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Abstract. In this expository paper, some recent developments in majorization theory are re-

viewed. Selected topics on group majorizations, group-induced cone orderings, Eaton triples,

normal decomposition systems and similarly separable vectors are discussed. Special attention

is devoted to majorization inequalities. A unified approach is presented for proving majorization

relations for eigenvalues and singular values of matrices. Some methods based on the Chebyshev

functional and similarly separable vectors are described. Generalizations of Hardy–Littlewood–

Pólya Theorem and Schur–Ostrowski Theorem are presented. Generalized Schur-convex func-

tions are investigated. Extensions of Ky Fan inequalities are provided. Applications to Grüss

and Ostrowski type inequalities are given.

1. Introduction and summary. The theory of majorization has many various ap-
plications in a number of fields, including matrix theory, convex analysis, probability,
statistics, geometry, Lie theory, numerical analysis, optimization, etc. (see [2, 3, 4, 15,
16, 17, 18, 35, 44, 45, 51, 52, 70, 71]). The interested reader may consult the book In-
equalities: Theory of Majorization and its Applications by W. A. Marshall, I. Olkin and
B. C. Arnold [39] for the richness of applications in diverse disciplines (see also [5, 6, 27]).

In the literature, special attention is paid to majorization inequalities for linear op-
erators (see [2, 3, 4, 45, 51, 52, 42, 69]). The importance of such results lies in the fact
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that they are related to eigenvalues and singular values of the operators. On the other
hand, many existing results depend on the positivity of certain functionals. The aim of
this survey article is to demonstrate two general methods for generalizing some classical
majorization results. The first is based on the theory of Eaton triples and the second
relies on the generalized Chebyshev functional and similarly separable vectors.

In this expository paper, we review some recent developments in the majorization
theory. We focus on group majorizations, group-induced cone orderings, normal decom-
position systems (ND systems), Eaton triples (E-systems) and similarly separable vectors.
We quote the relevant material mainly from [48, 50, 51, 54, 55, 57, 56, 58, 59, 60].

The outline of the paper is as follows. In Section 2 we collect some basic facts from
group majorization theory (see [15, 16, 18, 24, 34, 35, 42, 45, 46, 68, 70, 71]). The results
are presented in Sections 3–8.

In Section 3 we offer a unified approach to the problem of establishing majorization
inequalities concerning eigenvalues and singular values of matrices [45, 47, 51, 52, 53].
In particular, we show a relationship between such inequalities and decomposition state-
ments for matrices as Spectral Decomposition, Singular Value Decomposition Theorem,
Autonne Decomposition and Takagi Decomposition [45, 51].

Section 4 contains a discussion of morphisms of E-systems. Firstly, the motivation
for this notion is provided. Namely, morphisms are characterized by a G-majorization in-
equality of the mentioned type. Secondly, a method for constructing morphisms is pointed
out via simple morphisms. Lastly, homomorphisms are employed to give a technique of
construction of Eaton triples.

Section 5 is devoted to the Chebyshev functional [50, 61]. By making use of similarly
separable vectors, some sufficient and necessary conditions are provided for the functional
to be nonnegative [48, 50, 57, 60]. The class of separable vectors on Rn includes many
important subclasses such as monotone, monotone in mean, star-shaped, convex n-tuples,
etc.

In Section 6 the similarity method is utilized to show some generalizations of Hardy–
Littlewood–Pólya Theorem and of Schur–Ostrowski Theorem [57, 59]. Additionally, ex-
tended group majorization is studied.

Further applications are given in Section 7. Here Shi type inequalities are investigated
[58]. As corollaries, some G-majorization extensions of Ky Fan inequality are presented.

Finally, in Section 8, a new approach to Grüss and Ostrowski type inequalities is shown
[57]. By replacing the standard bounding constants by some corresponding bounding
functions, some tighter estimates can be provided.

2. Preliminaries

2.1. Majorization and Schur-convex functions. We begin with some notation and
terminology.

The decreasing rearrangement of a vector z = (z1, z2, . . . , zn) ∈ Rn is defined by

z↓ = (z[1], z[2], . . . , z[n]),

where z[i] denotes the ith largest entry of z, i = 1, 2, . . . , n. Thus z[1] ≥ z[2] ≥ . . . ≥ z[n]

are the entries of z in decreasing order.
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Definition 2.1 (Weak majorization). A vector x = (x1, . . . , xn) ∈ Rn is said to be
weakly majorized by a vector y = (y1, . . . , yn) ∈ Rn, in symbols x ≺w y, if

k∑
i=1

x[i] ≤
k∑

i=1

y[i] for k = 1, 2, . . . , n. (1)

The preorder ≺w on Rn is called weak majorization [39, p. 12].

Definition 2.2 (Majorization). A vector x = (x1, . . . , xn) ∈ Rn is said to be majorized
by a vector y = (y1, . . . , yn) ∈ Rn, in symbols x ≺ y, if (1) holds and, in addition,

n∑
i=1

x[i] =
n∑

i=1

y[i].

The preorder ≺ on Rn is called majorization [39, p. 8].

Below we review some basic properties of the majorization preorder ≺. Thus we give
motivation for the notion of group-induced cone ordering defined and described in the
next subsection.

A geometric interpretation of majorization is as follows.

Theorem 2.3 ([64]). Let x, y ∈ Rn. Then

x ≺ y iff x ∈ conv Pn y,

where Pn is the permutation group acting on Rn, and conv Pn y stands for the convex
hull of the set Pn y = {py : p ∈ Pn}.

It is easily seen that the set D = (Rn)↓ = {z↓ : z ∈ Rn} is a convex cone in Rn. The
following two properties (A1)–(A2) are met:

(A1) D ∩ Pnz is not empty for each z ∈ Rn, i.e., Rn =
⋃

p∈Pn
pD,

(A2) the rearrangement inequality holds:

〈x, py〉 ≤ 〈x, y〉 for x, y ∈ D and p ∈ Pn,

where 〈·, ·〉 means the standard inner product on Rn.

Condition (A1) means that each z ∈ Rn has the decomposition

z = pz↓ for some p ∈ Pn.

On the other hand, by employing the standard norm ‖z‖ = 〈z, z〉1/2 for z ∈ Rn,
condition (A2) can be restated as

‖x− y‖ ≤ ‖x− py‖ for x, y ∈ D and p ∈ Pn,

or, equivalently,
‖x− y‖ = min

p∈Pn

‖x− py‖ for x, y ∈ D.

Properties of majorization ≺ depend on the geometry of the cone D and its dual cone

dualD = {w ∈ Rn : 〈w, z〉 ≥ 0 for z ∈ D}.
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For example, for z ∈ D one has z↓ = z and z[i] = zi, i = 1, 2, . . . , n. Therefore, if x, y ∈ D
then Definition 2.2 simplifies to

x ≺ y iff
k∑

i=1

xi ≤
k∑

i=1

yi for k = 1, 2, . . . , n, and
n∑

i=1

xi =
n∑

i=1

yi.

In other words, for x, y ∈ D,

x ≺ y iff 〈x, sk〉 ≤ 〈y, sk〉 for k = 1, 2, . . . , n, n+ 1,

where

sk = (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0︸ ︷︷ ︸
n−k times

) for k = 1, 2, . . . , n, and sn+1 = −sn = (−1, . . . ,−1︸ ︷︷ ︸
n times

)

are the vectors spanning the convex cone D, i.e.,

D = cone {sk : k = 1, 2, . . . , n, n+ 1}.
Therefore the majorization preorder ≺, restricted to the convex cone D, is a cone preorder
induced by the dual cone of D, that is, for x, y ∈ D,

x ≺ y iff y − x ∈ dualD.

Here

dualD = cone {rk : k = 1, 2, . . . , n− 1},
rk = ( 0, . . . , 0︸ ︷︷ ︸

k−1 times

, 1,−1, 0, . . . , 0︸ ︷︷ ︸
n−k−1 times

) for k = 1, 2, . . . , n− 1.

The above symbol coneA denotes the convex cone of all nonnegative finite linear
combinations of vectors in subset A of a linear space.

Definition 2.4 (Schur-convexity, Schur-concavity). Let A ⊂ Rn be a (nonempty) sym-
metric set (i.e., px ∈ A whenever x ∈ A and p ∈ Pn).

A function f : A → R is said to be Schur-convex (resp. Schur-concave) on A, if for
x, y ∈ A,

x ≺ y implies f(x) ≤ (≥)f(y).

Schur-convex (resp. Schur-concave) functions on A = Rn are simply called Schur-
convex (resp. Schur-concave). For abbreviation, Schur-convex (resp. Schur-concave) func-
tions are called S-convex (resp. S-concave).

It is well-known that a Schur-convex function f : A → R is necessarily symmetric,
i.e.,

f(px) = f(x) for x ∈ A and p ∈ Pn.

2.2. G-majorization and group-induced cone orderings. Throughout (V, 〈·, ·〉) is
a finite-dimensional real inner product space. The symbol O(V ) stands for the orthogonal
group acting on V .

Definition 2.5 (Group majorization). Let G be a subgroup of O(V ). Given vectors
x, y ∈ V , we write x ≺G y if x lies in the convex hull convGy of the G-orbit Gy = {gy :
g ∈ G}, i.e.,

x ≺G y iff x ∈ convGy.
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The preorder ≺G is called group majorization with respect to G, in short, G-majorization
(see [15], [39, p. 589]).

For instance, if G = Pn is the group of n×n permutation matrices acting on V = Rn,
then ≺G is the majorization preorder ≺ on Rn [39, p. 10, p. 34, p. 162].

If x ≺G y and y ≺G x then we write x ≡G y.
The G-majorization ≺G is G-invariant on V in the sense that for any x, y ∈ V ,

x ≺G y iff g1x ≺G g2y for g1, g2 ∈ G.

Definition 2.6 (GIC ordering). G-majorization ≺G induced by a compact group G ⊂
O(V ) is said to be a group-induced cone ordering (in short, GIC ordering) if there exists
a closed convex cone D ⊂ V such that

(A1) D ∩Gz is not empty for each z ∈ V ,
(A2) 〈x, gy〉 ≤ 〈x, y〉 for x, y ∈ D and g ∈ G.

Any GIC ordering ≺G, restricted to its convex cone D, is the cone ordering on D

induced by C = dualD. That is, for x, y ∈ D, the following statements are equivalent:

(i) x ≺G y,
(ii) 〈y − x, s〉 ≥ 0 for s ∈ D,
(iii) 〈y − x, si〉 ≥ 0 for i = 1, . . . , k, provided D = cone {s1, s2, . . . , sk}.

Definition 2.7 (G-increasing function). Let A ⊂ V be a G-invariant set, i.e., gx ∈ A
whenever x ∈ A and g ∈ G.

A function f : A→ R is said to be G-increasing on A, if for x, y ∈ A,

x ≺G y implies f(x) ≤ f(y).

G-increasing functions f : V → R on A = V are simply called G-increasing.

Definition 2.8 (G-invariant function). A function f : A→ R is said to be G-invariant,
if A is G-invariant and

f(gx) = f(x) for g ∈ G and x ∈ A.

Each G-increasing function is necessarily G-invariant.

2.3. Normal decomposition systems and Eaton triples. Let (V, 〈·, ·〉) be a finite-
dimensional real inner product space and let G ⊂ O(V ) be a closed group acting on V .

If ≺G is a GIC ordering then for each x ∈ V the intersection D ∩ Gx is a singleton
set consisting of the unique vector denoted by x↓ [45, p. 14].

Definition 2.9 (Normal map). If axioms (A1)–(A2) hold for some closed convex cone
D ⊂ V , then the map

(·)↓ : V 3 x→ x↓ ∈ D,

where {x↓} = D ∩Gx, is called normal map.

The map (·)↓ is G-invariant and idempotent. Its range is the convex cone D. The
restriction of (·)↓ to D is the identity. For each x ∈ V , the vectors x↓ and x are equivalent
in the sense that x↓ ≺G x and x ≺G x↓.
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Under axioms (A1)–(A2), for x, y ∈ V we have

y ≺G x iff y↓ ≺G x↓ iff 〈z, y↓〉 ≤ 〈z, x↓〉 for z ∈ D,
y ≺G x iff 〈z, gy〉 ≤ 〈z, x↓〉 for z ∈ D and g ∈ G.

(2)

In light of (A1)–(A2), each vector x in V has its canonical (normal ) decomposition:

x = gx↓ for some g ∈ G.
Definition 2.10 (Normal decomposition system). If axioms (A1)–(A2) hold for closed
convex cone D ⊂ V then the triple (V,G, (·)↓) is called a normal decomposition system
(in short, ND system) [34, 35].

Definition 2.11 (Eaton triple). If axioms (A1)–(A2) hold for closed convex cone D ⊂ V
then the triple (V,G,D) is called an Eaton triple (in short, E-system) [15, 16, 70].

The above-mentioned notions play a unifying role in statistics, matrix theory, Lie
theory, etc. (see [15, 18, 34, 35, 42, 47, 70]).

2.4. Examples of Eaton triples. An important class of examples is provided by finite
reflection groups according to the following definition and theorem.

Definition 2.12 (Reflection group). A group G ⊂ O(V ) is said to be a reflection group
if G is the closure of a subgroup of O(V ) generated by some set of the reflections

Srx = x− 2
〈x, r〉
〈r, r〉

r for x ∈ V ,

where 0 6= r ∈ V [18, 30].

Theorem 2.13 ([18, Lemma 4.1], [68, Theorem 4.1]). Let G ⊂ O(V ) be a finite group.
Then the following three statements are equivalent :

(i) G is a finite reflection group.
(ii) The G-majorization ≺G is a GIC ordering for some closed convex cone D ⊂ V .

(iii) The triple (V,G,D) is an Eaton triple for some closed convex cone D ⊂ V .

We need some notation (see [51]).
Rn

+ = the convex cone of nonnegative vectors in Rn,
Rn
↓ = the convex cone of nonincreasing vectors in Rn,

Rn
+↓ = the convex cone of nonnegative nonincreasing vectors in Rn,
On = the group of n× n real orthogonal matrices,

DOn = the group of n× n diagonal orthogonal matrices,
Pn = the group of n× n permutation matrices,

GPn(R) = the group of n× n generalized permutation matrices, i.e., real matrices with
exactly one nonzero entry with absolute value 1 in each row and column.

Example 2.14 ([15, p. 16]). It is easily seen that (V,G,D) is an Eaton triple for V = Rn,
G = DOn and D = Rn

+. Moreover, G is a finite reflection group, and y ≺G x means
|y| ≤ |x| for x, y ∈ Rn, where x↓ = |x| = (|x1|, . . . , |xn|)T .

Example 2.15 ([15, p. 16]). It is known that if V = Rn, G = Pn and D = Rn
↓ , then

(V,G,D) is an Eaton triple, G is a finite reflection group, and y ≺G x means y ≺ x for
x, y ∈ Rn. Furthermore, x↓ = (x[1], . . . , x[n])T .
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Example 2.16 ([15, p. 16]). Replacing V , G, and D with Rn, GPn(R) and Rn
+↓, respec-

tively, one obtains Eaton triple (V,G,D) with finite reflection group G. Here y ≺G x

reduces to |y| ≺w |x| for x, y ∈ Rn, and, in addition, x↓ = (|x|[1], . . . , |x|[n])T .

In forthcoming matrix examples, we need further notation (for the field F = C or R).
Mn(F) = the vector space of n× n matrices over F,

Hn = the (real) vector space of n× n Hermitian matrices,
Sn(F) = the vector space of n× n symmetric matrices over F,
Kn(F) = the vector space of n× n skew-symmetric matrices over F,
Dn(F) = the vector space of n× n diagonal matrices over F,

GPn(F) = the group of n × n generalized permutation matrices over F, i.e., matrices
with exactly one nonzero entry with magnitude 1 in each row and column,

Un = the group of n× n unitary matrices,
DUn = the group of n× n diagonal unitary matrices,
X∗ = the conjugate transpose of matrix X,

λ(X) = (λ1(X), λ2(X), . . . , λn(X)) = the vector of eigenvalues of Hermitian matrix
X stated in nonincreasing order: λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X),

s(X) = (s1(X), s2(X), . . . , sn(X)) = the vector of singular values of matrix X, i.e.,
s(X) = λ(X∗X)1/2 with s1(X) ≥ s2(X) ≥ . . . ≥ sn(X),

d(X) = the vector of diagonal entries of matrix X,
diag z = the diagonal matrix with the entries of a vector z ∈ Rn on the main diagonal,
ReX = the real part of matrix X = (xi,j), i.e., ReX = (Rexi,j),

U1(·)U2 = the matrix operator of the form X → U1XU2, where X, U1 and U2 are
matrices.

We now present two important examples of Eaton triples related to the eigenvalues
of an Hermitian matrix and to the singular values of a complex matrix, respectively.

Example 2.17 (see [15, p. 17], [35, pp. 943–944], [55, p. 619]). Consider V = Hn with
the inner product defined by

〈X,Y 〉 = Re trXY for X,Y ∈ Hn.

Let G be the group of all linear operators of the form

X → UXU∗ for X ∈ Hn with U ∈ Un.

Then (V,G,D) is an E-system for

D = {diag (z1, . . . , zn) ∈ Dn : z1 ≥ . . . ≥ zn}.
Indeed, axiom (A1) reduces to the Spectral Theorem, and axiom (A2) becomes the Fan–
Theobald’s trace inequality [19, 72]. Furthermore, we have

X↓ = diag λ(X) for X ∈ Hn,

Y ≺G X iff λ(Y ) ≺ λ(X) for X,Y ∈ Hn

(see (2) and [15, p. 17]). In consequence, ≺G on Dn(R) may be identified with the classical
majorization ≺ on Rn.

Schur’s inequality ([66], [39, p. 300]) for an n× n Hermitian matrix X says that

d(X) ≺ λ(X). (3)
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Example 2.18 (see [15, pp. 17–18], [35, pp. 944–945], [55, p. 619]). Take V = Mn(C)
with real inner product given by

〈X,Y 〉 = Re trXY ∗ for X,Y ∈Mn(C),

and let G be the group of all linear operators of the form

X → U1XU2 for X ∈Mn(C), where U1, U2 ∈ Un.

Put
D = {diag (z1, . . . , zn) ∈ Dn : z1 ≥ . . . ≥ zn ≥ 0}.

Here (A1) is the Singular Values Decomposition Theorem [39, p. 771], and (A2) is the
trace inequality of von Neumann [39, p. 789]. So, (V,G,D) is an E-system. In addition,
we have

X↓ = diag s(X) for X ∈Mn(C),

Y ≺G X iff s(Y ) ≺w s(X) for X,Y ∈Mn(C)

(see (2) and [15, pp. 17–18]).
It is well-known by Ky Fan’s inequality [20] that for an n× n complex matrix X,

d(X) ≺w s(X). (4)

3. G-majorization inequalities for linear operators. In this section we aim to
show some majorization inequalities generated by certain linear operators. To this end
we employ Eaton triples and normal maps. Such an approach gives a better understanding
of many results on eigenvalues and singular values of certain classes of matrices.

As previously, it is assumed that (V, 〈·, ·〉) is an inner product space, G is a closed
subgroup of the orthogonal group O(V ), and D ⊂ V is a closed convex cone.

3.1. G-majorization and orthoprojectors. We begin our discussion with G-ma-
jorization inequality (6) which generalizes, among others, Schur’s inequality (3) and Ky
Fan’s inequality (4).

Theorem 3.1 ([51, Theorem 2.1]). Let (V,G,D) be an Eaton triple. Assume W is a lin-
ear subspace of V , H is a subset of G, and E is a subset of D. Let P be the orthoprojector
from V onto W and Q be the orthoprojector from spanD onto spanE.

If QD = E and
W =

⋃
h∈H

hE, (5)

then
Px ≺G Qx↓ for x ∈ V. (6)

Example 3.2. Let V , G and D be defined as in Example 2.17. Setting

W = Sn(R), H = {U(·)UT : U ∈ On} and E = D

(cf. [34, Example 7.4]), we obtain PX = ReX for X ∈ Hn, and Q is the identity on
spanD.
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Condition (5) is fulfilled by Spectral Decomposition for matrices in Sn(R). From (6)
we deduce that (cf. [2, p. 111])

λ(ReX) ≺ λ(X) for X ∈ Hn.

Example 3.3. Assume V , G and D are defined as in Example 2.18. For k ∈ {1, 2, . . . , n},
let

W = Mk(C)⊕ 0n−k, H = {U1(·)U2 : U1, U2 ∈ Uk ⊕ In−k},
and E = {Z ∈ Dk(R)⊕ 0n−k : z11 ≥ . . . ≥ zkk ≥ 0}.

Condition (5) amounts to Singular Value Decomposition for matrices in Mk(C). The
orthoprojector P is given by

PX = X11 ⊕ 0n−k for X ∈Mn(C),

where X11 is the k × k principal submatrix of X. Additionally, Q is the restriction of P
to Dn(R). Consequently, inequality (6) gives

s(X11) ≺w (s1(X), . . . , sk(X)) for X ∈Mn(C).

Example 3.4. Let V = Mn(R),

G = {U1(·)U2 : U1, U2 ∈ On}, D = {Z ∈ Dn(R) : d(Z) ∈ Rn
+↓}, W = Kn(R),

H = {UU0(·)UT : U ∈ On} and E = {s1I2 ⊕ . . .⊕ skI2 : s1 ≥ . . . ≥ sk ≥ 0},

where n = 2k is even, I2 = ( 1 0
0 1 ), U0 is the n×n block-diagonal matrix B⊕ . . .⊕B with

B =
(

0 1
−1 0

)
. Condition (5) is satisfied by Autonne Decomposition (cf. [34, Example 7.5]).

It is clear that

PX =
X −XT

2
for X ∈Mn(R),

QX =
s1 + s2

2
I2 ⊕ . . .⊕

sn−1 + sn

2
I2 for X = diag (s1, . . . , sn) ∈ Dn(R).

By utilizing inequality (6) we obtain

s
(X −XT

2

)
≺w

(s1 + s2
2

,
s1 + s2

2
, . . . ,

sn−1 + sn

2
,
sn−1 + sn

2

)
for X ∈Mn(R), where si = si(X), i = 1, 2, . . . , n, (cf. [2, p. 109]).

3.2. Reduced triple of an Eaton triple. We introduce the notion of a reduced triple.

Definition 3.5 (Reduced triple). Given an Eaton triple (V,G,D), set

V0 = spanD and G0 = {g|V0 : g ∈ G and gV0 = V0}.

If (V0, G0, D) is an Eaton triple (under the inherited inner product), then it is called the
reduced triple of (V,G,D) [70].

It is important that if (V0, G0, D) is the reduced triple of (V,G,D) then G0 is a finite
reflection group acting on V0 and the following reduction holds:

y ≺G x iff y↓ ≺G x↓ iff y↓ ≺G0 x↓ for x, y ∈ V

(see [45, Theorem 3.2], [18, Lemma 4.1, (35)], [68, Theorem 4.1]).
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Example 3.6. If V , G, D are as in Example 2.17, then the reduced triple is (V0, G0, D)
for V0 = Dn(R), G0 = {S(·)ST : S ∈ Pn} and D = {Z ∈ Dn(R) : d(Z) ∈ Rn

↓}. In
consequence, (V0, G0, D) can be identified with the E-system (Rn,Pn,Rn

↓ ).

Example 3.7. In the case of Example 2.18, the reduced triple (V0, G0, D) of (V,G,D)
consists of V0 = Dn(R),

G0 = {CS(·)ST : S ∈ Pn, C ∈ DOn} and D = {Z ∈ Dn(R) : d(Z) ∈ Rn
+↓}.

Additionally, the reduced triple can be identified with the triple (Rn,GPn(R),Rn
+↓).

Theorem 3.8 ([51, Theorem 2.7]). Let (V,G,D) and (W,H,E) be Eaton triples with
reduced systems (V0, G0, D) and (W0, H0, E), respectively. Assume that W ⊂ V , H ⊂ G

and D ⊂ E. Let P stand for the orthoprojector from V onto W .
If W0 = V0 then there exists a subset Ĝ ⊂ G such that W =

⋃
g∈Ĝ gD, and

Px ≺G x↓ for x ∈ V.

Example 3.9. Let V , G and D be as in Example 2.18. Setting

W = Hn, H = {U(·)U∗ : U ∈ Un} and E = {Z ∈ Dn(R) : d(Z) ∈ Rn
↓}

leads to

PX =
X +X∗

2
for X ∈Mn(C).

Application of Theorem 3.8 gives Fan–Hoffman’s inequality (see [2, p. 109], [39, p. 327]):

s
(X +X∗

2

)
≺w s(X) for X ∈Mn(C).

Example 3.10. Letting (V,G,D) to be as in Example 2.17, for k ∈ {1, 2, . . . , n} we
consider

W = Hk ⊕Hn−k, H = {U(·)U∗ : U ∈ Uk ⊕ Un−k}
and E = {Z ∈ Dn(R) : z11 ≥ . . . ≥ zkk, zk+1 k+1 ≥ . . . ≥ znn}.

Then we obtain

PX = X11 ⊕ X22 for X =
(
X11 X12

X21 X22

)
∈ Hn,

where X11 and X22 are of sizes k × k and (n− k)× (n− k), respectively.
By making use of Theorem 3.8 we get Ky Fan’s inequality (see [39, p. 308], cf. also

[2, p. 97]):
(λ(X11), λ(X22)) ≺ λ(X) for X ∈ Hn.

3.3. Subsystems of E-systems. We are interested in the notion of a subsystem of an
E-system and its role in deriving G-majorization inequalities.

Definition 3.11 (Subsystem of E-system). Let (V,G,D) be an E-system. Assume H is
a closed subgroup of G, W is an H-invariant subspace of V , and E is a closed convex
subcone of D. The triple (W,H,E) is called a subsystem of (V,G,D), if (W,H,E) is an
E-system (under the inherited inner product). For notation simplicity, we write (W,H,E)
in place of (W,H|W , E) (cf. [34, 35]).
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A special class of subsystems is formed by the reduced triples. In Theorem 3.12 we
characterize arbitrary subsystems of an E-system (cf. [45, Theorem 3.2]).

Theorem 3.12 ([51, Theorem 3.1]). Let (V,G,D) be an E-system. Suppose H is a closed
subgroup of G, W is an H-invariant subspace of V , and E ⊂ W is a closed convex
subcone of D. Let P be the orthoprojector from V onto W , and Q be the orthoprojector
from spanD onto spanE. Assume QD = E.

Then the following statements are equivalent :

(a) (W,H,E) is a subsystem of (V,G,D).
(b) The following inequality holds

Px ≺H Qx↓ for x ∈ V . (7)

(c) The following inclusion holds
W ⊂

⋃
g∈G

gE,

and, in addition, the orderings ≺H and ≺G coincide on W , i.e.

y ≺H x iff y ≺G x for x, y ∈W.

(d) The following decomposition holds

W =
⋃

h∈H

hE. (8)

Example 3.13. We take V , G and D to be as in Example 2.18, and we set

W = Dn(C), H = {CS(·)ST : S ∈ Pn, C ∈ DUn} and E = D.

Then (8) holds by Polar Decomposition for diagonal matrices. Moreover,

PX = diag (x11, . . . , xnn) for X = (xij) ∈Mn(C).

Applying (7) yields the following Ky Fan’s result [39, p. 314]:

(|x11|, . . . , |xnn|) ≺w (s1(X), . . . , sn(X)) for X ∈Mn(C).

3.4. G-doubly stochastic operators. Here we show that G-doubly stochastic opera-
tors induce some subsystems of E-systems.

Definition 3.14 (G-doubly stochastic operator). Let (V,G,D) be an E-system. A linear
operator L : V → V is called G-doubly stochastic if

Lx ≺G x for x ∈ V. (9)

It can be proved that L is G-doubly stochastic iff so is its adjoint L∗ defined by

〈Lx, y〉 = 〈x, L∗y〉 for all x, y ∈ V . (10)

Example 3.15. If V = Rn, G = Pn and D = Rn
↓ as in Example 2.15, and if L is an n×n

matrix, then (9) amounts to Lx ≺ x for x ∈ Rn, which is equivalent to the conditions
L ≥ 0, Lv = v and LT v = v, where v = (1, . . . , 1)T ∈ Rn (see [3, p. 169, Theorem 3.1]). In
other words, L is a matrix with nonnegative entries and with row and column sums equal
to 1. Such matrices L are said to be doubly stochastic. Clearly, L is doubly stochastic if
and only if so is LT .
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Given an E-system (V,G,D), a point x ∈ V is said to be regular provided x ∈ Vr =⋃
g∈G g riD, where ri (·) denotes “the relative interior of”.

The set Vr is dense in V , i.e., clVr = V , where cl (·) means “the closure of”.

Theorem 3.16 ([51, Theorem 4.1]). Suppose (V,G,D) is an E-system. Let W be a sub-
space of V such that D ⊂ W , and let H = {h ∈ G : hD ⊂ W}. Then the following
statements are equivalent :

(i) W =
⋃

h∈H hD.
(ii) There exists a G-doubly stochastic operator L : V → V such that W = {x ∈ V :

Lx = x}, and, in addition, the set Vr ∩W is dense in W .

Under condition (i), the set H is a group if and only if H = {h ∈ G : hW = W}. In this
case, the triple (W,H,D) is a subsystem of (V,G,D).

In some situations, the set H in Theorem 3.16 can be replaced by a set H0 ⊂ H.

Example 3.17. Define V , G and D as in Example 2.18. Set W = Sn(C). Let H be defined
as in Theorem 3.16, and let H0 = {h0 = U(·)UT : U ∈ Un}. Then W =

⋃
h0∈H0

h0D

by the Takagi Decomposition for complex symmetric matrices (see [28, Cor. 4.4.4], [33,
Theorem 2], cf. also [34, Example 3.5]). It can be established that

H =
{
h = U(·)AUT : U ∈ Un, A = diag (a1, . . . , an), |ai| = 1

}
.

It follows that condition (i) in Theorem 3.16 is fulfilled. Consequently, part (ii) of this
theorem holds. For instance, for the operator L : V → V given by LX = XT one has
W = {X ∈ V : LX = X} and L is G-doubly stochastic, since LX ≺G X for X ∈ V by
s(XT ) = s(X) [29, p. 154].

On the other hand, the orthoprojector from V onto W is given by

PX =
X +XT

2
for X ∈Mn(C).

By virtue of Theorems 3.16, 3.1 and 3.12 via the Takagi Decomposition one obtains

s
(X +XT

2

)
≺w s(X) for X ∈Mn(C).

4. Morphisms of E-systems. In this section we study properties and applications of
morphisms of E-systems.

Unless otherwise stated, V and W are finite-dimensional real inner product spaces,
and G and H are closed subgroups of the orthogonal groups O(V ) and O(W ), respectively.

4.1. Motivation. In [35] Lewis introduced the notion of isomorphic ND systems.

Definition 4.1 (Isomorphic ND systems). Two ND systems (V,G, (·)↓) and (W,H, (·)↓)
are said to be isomorphic if there exist an inner product space isomorphism K : V →W

and a group isomorphism ϕ : G → H such that (Kx)↓ = Kx↓ and Kgx = ϕ(g)Kx for
x ∈ V and g ∈ G [35, p. 931].

In order to motivate our next definition, we give an example.

Example 4.2. Let (V,G,D) be the E-system defined in Example 2.18. It is known that

s(A ◦X) ≺w s(A) ◦ s(X) for A,X ∈Mn(C), (11)
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where ◦ denotes the Hadamard (entrywise) product of matrices in Mn(C) and of vectors
in Rn (see [32, p. 168]).

Assume A is a diagonal matrix with decreasingly ordered positive diagonal entries.
Define the linear operator KA : Mn(C)→Mn(C) by

KAX = A ◦X for X ∈Mn(C).

Let (W,H,E) = (V,G,D). Then KAD ⊂ E and inequality (11) leads to

(KAx)↓ ≺H KAx↓ for x ∈ V . (12)

Likewise, the following result holds for the conventional product:

s(AX) ≺w s(A) ◦ s(X) for A,X ∈Mn(C) (13)

(see [32, p. 168]). Taking

KAX = AX for X ∈Mn(C)

with diagonal matrix A as above, we deduce from (13) that (12) is satisfied.

4.2. Morphisms and simple morphisms

Definition 4.3 (Morphism). Given two E-systems E = (V,G,D) and F = (W,H,E), a
linear operator K is said to be an E ,F-morphism if

KD ⊂ E and (Kx)↓ ≺H Kx↓ for x ∈ V . (14)

The set of all morphisms of E-systems E and F is denoted by Mor (E ,F).

The second part of condition (14) can be restated in the following equivalent form:

y ≺G x implies Ky ≺H Kx for x ∈ D and y ∈ V . (15)

An important class of E ,F-morphisms are simple morphisms.

Definition 4.4 (Simple morphism). Given two E-systems E = (V,G,D) and F =
(W,H,E), a linear operator K : V →W is said to be a simple morphism, if

KD ⊂ E and Kx ≡H Kx↓ for x ∈ V ,

or equivalently,

KD ⊂ E and Kgx ≡H Kx for x ∈ D and g ∈ G.

The set of all simple morphisms of E-systems E and F is denoted by SMor (E ,F).

The set Mor (E ,F) of E ,F-morphisms is a closed convex cone. The set Mor E =
Mor (E , E) is a selfadjoint semigroup.

Hereafter K∗ : W → V is the dual operator (adjoint) of K (see (10)).

Theorem 4.5 ([55, Theorem 2.1]). Assume E = (V,G,D) and F = (W,H,E) are
E-systems, and K : V → W is a linear operator. The following two conditions are
equivalent :

(i) KD ⊂ E, and Kgx ≺H Kx for x ∈ D and g ∈ G.
(ii) K∗E ⊂ D, and K∗hz ≺G K∗z for z ∈ E and h ∈ H.



136 M. NIEZGODA

Theorem 4.5 asserts that K is a morphism if and only if K∗ is so. Furthermore,

K ∈ Mor (E ,F) implies K∗K ∈ Mor (E) and KK∗ ∈ Mor (F).

The next result suggests that by employing some easily checkable classes of mor-
phisms K∗, one can get other morphisms K.

Theorem 4.6 ([55, Theorem 2.2]). Assume E = (V,G,D) and F = (W,H,E) are
E-systems, and K : V → W is a linear operator. Suppose that F0 = (W0, H0, E0) is
a subsystem of F such that KV ⊂W0.

If K∗ ∈ Mor (F0, E), i.e., K∗E0 ⊂ D and

K∗h0z ≺G K∗z for z ∈ E0 and h0 ∈ H0,

then K ∈ Mor (E ,F0), i.e., KD ⊂ E0 and

Kgx ≺H0 Kx for x ∈ D and g ∈ G. (16)

In particular, if K∗ ∈ SMor (F0, E), i.e., K∗E0 ⊂ D and

for z ∈ E0 and h0 ∈ H0 there exists g ∈ G such that K∗h0z = gK∗z, (17)

then K ∈ Mor (E ,F0).
For instance, if E = F and the restriction of K∗ to W0 is the identity, then (16)

holds.

4.3. Homomorphisms. Throughout this subsection, W0 is a finite-dimensional real
inner product space, H0 is a closed subgroup of the orthogonal group O(W0), and E0 is
a closed convex cone included in W0. We define ‖w‖ = 〈w,w〉1/2 for w ∈W0.

Our aim is to provide some sufficient conditions for triple F0 = (W0, H0, E0) to be an
E-system. We begin with axiom (A1).

Theorem 4.7 ([55, Theorem 3.1]). The following three statements are equivalent :

(i) Axiom (A1) is satisfied for F0 = (W0, H0, E0).
(ii) For any w ∈W0 there exists u ∈ E0 such that w ≺H0 u and ‖w‖ = ‖u‖.

(iii) There exist a triple E = (V,G,D) (not necessarily an E-system) and a linear oper-
ator K : V →W0 such that the following conditions are satisfied :

W0 = KV, E0 = KD and H0 is a closed subgroup of O(W0). (18)

For z ∈ V and x ∈ D, z ≺G x implies Kz ≺H0 Kx. (19)

For w ∈W0 there exist z ∈ V and x ∈ D such that

z ≺G x, w = Kz and ‖w‖ = ‖Kx‖.
(20)

In the rest of this subsection, we investigate systems F0 = (W0, H0, E0) of form (18),
where K : V → W0 is a linear operator and E = (V,G,D) is a triple (not necessarily an
E-system). In light of Theorem 4.7, we must concentrate on operators satisfying (19)–(20).

According to (14) and (15), we say that K is an E ,F0-morphism if (19) is met. (Here
we do not assume that E and F0 are E-systems.)

Definition 4.8 (Radial morphism). An E ,F0-morphism K is said to be E ,F0-radial
morphism if (20) holds.
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Note that each simple morphism is a radial morphism.
Now we focus on axiom (A2) for the triple F0 = (W0, H0, E0).

Theorem 4.9 ([55, Theorem 3.3]). Let E = (V,G,D) be an E-system and let K be an
E ,F0-radial morphism.

The following two conditions are equivalent :

(i) Axiom (A2) is satisfied for F0 = (W0, H0, E0).
(ii) The operator K∗ : W0 → V is an F0, E-morphism, i.e., K∗E0 ⊂ D and

K∗h0u ≺G K∗u for h0 ∈ H0 and u ∈ E0.

For triples F0 = (W0, H0, E0) and F = (W,H,E), we write F0 ⊂ F if

W0 ⊂W, E0 ⊂ E and H0 ⊂ {h ∈ H : hW0 ⊂W0}|W0 .

Corollary 4.10 ([55, Corollary 3.4]). Let E = (V,G,D) be an E-system and let K be
an E ,F0-radial morphism.

If there exists an E-system F = (W,H,E) such that F0 ⊂ F , then F0 = (W0, H0, E0)
is an E-system.

Definition 4.11 (Homomorphism). An E ,F0-morphism K is called an E ,F0-homo-
morphism if for u ∈ E0 and w ∈ W0, w ≡H0 u implies that there exist x ∈ D and
z ∈ V such that z ≺G x, u = Kx and w = Kz.

Theorem 4.12 provides further sufficient conditions for F0 = (W0, H0, E0) to be an
E-system (cf. [49, Theorems 3.4 and 3.9]).

Theorem 4.12 ([55, Theorem 3.5]). Let E = (V,G,D) be an E-system and let K be an
E ,F0-radial homomorphism.

If K∗KD ⊂ D, then F0 = (W0, H0, E0) is an E-system.

Now we consider partial isometries.

Definition 4.13 (Partial isometry). A linear operator K : V →W is said to be a partial
isometry if KK∗K = K.

In the event that K is a partial isometry, the operator KK∗ : W → W is the ortho-
projector from W onto the subspace KK∗W = KV = W0.

Theorem 4.14 ([55, Theorem 3.6]). Let K : V → W be a partial isometry with finite-
dimensional real inner product spaces V and W , and let D ⊂ V be a closed convex cone.
Let F0 = (W0, H0, E0), where W0 = KV , E0 = KD and H0 is a closed subgroup of
O(W0). Suppose that F = (W,H,E) is an E-system such that F0 ⊂ F and KK∗E = E0.

Then the following statements are equivalent :

(i) F0 = (W0, H0, E0) is an E-system.
(ii) KK∗w ≺H0 KK

∗w↓ for w ∈W , where (·)↓ stands for the normal map of F .
(iii) W0 ⊂

⋃
h∈H hE0, and, in addition, the operator KK∗ is an F ,F0-radial homomor-

phism.
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4.4. Applications to matrices. We illustrate Theorem 4.6 for the matrix E-system
E = (V,G,D) defined in Example 2.18 and their subsystems. Let F = (W,H,E) with
W = V , H = G and E = D.

Some subsystems F0 = (W0, H0, E0) of F are collected below (see [15, 16, 35, 70]).

(I) W0 = Mn(R) = the space of n× n real matrices,
H0 = the group of orthogonal equivalences U1(·)U2 with U1, U2 ∈ On,
E0 = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}.

(II) W0 = Sn(C) = the space of n× n complex symmetric matrices,
H0 = the group of unitary congruences U(·)UT with U ∈ Un,
E0 = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}.

(III) W0 = the space of n×n matrices of the form ( X 0
0 0 ) with k×k matrix X ∈Mk(C)

and 1 ≤ k ≤ n,
H0 = the group of unitary similarities U1(·)U2 with U1 and U2 being the matrix

of the form
(

U 0
0 In−k

)
for some k × k unitary matrix U ,

E0 = {diag (s1, . . . , sk, 0, . . . , 0) : s1 ≥ . . . ≥ sk ≥ 0}.
(IV) W0 = Dn(C) = the space of n× n complex diagonal matrices,

H0 = the group of equivalences U1(·)U2 with U1, U2 ∈ GPn(C),
E0 = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}.

(V) W0 = Dn(R) = the space of n× n real diagonal matrices,
H0 = the group of equivalences U1(·)U2 with U1, U2 ∈ GPn(R),
E0 = {diag (s1, . . . , sn) : s1 ≥ . . . ≥ sn ≥ 0}.

Corollary 4.15 ([55, Corollary 4.1]). For any of the above subsystems F0, let K :
Mn(C)→Mn(C) be a linear operator such that KMn(C) ⊂W0.

(i) If the restriction K∗|W0 is a simple morphism of F0 and E, i.e., if (17) is satisfied
and K∗E0 ⊂ D, then K is a morphism of E and F0, i.e., KD ⊂ E0 and

s(Kx) ≺w s(Kx↓) for x ∈Mn(C), (21)

where x↓ = diag s(x).
(ii) If the restriction K∗|W0 is the identity on W0, then inequality (21) holds.
(iii) If K is symmetric (K∗ = K) and D ⊂ W0, and if the restriction K|W0 is the

identity, then inequality (21) holds in the form

s(Kx) ≺w s(x) for x ∈Mn(C). (22)

For the subsystem defined in (IV), (22) generalizes the classical Ky Fan’s inequal-
ity (4).

The next result is a consequence of Theorem 4.14.

Corollary 4.16 ([55, Corollary 4.2]). Let K : Mn(C) → Mn(C) be a partial isome-
try. Let W0 = KV , E0 = KD and H0 be a closed subgroup of O(W0). Suppose that
KK∗D = E0. Then

F0 = (W0, H0, E0) is an E-system iff KK∗w ≺H0 KK
∗w↓ for w ∈Mn(C),

where w↓ = diag s(w).
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5. Chebyshev functional and its applications

5.1. Motivation

Definition 5.1 (Synchronous functions). Two functions f, g : [a, b] → R are said to be
synchronous if

[f(t)− f(u)][g(t)− g(u)] ≥ 0 for t, u ∈ [a, b].

The celebrated Chebyshev integral inequality says that if real functions f, g ∈ L2
[a,b]

are synchronous then

(b− a)
∫ b

a

f(t)g(t) dt−
∫ b

a

f(t) dt ·
∫ b

a

g(t) dt ≥ 0. (23)

Note that the coefficient b − a in (23) satisfies
∫ b

a
v2(t) dt = b − a with v(t) = 1,

t ∈ [a, b].
It is obvious that each two nonincreasing functions f, g : [a, b]→ R are synchronous.

Thus Chebyshev inequality (23) is true for two nonincreasing functions.
There are many inequalities similar to (23), e.g., Andersson’s result [1] asserts that if

f, g : [0, 1]→ R and f(0) = g(0) = 0 and both f and g are increasing and convex then

3
4

∫ 1

0

f(t)g(t) dt−
∫ 1

0

f(t) dt ·
∫ 1

0

g(t) dt ≥ 0.

Fink [22] proved that(∫ 1

0
t dσ(t)

)2∫ 1

0
t2 dσ(t)

∫ 1

0

f(t)g(t) dσ(t)−
∫ 1

0

f(t) dσ(t) ·
∫ 1

0

g(t) dσ(t) ≥ 0 (24)

for functions

f, g ∈
{
h ∈ C1

[0,1] : h(0) = 0 and h(t)/t is increasing on (0, 1]
}

and measures σ such that∫ s

0

t dσ(t) ≥ 0 and
∫ 1

s

t dσ(t) ≥ 0 for s ∈ [0, 1], and
∫ 1

0

t dσ(t) > 0.

A discrete counterpart of (24) is the following Toader’s weighted inequality [73]:(∑n
i=1 ivi

)2∑n
i=1 i

2vi

n∑
i=1

xiyivi −
n∑

i=1

xivi ·
n∑

i=1

yivi ≥ 0 (25)

provided that vi > 0, i = 1, 2, . . . , n, and x and y are star-shaped, i.e., the sequences
i→ xi/i and i→ yi/i are nondecreasing (see [51, p. 239]).

Definition 5.2 (Synchronous n-tuples). Two n-tuples x = (x1, . . . , xn) ∈ Rn and
y = (y1, . . . , yn) ∈ Rn are said to be synchronous if

(xi − xj)(yi − yj) ≥ 0 for i, j ∈ {1, 2, . . . , n}.

A discrete version of (23) is as follows. If x, y ∈ Rn are synchronous then

n

n∑
i=1

xiyi −
n∑

i=1

xi ·
n∑

i=1

yi ≥ 0. (26)

This is the Chebyshev sum inequality.
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The coefficient n in (26) satisfies
∑n

i=1 v
2
i = n, where vi = 1 for i = 1, 2, . . . , n, and

the unital vector v = (1, . . . , 1) ∈ Rn is a common fixed point for all operators in the
group Pn of n× n-permutation matrices, i.e., v ∈ {a ∈ Rn : pa = a for p ∈ Pn}.

In Subsections 5.2–5.3 we show methods for establishing inequalities similar to
(23)–(26) with the help of the Chebyshev functional, Eaton triples and the notion of
similarly separable vectors.

Throughout this section, unless otherwise stated, V is a finite-dimensional real linear
space with an inner product 〈·, ·〉, and O(V ) denotes the orthogonal group acting on V .

5.2. Chebyshev functional and E-systems. Here we present Chebyshev type in-
equalities in the framework of E-systems.

Definition 5.3 (Chebyshev functional). The Chebyshev functional is defined by

Tv(x, y) = 〈v, v〉〈x, y〉 − 〈x, v〉〈y, v〉 for x, y ∈ V , (27)

where 0 6= v ∈ V [50, p. 535].

Definition 5.4 (G-synchronous vectors). Given an Eaton triple (V,G,D), two vectors
x, y ∈ V are said to be G-synchronous if there exists g ∈ G such that x, y ∈ gD.

We define
MG(V ) = {a ∈ V : ga = a for g ∈ G}.

Theorem 5.5 ([50, Theorem 3.1]). Let (V,G,D) be an Eaton triple with one-dimensional
subspace MG(V ) = span v, where 0 6= v ∈ V .

If x, y ∈ V are G-synchronous then the following Chebyshev type inequality holds:

〈v, v〉〈x, y〉 − 〈x, v〉〈y, v〉 ≥ 0. (28)

In the forthcoming examples we give some interpretations of inequality (28).

Example 5.6. Let (V,G,D) = (Rn,Pn, D), where D = {a = (a1, . . . , an) ∈ Rn : a1 ≥
a2 ≥ . . . ≥ an}. Then MG(V ) = span v for v = (1, . . . , 1) ∈ Rn.

Let ((x1, y1), . . . , (xn, yn)) be a sample of size n from distribution of a two-dimensional
random vector. If x = (x1, . . . , xn) and y = (y1, . . . , yn) are synchronous then x and y

are positively correlated, i.e.,

Sx,y =
1
n

n∑
i=1

xiyi −
1
n

n∑
i=1

xi ·
1
n

n∑
i=1

yi ≥ 0

(see (26)–(28)).

Example 5.7 ([50, pp. 540–541]). Let (V,G,D) be the Eaton triple defined in Exam-
ple 2.17. Then MG(V ) = span In, where In denotes the n-by-n identity matrix. The
G-synchronicity of Hermitian matrices X and Y means that X and Y are simultaneously
diagonalizable. Additionally, X↓ = diag λ(X), where λ(X) = (λ1(X), . . . , λn(X)) is the
vector of the eigenvalues of a Hermitian matrix X with λ1(X) ≥ . . . ≥ λn(X).

In light of Theorem 5.5 the following Chebyshev type inequality holds:

n

n∑
i=1

λi(X)λi(Y ) ≥ trX trY for X,Y ∈ Hn.
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5.3. Generalized Chebyshev functional. Motivated by Theorem 5.5, we study a
generalization of Chebyshev functional (27).

Definition 5.8 (Generalized Chebyshev functional). Assume (V, 〈·, ·〉) is an inner prod-
uct space. The generalized Chebyshev functional is defined by

Tv,w(x, y) = 〈v, w〉〈x, y〉 − 〈x, v〉〈y, w〉 for x, y ∈ V , (29)

where 0 6= v, w ∈ V .

We are interested in sufficient and necessary conditions for the functional (29) to
be nonnegative. As will be seen below, the key property is the separability of some
vectors. Separable vectors are natural generalizations of monotone, monotone in mean,
star-shaped and convex sequences, etc.

Definition 5.9 (Separable vector). Let (V, 〈·, ·〉) be an inner product space and e =
(e1, . . . , en) ∈ V n, v ∈ V and µ ∈ R. Let J1 and J2 be index sets with J1 ∪ J2 =
{1, 2, . . . , n}.

A vector z ∈ V is said to be µ, v-separable on J1 and J2 with respect to e, if

〈z − µv, ei〉 ≥ 0 for i ∈ J1, and 〈z − µv, ej〉 ≤ 0 for j ∈ J2 (30)

(see [51, p. 235]).

Note that if 〈v, ei〉 > 0 for i = 1, 2, . . . , n then the µ, v-separability of vector z is
equivalent to

〈z, ei〉
〈v, ei〉

≥ µ ≥ 〈z, ej〉
〈v, ej〉

for i ∈ J1 and j ∈ J2. (31)

The three examples below include interpretations of the notion of separability in
V = Rn with the standard inner product

〈a, b〉 =
n∑

k=1

akbk for a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn). (32)

Example 5.10. If z = (z1, . . . , zn) ∈ Rn, v = (1, 1, . . . , 1) ∈ Rn and e = (e1, . . . , en) is
the standard basis of Rn, i.e., ek = ( 0, . . . , 0︸ ︷︷ ︸

k−1 times

, 1, 0, . . . , 0) ∈ Rn for k = 1, 2, . . . , n, then

condition (31) means that

zi ≥ µ ≥ zj for i ∈ J1 and j ∈ J2.

Example 5.11 ([59, p. 937]). Remind that a vector z = (z1, z2, . . . , zn) ∈ Rn is said to
be star-shaped if

z1
1
≤ z2

2
≤ . . . ≤ zn

n
. (33)

Choose v = (1, 2, . . . , n). Then (33) can be rewritten as

〈z, e1〉
〈v, e1〉

≤ 〈z, e2〉
〈v, e2〉

≤ . . . ≤ 〈z, en〉
〈v, en〉

.

For arbitrary m ∈ {0, 1, . . . , n}, take µ to be any number between 〈z,em〉
〈v,em〉 and 〈z,em+1〉

〈v,em+1〉

(with the convention that 〈z,e0〉
〈v,e0〉 = −∞ and 〈z,en+1〉

〈v,en+1〉 = ∞). Then (31) is fulfilled for
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J1 = {m+ 1,m+ 2, . . . , n} and J2 = {1, 2, . . . ,m}. In other words, z is µ, v-separable on
J1 and J2 with respect to e for each m ∈ {0, 1, . . . , n}.

Example 5.12 ([59, p. 937]). We show that the majorization relation x ≺ y corresponds
to the µ-separability of the vector y − x for µ = 0 and J1 = {1, 2, . . . , n} and J2 = {n}.

Let x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn with x1 ≥ x2 ≥ . . . ≥ xn

and y1 ≥ y2 ≥ . . . ≥ yn. Suppose that x is majorized by y. That is,
k∑

i=1

(yi − xi) ≥ 0 =
n∑

i=1

(yi − xi) for k = 1, 2, . . . , n. (34)

Put v = (1, . . . , 1) ∈ Rn and ek = (1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0) ∈ Rn for k = 1, 2, . . . , n. Then

(34) reads
〈y − x, ek〉 ≥ 0 = 〈y − x, en〉 for k = 1, 2, . . . , n.

With µ = 0 and J1 and J2 defined above, one has

〈y − x− µv, ei〉 ≥ 0 = 〈y − x− µv, ej〉 for i ∈ J1 and j ∈ J2.

Therefore the difference z = y − x is 0, v-separable on J1 and J2 w.r.t. e (see (30)).

We define

Se(v; J1, J2) = {z ∈ V : z is v-separable on J1 and J2 w.r.t. e for some µ ∈ R}.

The role of the separability in determining the sign of the generalized Chebyshev
functional (29) is shown in the following result.

Theorem 5.13 ([48, Theorem 3.5]). Let (V, 〈·, ·〉) be a finite-dimensional real inner prod-
uct space with two dual bases e = (e1, . . . , en) and d = (d1, . . . , dn) in V , i.e., 〈ei, dj〉 = δij
(Kronecker delta), i, j ∈ J = {1, 2, . . . , n}.

Let y, w, v ∈ V with 〈w, v〉 > 0. Suppose that J1 and J2 are index sets with J1∪J2 = J .
Then the following two statements are equivalent :

(i) The generalized Chebyshev inequality

〈w, v〉〈z, y〉 − 〈z, w〉〈y, v〉 ≥ 0 (35)

holds for all z ∈ Se(v; J1, J2).
(ii) The vector y is η, w-separable on J1 and J2 w.r.t. d, where η = 〈y, v〉/〈w, v〉.

The next definition is inspired by Theorem 5.13.

Definition 5.14 (Similar separability). Let e = (e1, . . . , en) and d = (d1, . . . , dn) be two
sequences of vectors in V . Assume v, w ∈ V and µ, η ∈ R.

Two vectors a, b ∈ V are said to be similarly separable w.r.t. (µ, v, e; η, w, d) if there
exist index sets J1 and J2 with J1 ∪ J2 = {1, 2, . . . , n} such that

(i) a is µ, v-separable on J1 and J2 w.r.t. e, and
(ii) b is η, w-separable on J1 and J2 w.r.t. d

(see [59, p. 937]).
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Corollary 5.15 ([54, Lemma 2.1]). Let (V, 〈·, ·〉) be a finite-dimensional real inner prod-
uct space with two dual bases e = (e1, . . . , en) and d = (d1, . . . , dn) in V . Let z, y, w, v ∈ V
with 〈w, v〉 > 0. Define η = 〈y, v〉/〈w, v〉.

If the vectors z, y ∈ V are similarly separable w.r.t. (µ, v, e; η, w, d) for some µ ∈ R,
then the generalized Chebyshev inequality (35) holds.

It is interesting that the generalized Chebyshev inequality (35) contains Cauchy–
Schwarz inequality. Namely, if y = z, w = v and d = e, then the similar separability of
z, y holds automatically for µ = η. In this case (35) reduces to the C–S inequality

‖z‖2‖v‖2 ≥ 〈z, v〉2 for z, v ∈ V .

6. Applications of similar separability. In this section we apply Theorem 5.13 to
give some generalizations of the classical Hardy–Littlewood–Pólya (H–L–P) Theorem
for convex functions and of Schur–Ostrowski Theorem for differentiable Schur-convex
functions. In addition, we deal with extended G-majorization.

6.1. Generalized H–L–P theorems. We begin with a result of H–L–P giving rela-
tionship between majorization and convexity.

Theorem 6.1 ([27]). Let x, y ∈ Rn with xi, yi ∈ I, where I ⊂ R is an interval.
The following two statements are equivalent :

(i) y ≺ x.
(ii) The following inequality holds for all continuous convex functions f : I → R:

n∑
k=1

f(yk) ≤
n∑

k=1

f(xk).

Some extensions of Theorem 6.1 can be found in [11, 44].
For a given positive vector (p1, . . . , pn) ∈ Rn

+, we introduce inner product on Rn by

〈a, b〉 =
n∑

k=1

akbkpk for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn. (36)

Theorem 6.2 ([54, Theorem 2.2]). Assume f : I → R is a convex function on the
open interval I ⊂ R. Let x = (x1, . . . , xn), y = (y1, . . . , yn) and p = (p1, . . . , pn), where
xi, yi ∈ I, pi > 0 for i ∈ J = {1, . . . , n}.

Let ∂f : I → R be the subdifferential of f , and let ϕ ∈ ∂f . Define

Φ(z) = (ϕ(z1), . . . , ϕ(zn)) for z = (z1, . . . , zn) ∈ In.

Let e and d be dual bases for Rn with inner product given by (36), and w, v ∈ Rn with
〈w, v〉 > 0. Let η = 〈x− y, v〉/〈w, v〉.

Suppose that there exist index sets J1 and J2 with J1 ∪ J2 = J such that

(i) y is v-separable on J1 and J2 w.r.t. e,
(ii) x− y is η, w-separable on J1 and J2 w.r.t. d, and

(iii) Φ preserves v-separability on J1 and J2 w.r.t. e.

Under the above assumptions, the following assertions hold.
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(A) If 〈x− y, v〉 = 0, then
n∑

k=1

pkf(yk) ≤
n∑

k=1

pkf(xk). (37)

(B) If 〈x− y, v〉 ≥ 0 and 〈Φ(y), w〉 ≥ 0, then (37) holds.

6.2. Generalization of Schur–Ostrowski Theorem. Characterizations of differen-
tiable S-convex and G-increasing functions are provided below in Schur–Ostrowski’s The-
orem 6.3 and in Eaton–Perlman’s Theorem 6.4, respectively.

Theorem 6.3 ([66, 62]). Assume that F is a symmetric real function having a differential
on Rn. Then a necessary and sufficient condition that F be a Schur-convex function on
Rn is

(zi − zj)
(∂F
∂zi

(z)− ∂F

∂zj
(z)
)
≥ 0 for z ∈ Rn and i, j = 1, 2, . . . , n. (38)

Statement (38) is called Schur–Ostrowski’s condition (in short, S–O condition).

Theorem 6.4 ([18]). Let G be a reflection group acting on Rn. Assume that F is a G-
invariant real function possessing a differential on Rn. Then a necessary and sufficient
condition that F be G-increasing on Rn is

〈z, r〉 · 〈∇F (z), r〉 ≥ 0 for z ∈ Rn and r ∈ Rn such that Sr ∈ G,

where ∇F (z) denotes the gradient of F at z.

Let (V, 〈·, ·〉) be a real Hilbert space with norm ‖ · ‖ = 〈·, ·〉1/2.
For a function F : A → R with convex A ⊂ V , the symbol ∇hF (z) stands for the

directional derivative of F in the direction h ∈ V at the point z, and ∇F (z) stands for
the gradient of F at z.

Definition 6.5 (Generalized Schur–Ostrowski’s condition). Given a convex set A ⊂ V

and x, y ∈ A and v ∈ V , a differentiable function F : A→ R is said to satisfy generalized
Schur–Ostrowski condition (GSOC) if for each µ ∈ R and z ∈ [x, y] there exists µ̃ ∈ R
such that

〈z − µv, ei〉 · 〈∇F (z)− µ̃v, ei〉 ≥ 0 for i = 1, 2, . . . , n

(see [59]).

Definition 6.6 (Function class S(A, x, y) satisfying GSOC). Given a convex set A ⊂ V
and x, y ∈ A and v, w ∈ V , by S(A, x, y) we denote the class of all differentiable functions
F : A→ R satisfying the generalized Schur–Ostrowski condition (GSOC) and such that
the maps [0, 1] 3 t → ∇y−xF (x + t(y − x)) and [0, 1] 3 t → ∇wF (x + t(y − x)) are
integrable on [0, 1] (see [59, p. 939]).

Members of the class S(A, x, y) are called generalized Schur-convex functions.

In the forthcoming results we generalize the sufficiency part of Theorems 6.3 and 6.4.

Theorem 6.7 ([59, Theorem 4]). Let W be a finite-dimensional subspace of V and e =
(e1, . . . , en) and d = (d1, . . . , dn) be dual bases in W . Let A ⊂ V be a convex set and let
x, y ∈ A and w, v ∈ V with 〈w, v〉 > 0.



A REVIEW OF SELECTED TOPICS IN MAJORIZATION THEORY 145

Suppose that for some index sets J1 and J2 with J1 ∪ J2 = {1, 2, . . . , n} and for some
µ1, µ2 ∈ R and η = 〈y − x, v〉/〈w, v〉,

〈x− µ1v, ei〉 > 0 for i ∈ J1 and 〈x− µ1v, ej〉 < 0 for j ∈ J2, (39)

〈y − µ2v, ei〉 > 0 for i ∈ J1 and 〈y − µ2v, ej〉 < 0 for j ∈ J2, (40)

〈y − x− ηw, di〉 ≥ 0 for i ∈ J1 and 〈y − x− ηw, dj〉 ≤ 0 for j ∈ J2. (41)

Let F ∈ S(A, x, y). Assume y − x− ηw ∈W and ∇F (z)− µ̃v ∈W for z ∈ [x, y].
Under the above assumptions, the following three assertions hold.

(A) F (y)− F (x) ≥ 〈y − x, v〉
〈w, v〉

∫ 1

0

〈∇F (x+ th), w〉 dt.

(B) If 〈y − x, v〉 = 0 then F (x) ≤ F (y).
(C) If 〈y − x, v〉 ≥ 0 and 〈∇F (z), w〉 ≥ 0 for z ∈ [x, y], then F (x) ≤ F (y).

Theorem 6.7 can be simplified as follows.

Corollary 6.8 ([59, Corollaries 9-10]). The assertions (A), (B) and (C) of Theorem 6.7
are still true if the conditions (39), (40) and (41) are replaced by

〈x, e1〉
〈v, e1〉

>
〈x, e2〉
〈v, e2〉

> . . . >
〈x, en〉
〈v, en〉

, (42)

〈y, e1〉
〈v, e1〉

>
〈y, e2〉
〈v, e2〉

> . . . >
〈y, en〉
〈v, en〉

, (43)

〈y − x, d1〉
〈w, d1〉

≥ 〈y − x, d2〉
〈w, d2〉

≥ . . . ≥ 〈y − x, dn〉
〈w, dn〉

(44)

(provided v is e-positive and w is d-positive).

An application of Theorem 6.7 to GIC orderings is included in the next result.

Theorem 6.9 ([59, Theorem 13]). Let ≺G be a GIC ordering on V induced by compact
group G ⊂ O(V ) and closed convex cone D ⊂ V .

Let V0 be a subspace of V and (e1, . . . , en) and (s1, . . . , sn) be dual bases in V0 such
that C = cone {e1, . . . , en1} and D = cone {s1, . . . , sn2} are dual cones in V0 with n1 ≤
n ≤ n2, where sn+1, . . . , sn2 ∈ V .

Assume w, v ∈ V with 〈w, v〉 > 0. Let x0, y0 ∈ V satisfy x0, y0 ∈ riD, x0 ≺G y0, and
〈x0, v〉 = 〈y0, v〉.

Put x = x0 + u+ αw and y = y0 + u+ βw, where u ∈ V and α, β ∈ R are such that
u+ αw ∈ span v and u+ βw ∈ span v.

Let F ∈ S(A, x, y), where A = riD + span v.
Under the above assumptions, the following three assertions hold.

(A) F (y)− F (x) ≥ (β − α)
∫ 1

0
〈∇F (x+ th), w〉 dt.

(B) If α = β then F (x) ≤ F (y).
(C) If α ≤ β and 〈∇F (z), w〉 ≥ 0 for z ∈ [x, y], then F (x) ≤ F (y).

6.3. Extended G-majorization. For classical majorization ≺ on Rn the following
criterions are well-known.
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Theorem 6.10 ([39, Theorem B.1, p. 186], [75, Lemma 4]). Let x, y ∈ Rn, y1 ≥ y2 ≥
. . . ≥ yn,

∑n
i=1 xi =

∑n
i=1 yi. If there exists m (1 ≤ m ≤ n, m ∈ N) such that

yi ≤ xi for i = 1, 2, . . . ,m and yj ≥ xj for j = m+ 1,m+ 2, . . . , n,

then
y ≺ x.

Theorem 6.11 ([40, Theorem 2.4]). If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) with
xi > 0, 1 ≤ i ≤ n, and y1 ≥ y2 ≥ . . . ≥ yn > 0 and

x1

y1
≥ . . . ≥ xn

yn
,

then
y∑n

j=1 yj
≺ x∑n

j=1 xj
.

We extend Theorems 6.10 and 6.11 from the classical majorization ≺ to group-induced
cone orderings.

Theorem 6.12 ([60, Theorem 3.1]). Assume that ≺G is a GIC ordering on V induced
by finite group G and convex cone D0 = cone {s1, s2, . . . , sq} with s1, s2, . . . , sq ∈ V . Set
D = cone {s1, s2, . . . , sn}, where s1, s2, . . . , sn form a basis of V , n ≤ q.

Let x, y, v ∈ V with 〈x, v〉y ∈ D0 (e.g., 〈x, v〉 ≥ 0 and y ∈ D0). Suppose that for
k = 1, 2, . . . , n there exist dual bases e = (e1, . . . , en) and d = (d1, . . . , dn) of V , and
index sets J1 and J2 with J1 ∪ J2 = {1, 2, . . . , n} such that

(i) x is η, y-separable on J1 and J2 w.r.t. e with η = 〈x, v〉/〈y, v〉 and 〈y, v〉 > 0,
(ii) sk is v-separable on J1 and J2 w.r.t. d.

If n < q, assume additionally that〈
〈x, v〉y, sk

〉
≤
〈
〈y, v〉x, sk

〉
for k = n+ 1, . . . , q. (45)

Then the following G-majorization inequality holds:

〈x, v〉y ≺G 〈y, v〉x. (46)

If 〈x, v〉 〈y, v〉 > 0 then (46) becomes
y

〈y, v〉
≺G

x

〈x, v〉
.

Theorem 6.13 ([60, Theorem 3.4]). Assume that ≺G is a GIC ordering on V induced
by finite group G and convex cone D0 = cone {s1, s2, . . . , sq} with s1, s2, . . . , sq ∈ V . Set
D = cone {s1, s2, . . . , sn}, where s1, s2, . . . , sn form a basis of V , n ≤ q.

Let x, y, v ∈ V be such that 〈x, v〉 > 0, 〈y, v〉 > 0 and y ∈ D0.
Suppose that there exist a basis e = (e1, e2, . . . , en) and an index m ∈ {0, 1, 2, . . . , n}

such that

(i) x is η, y-separable on J1 and J2 w.r.t. e, where η = 〈x,v〉
〈y,v〉 and J1 = {1, 2, . . . ,m},

J2 = {m+ 1,m+ 2, . . . , n},
(ii) the vectors s1, s2, . . . , sn, e1, e2, . . . , en and v satisfy conditions

si ∈ cone {e1, . . . , em} and v − sj ∈ cone {em+1, . . . , en} for i ∈ J1 and j ∈ J2.
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If n < q, assume additionally that (45) holds. Then
y

〈y, v〉
≺G

x

〈x, v〉
. (47)

If in addition 〈x, v〉 = 〈y, v〉 then
y ≺G x. (48)

Corollary 6.14 ([60, Corollary 3.5]). Under the hypotheses of Theorem 6.13, let con-
ditions (i)–(ii) of Theorem 6.13 be replaced by the following statement :

There exists a basis e = (e1, e2, . . . , en) of V such that

(i)
〈x, e1〉
〈y, e1〉

≥ 〈x, e2〉
〈y, e2〉

≥ . . . ≥ 〈x, en〉
〈y, en〉

(with positive denominators),

(ii) the vectors s1, s2, . . . , sn, e1, e2, . . . , en and v satisfy conditions

si = e1 + e2 + . . .+ ei for i = 1, 2, . . . , n, and v = sn.

Then inequality (47) holds.

By comparing (47) and (48) we can call the relation (47) extended G-majorization of
y and x with respect to v.

7. Shi and Ky Fan type inequalities. H.-N. Shi [67] proved the following majoriza-
tion result (see also [26, Lemmas 2.2–2.3], [39, p. 9], [74, Lemma 2]).

Theorem 7.1 ([67, pp. 81–83]). If x = (x1, . . . , xn) ∈ Rn, n ≥ 2,
∑n

i=1 xi = s > 0,
c ≥ s, then

cv + x

nc+ s
≺ x

s
and

cv − x
nc− s

≺ x

s
,

where v = (1, 1, . . . , 1) ∈ Rn.

We denote by A(z1, z2, . . . , zn) and G(z1, z2, . . . , zn) the arithmetic and geometric
means, respectively, of positive numbers z1, z2, . . . , zn.

The following Ky Fan’s result is of interest.

Theorem 7.2 ([5, p. 5]). Let xi ∈ (0, 1/2] (i = 1, 2, . . . , n). Then the following Ky Fan’s
inequality holds:

G(x1, x2, . . . , xn)
G(1− x1, 1− x2, . . . , 1− xn)

≤ A(x1, x2, . . . , xn)
A(1− x1, 1− x2, . . . , 1− xn)

.

Our purpose in this section is to give an extension of Theorems 7.1 and 7.2 from
the classical majorization preorder ≺ to a class of group-induced cone orderings ≺G. As
applications, some Ky Fan type inequalities are established.

7.1. G-majorization inequalities of Shi type. In the forthcoming theorems we pro-
vide extensions of the above result of Shi (see also [39, p. 9]).

Theorem 7.3 ([58, Theorem 7]). Let (V,G,D) be an Eaton triple and let MG(V ) =
span v for some nonzero v ∈ V . Then

cv + x

〈cv + x, v〉
≺G

x

〈x, v〉
for x ∈ V with 〈x, v〉 > 0, c ≥ 0.

We need some notation.
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Definition 7.4. A sequence a = (a1, a2, . . . , an) ∈ Rn is said to be relatively convex
(resp., relatively concave) with respect to sequence b = (b1, b2, . . . , bn) ∈ Rn if∣∣∣∣∣∣

1 bk ak

1 bl al

1 bm am

∣∣∣∣∣∣ ≥ (≤) 0,

whenever k, l,m ∈ {1, 2, . . . , n} and bk ≤ bl ≤ bm (cf. [44, p. 2]).

Theorem 7.5 ([58, Theorem 11]). Let (V,G,D) be an Eaton triple with MG(V ) = span v
for some nonzero v ∈ V , ‖v‖ > 1. Let D = cone {t1, . . . , tn, tn+1} with t0 = 0, tn = v,
tn+1 = −tn and 1 ≤ 〈ti, v〉 ≤ 〈tn, v〉 for i = 1, . . . , n, and let g0 ∈ G be such that
g0D = −D and tn−j = v − g−1

0 tj for j = 1, 2, . . . , n.
Assume that x ∈ V and c ∈ R are such that c ≥ 〈x, v〉 > 0.
Let a = (a0, a1, . . . , an) and b = (b0, b1, . . . , bn), where ai = 〈ti, x↓〉 and bi = 〈ti, v〉

for i = 0, 1, 2, . . . , n. Suppose that a is relatively concave with respect to b. Then
cv − x
〈cv − x, v〉

≺G
x

〈x, v〉
.

7.2. Generalization of Ky Fan inequality. An application of Theorems 7.3 and 7.5
leads to the following corollaries.

Corollary 7.6 ([58, Corollary 12]). Under the assumptions of Theorem 7.3, let ϕ :
A→ (0,+∞) be a positively homogeneous G-increasing (resp. G-decreasing) function on
G-invariant set A ⊂ V .

If x ∈ A and c ≥ 0 with 〈x, v〉 > 0, then

〈x, v〉
〈cv + x, v〉

≤ (≥)
ϕ(x)

ϕ(cv + x)
. (49)

Corollary 7.7 ([58, Corollary 13]). Under the assumptions of Theorem 7.5, let ϕ :
A→ (0,+∞) be a positively homogeneous G-increasing (resp. G-decreasing) function on
G-invariant set A ⊂ V .

If x ∈ A and c ∈ R with 0 < 〈x, v〉 ≤ c, then

〈x, v〉
〈cv − x, v〉

≤ (≥)
φ(x)

φ(cv − x)
. (50)

See [26, 36, 67, 76] and references therein for a number of results of type (49)–(50)
for S-convex or S-concave functions ϕ.

Example 7.8. Let V = Rn, G = Pn, D = Rn
↓ , v = (1, 1, . . . , 1), c = 1 and

ϕ(z) =
( n∏

i=1

zi

)1/n

for z = (z1, z2, . . . , zn) ∈ (0,+∞)n.

Then inequality (49) of Corollary 7.6 leads to the following Xia-Chu’s inequality:

A(x1, . . . , xn)
A(1 + x1, . . . , 1 + xn)

≥ G(x1, . . . , xn)
G(1 + x1, . . . , 1 + xn)

for 0 < xi, i = 1, . . . , n,

where A(·) and G(·) denote the arithmetic and geometric means of (·) [76, Corollary 4.3].
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Using (50) of Corollary 7.7 yields the following variant of Ky Fan’s inequality:

A(x1, . . . , xn)
A(1− x1, . . . , 1− xn)

≥ G(x1, . . . , xn)
G(1− x1, . . . , 1− xn)

Whenever 0 <
∑n

i=1 xi ≤ 1, i = 1, . . . , n.

8. Applications to Grüss and Ostrowski type inequalities. We denote by Lp
[a,b]

(1 ≤ p < ∞) the space of p-power integrable functions on interval [a, b] equipped with
the norm

‖f‖p =
(∫ b

a

|f(t)|p dt
)1/p

.

The symbol L∞[a,b] stands for the space of all essentially bounded functions on [a, b] with
the norm

‖f‖∞ = ess sup
x∈[a,b]

|f(x)|.

For two real functions f, g : [a, b] → R such that f, g, fg ∈ L1
[a,b], the Chebyshev

functional is defined by

T (f, g) =
1

b− a

∫ b

a

f(t)g(t) dt− 1
b− a

∫ b

a

f(t) dt · 1
b− a

∫ b

a

g(t) dt.

Chebyshev [8] proved that if f ′, g′ ∈ L∞[a,b], then

|T (f, g)| ≤ 1
12

(b− a)2‖f ′‖∞ ‖g′‖∞.

Grüss [25] showed that

|T (f, g)| ≤ 1
4

(β0 − α0)(δ0 − γ0) (51)

provided two bounded integrable functions f, g : [a, b]→ R satisfy

α0 ≤ f(t) ≤ β0 and γ0 ≤ g(t) ≤ δ0 for t ∈ [a, b].

See [10, 21, 31, 37] for generalizations and extensions of (51).

8.1. Grüss type inequalities. Let (V, 〈·, ·〉) be an inner product space over F = R or C
endowed with the corresponding norm ‖ · ‖ = 〈·, ·〉1/2. A Grüss type inequality estimates
from above the quantity |〈x, y〉 − 〈x, v〉〈v, y〉| with x, y, v ∈ V , ‖v‖ = 1 (cf. [11, 10, 65]).

Remind that if K ⊂ V is a convex cone, then ≤K is cone preorder on V defined by

y ≤K x iff x− y ∈ K.

Theorem 8.1 ([56, Theorem 4.2]). Let (V, 〈·, ·〉) be an inner product space over F = R
or C, and let v ∈ V with ‖v‖ = 1. Assume that x, y, α, β, γ, δ ∈ V are vectors such that

(a) α+ β ∈ span v and γ + δ ∈ span v,
(b) α ≤K1 x ≤dual K1 β and γ ≤K2 y ≤dual K2 δ for some convex cones K1,K2 ⊂ V .

Then we have the inequality∣∣〈x, y〉 − 〈x, v〉〈v, y〉∣∣ ≤ 1
4
‖β − α‖ ‖δ − γ‖.
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If the vectors α, β, γ, δ are proportional to v, Theorem 8.1 reduces to [11, Theorem 1].
Remind that a function ϕ : [a, b]→ R is said to be a constant function, if there exists

a constant c ∈ R such that ϕ(t) = c for t ∈ [a, b].

Corollary 8.2 ([56, Corollary 4.5]). Let f, g, α, β, γ, δ ∈ L2
[a,b] be functions such that

(a) α+ β and γ + δ are constant functions,
(b) α(t) ≤ f(t) ≤ β(t) and γ(t) ≤ g(t) ≤ δ(t) for t ∈ [a, b],

or, more generally,∫ b

a

(β(t)− f(t))(f(t)− α(t)) dt ≥ 0 and
∫ b

a

(δ(t)− g(t))(g(t)− γ(t)) dt ≥ 0.

Then we have the inequality

|T (f, g)| ≤ 1
4(b− a)

(∫ b

a

(β(t)− α(t))2 dt
)1/2(∫ b

a

(δ(t)− γ(t))2 dt
)1/2

. (52)

For many functions f and g with appropriate choice of functions α(·), β(·), γ(·) and
δ(·), inequality (52) provides a tighter estimate than (51) (see [56, Example 4.6]).

8.2. Ostrowski–Grüss type inequalities. A related result to (51) is the following
Ostrowski’s inequality [43, p. 468].

Theorem 8.3 ([43, p. 468]). If f :[a, b] → R is a differentiable function with bounded
derivative, then∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t) dt
∣∣∣∣ ≤ [1

4
+

(
x− (a+ b)/2

)2
(b− a)2

]
(b− a)‖f ′‖∞ for x ∈ [a, b]. (53)

Dragomir and Wang [14] showed Ostrowski–Grüss type inequality as follows.

Theorem 8.4 ([14]). If f : [a, b]→ R is a differentiable function with bounded derivative
such that

α0 ≤ f ′(t) ≤ β0 for t ∈ [a, b],

then∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt− f(b)− f(a)
b− a

(
x− a+ b

2

)∣∣∣∣
≤ 1

4
(b− a)(β0 − α0) for x ∈ [a, b]. (54)

Some improvements of (54) can be found in [9, 41].
Grüss and Ostrowski type inequalities have many applications (see [10, 13, 14, 38, 63]).
Here we present an extension of Grüss’ inequality in Lp-spaces (cf. [7, Theorems 2

and 3], [12, p. 2]).

Theorem 8.5 ([57, Theorem 2.1]). Let f, α, β ∈ Lp
[a,b] and g ∈ Lq

[a,b] ( 1
p + 1

q = 1,
1 ≤ p ≤ ∞) be functions such that

(a) α+ β is a constant function, and
(b) α(t) ≤ f(t) ≤ β(t) for t ∈ [a, b].
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Then we have the inequality

|T (f, g)| ≤ 1
2(b− a)

‖β − α‖p ·
∥∥∥∥g − 1

b− a

∫ b

a

g(t) dt
∥∥∥∥

q

. (55)

Theorem 8.6 ([57, Theorem 2.4]). Let f : I → R, where I ⊂ R is an interval, be a
function differentiable in the interior I̊ of I, and let [a, b] ⊂ I̊. Suppose that f ′, α, β ∈ Lp

[a,b]

(1 ≤ p ≤ ∞) are functions such that

(a) α+ β is a constant function, and
(b) α(t) ≤ f ′(t) ≤ β(t) for t ∈ [a, b].

Then for x ∈ [a, b]∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt−
(
x− a+ b

2

)f(b)− f(a)
b− a

∣∣∣∣
≤

{
1
4 ‖β − α‖p

(b−a)1/q

(q+1)1/q if 1 ≤ q <∞,
1
4 ‖β − α‖1 if q =∞,

where 1
p + 1

q = 1.

Corollary 8.7 ([57, Corollary 2.5]). Let f : I → R, where I ⊂ R is an interval, be a
function differentiable in the interior I̊ of I, and let [a, b] ⊂ I̊. Suppose that α0, β0 ∈ R
are numbers such that α0 ≤ f ′(t) ≤ β0 for t ∈ [a, b].

Then for x ∈ [a, b] and 1 ≤ q ≤ ∞∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t) dt−
(
x− a+ b

2

)f(b)− f(a)
b− a

∣∣∣∣
≤

{
1

4(q+1)1/q (β0 − α0)(b− a) if 1 ≤ q <∞,
1
4 (β0 − α0)(b− a) if q =∞.

(56)

The case q = 1 of Corollary 8.7 yields a result of Cheng [9, Theorem 1.5] with the
factor 1

8 on the right-hand side of (56) (cf. [38, Theorem 3]). If q = 2 then Corollary 8.7
becomes a result of Matić et al. [41, Theorem 6] with the factor 1

4
√

3
on the right-hand

side of (56). Finally, the case q =∞ leads to inequality (54) of Dragomir and Wang [14,
Theorem 2.1].
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[27] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge,

1952.

[28] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985.

[29] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge,

1991.

http://dx.doi.org/10.1007/978-1-4612-0653-8
http://dx.doi.org/10.1016/j.aml.2003.09.013
http://dx.doi.org/10.1016/S0898-1221(01)00135-3
http://dx.doi.org/10.1006/jmaa.2000.6977
http://dx.doi.org/10.7153/mia-07-23
http://dx.doi.org/10.1016/j.camwa.2005.08.029
http://dx.doi.org/10.1016/S0898-1221(97)00084-9
http://dx.doi.org/10.1214/lnms/1215465625
http://dx.doi.org/10.1214/aop/1176995655
http://dx.doi.org/10.1073/pnas.35.11.652
http://dx.doi.org/10.1073/pnas.37.11.760
http://dx.doi.org/10.7153/mia-06-23
http://dx.doi.org/10.7153/mia-04-21
http://dx.doi.org/10.1016/0024-3795(85)90190-9
http://dx.doi.org/10.1007/BF01201355
http://dx.doi.org/10.1155/JIA/2006/67624
http://dx.doi.org/10.1017/CBO9780511840371


A REVIEW OF SELECTED TOPICS IN MAJORIZATION THEORY 153

[30] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math. 29,

Cambridge Univ. Press, Cambridge, 1990.
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