, x2) F (x3, x4)
F (x3, x1) F (x1, x4) F (x3, x4)
F (x3, x2) F (x2, x4) F (x3, x4)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
F (x1, x4) F (x2, x4) F (x2, x4)
F (x1, x4) F (x1, x2) F (x3, x2)
F (x3, x1) F (x3, x1) F (x3, x2)

∣∣∣∣∣∣ (5.1)

is solvable for a smooth monotone function F (x, y) over square and the general form of
the solution is

F (x, y) =
ϕ
(
(ϕ′)−1(x)

)
− ϕ

(
(ϕ′)−1(y)

)
(ϕ′)−1(x)− (ϕ′)−1(y)

, (5.2)

where ϕ is a smooth convex function over a segment.

We see that all types of equations described above have very general form of solutions
or have no solution. The last example can be regarded in this context as the first equation
among low degree ones with nontrivial solution space.

Historically Marek Kuczma offered in his last work [4] the functional equation (5.2) for
special left side. The equation (5.2) in general form and its properties were discussed in the
paper of J. Matkowski [5]. The complete solution was received by the author in [3]. Now
we can consider equation (5.1) as determinant criteria of the Kuczma equation solvability.
It turned out that the Kuczma equation is related to many areas of mathematics and
even economics. The method of hierarchy offered in this paper gives the possibility to
find exceptional equations among myriads of polynomial ones. It is natural to suppose
that we can find among them absolutely new and rich ones, which can be regarded as
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determinant criteria of solvability. Moreover, the process of searching allows the program
realization.

Let us consider now the reductions of the above equation. The reductions (12), (13),
and (24) are tautological. It is easy to show that the reductions (14) and (23) have
symmetrical functions as solution space. But the reduction (34) is slightly more difficult.

Theorem 5.2. The equation of type (3, 3; 3)∣∣∣∣∣∣
F (x1, x2) F (x1, x2) F (x3, x3)
F (x3, x1) F (x1, x3) F (x3, x3)
F (x3, x2) F (x2, x3) F (x3, x3)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
F (x1, x3) F (x2, x3) F (x2, x3)
F (x1, x3) F (x1, x2) F (x3, x2)
F (x3, x1) F (x3, x1) F (x3, x2)

∣∣∣∣∣∣
is solvable for a function monotone in each of its arguments and a general solution is
just a symmetrical function.

Proof. We see that symmetrical function satisfies the equation. It could be rewritten now
in the form

F (x1, x2)
(∣∣∣∣F (x1, x3) F (x3, x3)
F (x2, x3) F (x3, x3)

∣∣∣∣− ∣∣∣∣F (x3, x1) F (x3, x3)
F (x3, x2) F (x3, x3)

∣∣∣∣+
∣∣∣∣F (x2, x3) F (x1, x3)
F (x3, x2) F (x3, x1)

∣∣∣∣)

=

∣∣∣∣∣∣
F (x1, x3) F (x2, x3) F (x2, x3)
F (x1, x3) F (x3, x3) F (x3, x2)
F (x3, x1) F (x3, x1) F (x3, x2)

∣∣∣∣∣∣ .
If the right multiplier in the left side is identically zero then the reduction x3 = x2 gives
trivially either F (x, y) = F (y, x) or F (x, y) = −F (y, x). In the latter case, the symmetry
of F follows immediately from the right side of equation which is zero automatically and
we get the contradiction to monotonicity of F . If the considered multiplier is not equal
to zero for some value x3 then we can divide the right part of the equation and receive an
explicit expression of F (x1, x2). The numerator and the denominator change their signs
under permutation of x1 and x2. It implies the symmetry of F .
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[6] D. S. Mitrinović, S. B. Prešić, Sur une équation fonctionnelle cyclique d’ordre supérieur,

Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 70–76 (1962), 1–2.
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[12] P. M. Vasić, Équation functionnelle d’un certain type de déterminants, C. R. Acad. Sci.
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