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Abstract. In this paper, we prove strong convergence theorems of the hybrid projection algo-

rithms for finite family of two hemi-relatively nonexpansive mappings in a Banach space. Using

this result, we also discuss the resolvents of two maximal monotone operators in a Banach space.

Our results modify and improve the recently ones announced by Plubtieng and Ungchittrakool

[Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings

in a Banach space, J. Approx. Theory 149 (2007), 103–115], Matsushita and Takahashi [A strong

convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory

134 (2005), 257–266] and many others.

1. Introduction. Let E be a real Banach space, C be a nonempty closed convex subset
of E, and T : C → C be a mapping. Recall that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. (1)
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We denote by F (T ) the set of fixed points of T , that is F (T ) = {x ∈ C : x = Tx}.
A mapping T is said to be quasi-nonexpansive if F (T ) 6= ∅ and

‖Tx− y‖ ≤ ‖x− y‖ for all x ∈ C and y ∈ F (T ).

It is easy to see that if T is nonexpansive with F (T ) 6= ∅, then it is quasi-nonexpansive.
Some iteration processes are often used to approximate a fixed point of a nonexpansive
mapping. Mann’s iterative algorithm was introduced by Mann [7] in 1953. This iteration
process is now known as Mann’s iteration process, which is defined as

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (2)

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0 is in the
interval [0, 1].

In 1967, Halpern [4] first introduced the following iteration scheme:{
x0 = x ∈ C chosen arbitrarily,

xn+1 = αnu+ (1− αn)Txn,
(3)

see also Browder [2]. He pointed out that the conditions limn→∞ αn = 0 and Σ∞n=1αn =∞
are necessary in the sense that, if the iteration (3) converges to a fixed point of T , then
these conditions must be satisfied.

In 1974, Ishikawa [5] introduced a new iteration scheme, which is defined recursively
by {

yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn,
(4)

where the initial guess x0 is taken in C arbitrarily and the sequences {αn} and {βn} are
in the interval [0, 1].

Many papers have appeared in the literature on Ishikawa’s iteration process; see, for
example [10, 11] and reference therein.

On the other hand, Matsushita and Takahashi [8] introduced the following iteration:
a sequence {xn} defined by

xn+1 = ΠCJ
−1
(
αnJxn + (1− αn)JTxn

)
, (5)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1], T
is a relatively nonexpansive mapping, J is the duality mapping on E and ΠC denotes
the generalized projection from E onto a closed convex subset C of E. They proved that
the sequence {xn} converges weakly to a fixed point of T . Moreover, Matsushita and
Takahashi [9] proposed the following modification of iteration (5):

x0 ∈ C chosen arbitrarily,

yn = J−1
(
αnJxn + (1− αn)JTxn

)
,

Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0), n = 0, 1, 2, . . . .

(6)

and proved that the sequence {xn} converges strongly to ΠF (T )(x0).
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In 2007, Plubtieng and Ungchittrakool [11] proved the following iteration for two
relatively nonexpansive mappings T in a Banach space E:

x0 = x ∈ C chosen arbitrarily,

zn = J−1
(
β

(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)
,

yn = J−1
(
αnJxn + (1− αn)JTzn

)
,

Hn = {v ∈ C : φ(v, yn) ≤ φ(v, xn)},
Wn = {v ∈ C : 〈xn − v, Jx− Jxn〉 ≥ 0},
xn+1 = PHn∩Wn

x,

(7)

and 

x0 = x ∈ C chosen arbitrarily,

zn = J−1
(
β

(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)
,

yn = J−1
(
αnJx0 + (1− αn)JTzn

)
,

Hn =
{
v ∈ C : φ(v, yn) ≤ φ(v, xn) + αn(‖x0‖2 + 2〈v, Jxn − Jx〉)

}
,

Wn =
{
v ∈ C : 〈xn − v, Jx− Jxn〉 ≥ 0

}
,

xn+1 = PHn∩Wnx,

(8)

the sequences {xn} generated by (7) and (8) converge to PFx, F := F (T )∩F (S), where
PF is the generalized projection from C onto F .

In 2008, Takahashi et al. [13] proved the following theorem by a new hybrid method.
We call such a method the shrinking projection method.

Theorem 1.1 (Takahashi et al. [13]). Let H be a Hilbert space and let C be a nonempty
closed convex subset of H. Let T be a nonexpansive mapping of C into H such that
F (T ) 6= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1x0, define a sequence {un} of C as
follows: 

yn = αnun + (1− αn)Tun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1x0, n ∈ N,

(9)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then, {un} converges strongly to z0 = PF (T )x0.

This paper considers the following explicit cyclic algorithm:

x1 = α0x0 + (1− α0)T0x0,

x2 = α1x1 + (1− α1)T1x1,

...

xn = αn−1xn−1 + (1− αn−1)Tn−1xn−1,

xn+1 = αnxn + (1− αn)T0xn.

(10)

It can rewritten into compact form as follows

xn+1 = αnxn + (1− αn)T[n]xn, (11)

where T[n] = Ti, i = n (modN).
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In this paper, motivated by Plubtieng and Ungchittrakool’s result [11], we use an
idea to modify (7) and (8) for finite family of two hemi-relatively nonexpansive map-
pings to have strong convergence theorems in a Banach space by using the shrinking
projection method. Our result extends and improves the recent results by Plubtieng and
Ungchittrakool [11] and many authors.

2. Preliminaries. Let E be a real Banach space with dual E∗. Denote by 〈·, ·〉 the
duality product. The normalized duality mapping J from E to E∗ is defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, (12)

for all x ∈ E.
A Banach space E is said to have the Kadec-Klee property if for every sequence {xn}

of E satisfying xn ⇀ x ∈ E and ‖xn‖ → ‖x‖ we have xn → x. It is known that if E is
uniformly convex, then E has the Kadec-Klee property.

If C is a nonempty closed convex subset of real Hilbert space H and PC : H → C

is the metric projection, then PC is nonexpansive. Alber [1] has recently introduced a
generalized projection operator ΠC in a Banach space E which is an analogue represen-
tation of the metric projection in Hilbert spaces. We denote by ωw({zn}) the set of all
weak subsequential limits of a bounded sequence {zn} in C.

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E. (13)

The generalized projection ΠC : E → C is a map that assigns to an arbitrary point
x ∈ E the minimum point of the functional φ(y, x), that is, ΠCx = x∗, where x∗ is the
solution to the minimization problem

φ(x∗, x) = min
y∈C

φ(y, x),

existence and uniqueness of the operator ΠC follow from the properties of the functional
φ(y, x) and strict monotonicity of the mapping J . In Hilbert space, ΠC = PC . It is obvious
from the definition of the function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 for all x, y ∈ E. (14)

Remark 2.1 ([12]). If E is a strictly convex and smooth Banach space, then for all
x, y ∈ E, φ(y, x) = 0 if and only if x = y. It is sufficient to show that if φ(y, x) = 0 then
x = y. From (14), we have ‖x‖ = ‖y‖. This implies 〈y, Jx〉 = ‖y‖2 = ‖Jx‖2. From the
definition of J , we have Jx = Jy. Since J is one-to-one, we have x = y.

Lemma 2.2 (Kamimura and Takahashi [6]). Let E be a smooth and uniformly convex
Banach space and let r > 0. Then there exists a strictly increasing, continuous, and
convex function g : [0, 2r] → R such that g(0) = 0 and g(‖x − y‖) ≤ φ(x, y) for all
x, y ∈ Br.

Lemma 2.3 (Kamimura and Takahashi [6]). Let E be a uniformly convex and smooth
real Banach space and let {xn}, {yn} be two sequences of E. If φ(xn, yn)→ 0 and either
{xn} or {yn} is bounded, then ‖xn − yn‖ → 0.
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Lemma 2.4 (Alber [1]). Let E be a reflexive, strictly convex, and smooth real Banach
space, let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C. (15)

Lemma 2.5 (Cho et al. [3]). Let X be a uniformly convex Banach space and Br(0) be
a closed ball of X. Then there exists a continuous strictly increasing convex function
g : [0,∞)→ [0,∞) with g(0) = 0 such that

‖λx+ µy + γz‖2 ≤ λ‖x‖2 + µ‖y‖2 + γ‖z‖2 − λµg(‖x− y‖)

for all x, y, z ∈ Br(0) and λ, µ, γ ∈ [0, 1] with λ+ µ+ γ = 1.

3. Main results

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty closed convex subset of E. Given an integer N ≥ 1, let, for each
0 ≤ i ≤ N − 1, Ti and Si be two hemi-relatively nonexpansive mappings from C into
itself with T =

⋂N−1
i=0 F (Ti), S =

⋂N−1
i=0 F (Si) and F := T ∩ S nonempty, and {αn},

{βn}, {γn}, {δn} be sequences of real numbers such that 0 ≤ αn < 1 for all n ∈ N ∪
{0}, lim supn→∞ αn < 1, 0 ≤ βn, γn, δn ≤ 1, βn + γn + δn = 1 for all n ∈ N ∪ {0},
lim infn→∞ βnγn > 0 and lim infn→∞ βnδn > 0. Define a sequence {xn} by the following
algorithm: 

x0 ∈ C chosen arbitrarily,

zn = J−1
(
βnJxn + γnJT[n]xn + δnJS[n]xn

)
,

yn = J−1
(
αnJxn + (1− αn)Jzn

)
,

Cn+1 = {v ∈ C : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 0,

(16)

where J is the duality mapping on E and T[n] = Ti, S[n] = Si, i = n (modN). Then {xn}
converges strongly to ΠFx0, where ΠF is the generalized projection from C onto F .

Proof. We first show that Cn+1 is closed and convex for each n ∈ N ∪ {0}. From the
definition of Cn+1 it is obvious that Cn+1 is closed for each n ∈ N ∪ {0}. For any
n ∈ N ∪ {0},

φ(v, yn) ≤ φ(v, xn)⇐⇒ 2〈v, Jxn − Jyn〉+ ‖yn‖2 − ‖xn‖2 ≤ 0,

and hence Cn+1 is convex. Next, we show that F ⊂ Cn+1 for each n ∈ N∪{0}. Let p ∈ F
and let n ∈ N ∪ {0}, we have

φ(p, zn) = φ
(
p, J−1(βnJxn + γnJT[n]xn + δnJS[n]xn)

)
= ‖p‖2 − 2〈p, βnJxn + γnJT[n]xn + δnJS[n]xn〉

+ ‖βnJxn + γnJT[n]xn + δnJS[n]xn‖2

≤ ‖p‖2 − 2βn〈p, Jxn〉 − 2γn〈p, JT[n]xn〉 − 2δn〈p, JS[n]xn〉
+ βn‖xn‖2 + γn‖T[n]xn‖2 + δn‖S[n]xn‖2

≤ βnφ(p, xn) + γnφ(p, T[n]xn) + δnφ(p, S[n]xn)

≤ βnφ(p, xn) + γnφ(p, xn) + δnφ(p, xn) = φ(p, xn),

(17)
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and
φ(p, yn) = φ

(
p, J−1(αnJxn + (1− αn)Jzn)

)
= ‖p‖2 − 2〈p, αnJxn + (1− αn)Jzn〉+ ‖αnJxn + (1− αn)Jzn‖2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2(1− αn)〈p, Jzn〉+ αn‖xn‖2 + (1− αn)‖zn‖2

≤ αnφ(p, xn) + (1− αn)φ(p, zn)

≤ αnφ(p, xn) + (1− αn)φ(p, xn)

= φ(p, xn).

(18)

So, p ∈ Cn for all n ∈ N ∪ {0}, and we have F ⊂ Cn. This implies that {xn} is well
defined. Since xn+1 = ΠCn+1x0 and xn+1 ∈ Cn+1 ⊂ Cn, we get

φ(xn, x0) ≤ φ(xn+1, x0),

for all n ≥ 0. Therefore, {φ(xn, x0)} is nondecreasing.
By the definition of xn and Lemma 2.4, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(p, x0)− φ(p,ΠCnx0) ≤ φ(p, x0), (19)

for all p ∈ F ⊂ Cn. Thus, φ(xn, x0) is bounded. Moreover, by (14), we have that {xn} is
bounded. So, limn→∞ φ(xn, x0) exists. Again by Lemma 2.4, we have

φ(xn+1, xn) = φ(xn+1,ΠCnx0)

≤ φ(xn+1, x0)− φ(ΠCnx0, x0)

= φ(xn+1, x0)− φ(xn, x0),

for all n ≥ 0. Thus, φ(xn+1, xn) → 0 as n → ∞. Since xn+1 = ΠCnx0 ∈ Cn, from the
definition of Cn+1, we also have

φ(xn+1, yn) ≤ φ(xn+1, xn), (20)

for all n ∈ N ∪ {0}. So, we have limn→∞ φ(xn+1, yn) = 0. Using Lemma 2.3, we obtain

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn+1 − xn‖ = 0. (21)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jyn‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (22)

For each n ∈ N ∪ {0}, we observe that

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (αnJxn + (1− αn)Jzn)‖
= ‖αn(Jxn+1 − Jxn) + (1− αn)(Jxn+1 − Jzn)‖
= ‖(1− αn)(Jxn+1 − Jzn)− αn(Jxn − Jxn+1)‖
≥ (1− αn)‖Jxn+1 − Jzn‖ − αn‖Jxn − Jxn+1‖.

It follows that

‖Jxn+1 − Jzn‖ ≤
1

1− αn
(
‖Jxn+1 − Jyn‖+ αn‖Jxn − Jxn+1‖

)
.

By (22) and lim supn→∞ αn < 1, we obtain

lim
n→∞

‖Jxn+1 − Jzn‖ = 0.
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Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − zn‖ = 0. (23)

It follows from (21) that

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ → 0,

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞

‖Jxn − Jzn‖ = 0.

Next, we show that ‖xn − T[n]xn‖ → 0 and ‖xn − S[n]xn‖ → 0. Since {xn} is bounded,
φ(p, T[n]xn) ≤ φ(p, xn) and φ(p, S[n]xn) ≤ φ(p, xn) where p ∈ F . We also obtain that
{Jxn}, {JT[n]xn} and {JS[n]xn} are bounded, then there exists r > 0 such that {Jxn},
{JT[n]xn}, {JS[n]xn} ⊂ Br(0). From Lemma 2.5, we have

φ(p, zn) = φ
(
p, J−1(βnJxn + γnJT[n]xn + δnJS[n]xn)

)
= ‖p‖2 − 2βn 〈p, Jxn〉 − 2γn

〈
p, JT[n]xn

〉
− 2δn

〈
p, JS[n]xn

〉
+ ‖βnJxn + γnJT[n]xn + δnJS[n]xn‖2

≤ ‖p‖2 − 2βn 〈p, Jxn〉 − 2γn
〈
p, JT[n]xn

〉
− 2δn

〈
p, JS[n]xn

〉
+ βn‖xn‖2 + γn‖T[n]xn‖2 + δn‖S[n]xn‖2 − βnγng(‖Jxn − JT[n]xn‖)

= βnφ(p, xn) + γnφ(p, T[n]xn) + δnφ(p, S[n]xn)− βnγng(‖Jxn − JT[n]xn‖)
≤ φ(p, xn)− βnγng(‖Jxn − JT[n]xn‖)).

(24)

Therefore, we have

βnγng(‖Jxn − JT[n]xn‖) ≤ φ(p, xn)− φ(p, zn).

On the other hand, we have

φ(p, xn)− φ(p, zn) = ‖xn‖2 − ‖zn‖2 − 2 〈p, Jxn − Jzn〉
≤ ‖xn − zn‖(‖xn‖+ ‖zn‖) + 2‖p‖ ‖Jxn − Jzn‖.

It follows from ‖xn − zn‖ → 0 and ‖Jxn − Jzn‖ → 0 that

lim
n→∞

(φ(p, xn)− φ(p, zn)) = 0. (25)

Observing that the assumption lim infn→∞ βnγn > 0 and by Lemma 2.2, we also have

lim
n→∞

g‖Jxn − JT[n]xn‖ = 0.

It follows from the property of g that

lim
n→∞

‖Jxn − JT[n]xn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we see that

lim
n→∞

‖xn − T[n]xn‖ = 0.

Similarly, one can obtain
lim
n→∞

‖xn − S[n]xn‖ = 0.

Next we show that ωω({xn}) ⊂ F , ωω({xn}) = {x : ∃xni ⇀ x}. Indeed, we assume
that x̄ ∈ ωω({xn}) and xni ⇀ x̄ for some subsequence {xni} of {xn}. We may further
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assume that ni = l (modN) for all i. We also have

‖xni+j − T[l+j]xni+j‖ = ‖xni+j − T[ni+j]xni+j‖ → 0,

which implies x̄ ∈ F (T[l+j]) for all j ≥ 0. Similarly, we have x̄ ∈ F (S[l+j]) for all j ≥ 0.
Therefore, x̄ ∈ F .

Finally, we show that xn → ΠFx0. From xn+1 = ΠCn+1x0 if we take w ∈ F ⊂ Cn+1,
we also have φ(xn+1, x) ≤ φ(w, x). On the other hand, from weak lower semicontinuity
of the norm, we have

φ(x̄, x0) = ‖x̄‖2 − 2〈x̄, Jx0〉+ ‖x0‖2

≤ lim inf
i→∞

(‖xni‖2 − 2〈xni , Jx0〉+ ‖x0‖2)

≤ lim inf
i→∞

φ(xni , x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(w, x0).

From the definition of ΠFx0, we obtain x̄ = w and hence limi→∞ φ(xni , x0) = φ(w, x0).
So, we have limi→∞ ‖xni‖ = ‖w‖. Using the Kadec-Klee property of E, we obtain that
{xni} converges strongly to ΠFx0. Since {xni} is an arbitrary weakly convergent subse-
quence of {xn}, we can conclude that {xn} converges strongly to ΠFx0. This completes
the proof.

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty closed convex subset of E. Let T and S be two hemi-relatively
nonexpansive mappings from C into itself with F := F (T ) ∩ F (S) nonempty and {αn},
{βn}, {γn}, {δn} be a sequence of real numbers such that 0 ≤ αn < 1 for all n ∈
N ∪ {0}, lim supn→∞ αn < 1, 0 ≤ βn, γn, δn ≤ 1, βn + γn + δn = 1 for all n ∈ N ∪ {0},
lim infn→∞ βnγn > 0 and lim infn→∞ βnδn > 0. Define a sequence {xn} by the following
algorithm: 

x0 ∈ C chosen arbitrarily,

zn = J−1
(
βnJxn + γnJTxn + δnJSxn

)
,

yn = J−1
(
αnJxn + (1− αn)Jzn

)
,

Cn+1 = {v ∈ C : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 0,

(26)

where J is the duality mapping on E. Then {xn} converges strongly to ΠFx0, where ΠF

is the generalized projection from C onto F .

Proof. If in Theorem 3.1 we take Tn = T and Sn = S for all n ∈ N ∪ {0}, then (16)
reduces to (26).

Corollary 3.3. Let E be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty closed convex subset of E. Let T be a hemi-relatively nonexpansive
mapping from C into itself with F := F (T ) nonempty and {αn}, {βn}, {γn}, {δn} be
sequences of real numbers such that 0 ≤ αn < 1 for all n ∈ N ∪ {0}, lim supn→∞ αn < 1,
0 ≤ βn, γn, δn ≤ 1, βn + γn + δn = 1 for all n ∈ N ∪ {0}, lim infn→∞ βnγn > 0 and
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lim infn→∞ βnδn > 0. Define a sequence {xn} by the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = J−1
(
βnJxn + γnJTxn + δnJTxn

)
,

yn = J−1
(
αnJxn + (1− αn)Jzn

)
,

Cn+1 = {v ∈ C : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 0,

(27)

where J is the duality mapping on E. Then {xn} converges strongly to ΠFx0, where ΠF

is the generalized projection from C onto F .

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty closed convex subset of E. Given an integer N ≥ 1, let, for each
0 ≤ i ≤ N − 1, Ti be a hemi-relatively nonexpansive mapping from C into itself with
F :=

⋂N−1
i=0 F (Ti) nonempty and {αn} be a sequence of real numbers such that 0 ≤ αn < 1

for all n ∈ N∪{0}, lim supn→∞ αn < 1. Define a sequence {xn} by the following algorithm:
x0 ∈ C chosen arbitrarily,

yn = J−1
(
αnJxn + (1− αn)JT[n]xn

)
,

Cn+1 = {v ∈ C : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 0,

(28)

where J is the duality mapping on E and T[n] = Ti, i = n (modN). Then {xn} converges
strongly to ΠFx0, where ΠF is the generalized projection from C onto F .

Proof. If in Theorem 3.1 we put βn = δn = 0 and γn = 1 for all n ∈ N ∪ {0}, then (16)
reduces to (28).

Corollary 3.5. Let E be a uniformly convex and uniformly smooth Banach space and
let C be a nonempty closed convex subset of E. Let T be a hemi-relatively nonexpansive
mapping from C into itself with F := F (T ) nonempty and {αn} be a sequence of real
numbers such that 0 ≤ αn < 1 for all n ∈ N∪{0}, lim supn→∞ αn < 1. Define a sequence
{xn} by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = J−1
(
αnJxn + (1− αn)JTxn

)
,

Cn+1 = {v ∈ C : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1x0, ∀n ≥ 0,

(29)

where J is the duality mapping on E. Then {xn} converges strongly to ΠFx0, where ΠF

is the generalized projection from C onto F .

Theorem 3.6. Let E be a uniformly convex and uniformly smooth Banach space and C
be a nonempty closed convex subset of E. Given an integer N ≥ 1, let, for each 0 ≤ i ≤
N − 1, Ti and Si be two hemi-relatively nonexpansive mappings from C into itself with
T =

⋂N−1
i=0 F (Ti), S =

⋂N−1
i=0 F (Si) and F := T ∩S nonempty and {αn}, {βn}, {γn}, {δn}

be sequences of real numbers such that 0 ≤ αn < 1 for all n ∈ N ∪ {0}, limn→∞ αn = 0,
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0 ≤ βn, γn, δn ≤ 1, βn + γn + δn = 1 for all n ∈ N ∪ {0}, lim infn→∞ βnγn > 0 and
lim infn→∞ βnδn > 0. Define a sequence {xn} by the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = J−1
(
βnJxn + γnJT[n]xn + δnJS[n]xn

)
,

yn = J−1
(
αnJx0 + (1− αn)Jzn

)
,

Cn+1 =
{
v ∈ C : φ(v, yn) ≤ αnφ(v, x0) + (1− αn)φ(v, xn)

}
,

xn+1 = ΠCn+1x, ∀n ≥ 0,

(30)

where J is the duality mapping on E and T[n] = Ti, S[n] = Si, i = n (modN). Then {xn}
converges strongly to ΠFx, where ΠF is the generalized projection from C onto F .

Proof. We first show that Cn+1 is closed and convex for each n ∈ N ∪ {0}. From the
definition of Cn+1 it is obvious that Cn+1 is closed for each n ∈ N ∪ {0}. By Theorem
3.1, we can prove Cn+1 is convex.

Next, we show that F ⊂ Cn+1 for each n ∈ N∪ {0}. Let p ∈ F and n ∈ N∪ {0}, then
we have

φ(p, zn) = φ
(
p, J−1(βnJxn + γnJT[n]xn + δnJS[n]xn)

)
= ‖p‖2 − 2〈p, βnJxn + γnJT[n]xn + δnJS[n]xn〉

+ ‖βnJxn + γnJT[n]xn + δnJS[n]xn‖2

≤ ‖p‖2 − 2βn〈p, Jxn〉 − 2γn〈p, JT[n]xn〉 − 2δn〈p, JS[n]xn〉
+ βn‖xn‖2 + γn‖T[n]xn‖2 + δn‖S[n]xn‖2

≤ βnφ(p, xn) + γnφ(p, T[n]xn) + δnφ(p, S[n]xn)

≤ βnφ(p, xn) + γnφ(p, xn) + δnφ(p, xn)

= φ(p, xn),

(31)

and

φ(p, yn) = φ
(
p, J−1(αnJx0 + (1− αn)Jzn)

)
= ‖p‖2 − 2〈p, αnJx0 + (1− αn)Jzn〉+ ‖αnJx0 + (1− αn)Jzn‖2

≤ ‖p‖2 − 2αn〈p, Jx0〉 − 2(1− αn)〈p, Jzn〉+ αn‖x0‖2 + (1− αn)‖zn‖2

≤ αnφ(p, x0) + (1− αn)φ(p, zn)

≤ αnφ(p, x0) + (1− αn)φ(p, xn).

(32)

So, p ∈ Cn for all n ∈ N ∪ {0}, hence F ⊂ Cn. This implies that {xn} is well defined.
From the proof of Theorem 3.1, we also obtain {xn} is bounded and φ(xn+1, xn)→ 0

as n→∞. Since xn+1 = ΠCnx0 ∈ Cn, from the definition of Cn+1, we also have

φ(xn+1, yn) ≤ αnφ(xn+1, x0) + (1− αn)φ(xn+1, xn). (33)

Since limn→∞ αn = 0 and φ(xn+1, xn) → 0, we deduce that φ(xn+1, yn) → 0. By using
Lemma 2.3 we obtain

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn+1 − xn‖ = 0. (34)
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Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jyn‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (35)

Similarly as in the proof of Theorem 3.1, we obtain

lim
n→∞

‖Jxn+1 − Jzn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − zn‖ = 0. (36)

By (34) and (36), we have

‖xn − zn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zn‖ → 0.

Again by Theorem 3.1, we obtain

lim
n→∞

‖xn − T[n]xn‖ = 0 = lim
n→∞

‖xn − S[n]xn‖.

Next we show that ωω({xn}) ⊂ F , ωω({xn}) = {x : ∃xni ⇀ x}. Indeed, we assume
that x̄ ∈ ωω({xn}) and xni ⇀ x̄ for some subsequence {xni} of {xn}. We may further
assume that ni = l (modN) for all i. We also have

‖xni+j − T[l+j]xni+j‖ = ‖xni+j − T[ni+j]xni+j‖ → 0,

which implies x̄ ∈ F (T[l+j]) for all j ≥ 0. Similarly, we have x̄ ∈ F (S[l+j]) for all j ≥ 0.
Therefore, x̄ ∈ F .

Finally, we show that xn → ΠFx0. From xn+1 = ΠCn+1x0 if we take w ∈ F ⊂ Cn+1,
we also have φ(xn+1, x) ≤ φ(w, x). On the other hand, from weakly lower semicontinuity
of the norm, we have

φ(x̄, x) = ‖x̄‖2 − 2〈x̄, Jx〉+ ‖x‖2

≤ lim inf
i→∞

(‖xni‖2 − 2〈xni , Jx〉+ ‖x‖2)

≤ lim inf
i→∞

φ(xni , x)

≤ lim sup
i→∞

φ(xni , x)

≤ φ(w, x).

From the definition of ΠFx, we obtain x̄ = w and hence limi→∞ φ(xni , x) = φ(w, x). So,
we have limi→∞ ‖xni‖ = ‖w‖. Using the Kadec-Klee property of E, we obtain that {xni}
converges strongly to ΠFx. Since {xni} is an arbitrary weakly convergent sequence of
{xn}, we can conclude that {xn} converges strongly to ΠFx. This completes the proof.
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