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Abstract. We will present relationships between the modular p* and the norm in the dual
spaces (La)*
Moreover, criteria for extreme points of the unit sphere of the dual space (L%)* will be presented.

in the case when a Musielak-Orlicz space Lo is equipped with the Orlicz norm.

1. Introduction. The triple (T, X%, 1) stands for a positive, nonatomic, o-finite and
complete measure space. By L° = L%(u) we denote the space of all (equivalence classes
of) ¥-measurable real functions z defined on 7. A mapping ® : T x R — Ry is said
to be a Musielak-Orlicz function if it satisfies the Carathéodory conditions, i.e. for any
u € R, the function ®(-,u) is X-measurable and there is a set Ty € 3 with u(7p) = 0 such
that for any t € T \ Ty the function ®(¢,-) is an Orlicz function, i.e. it is convex, even,
vanishing at zero and satisfying ®(¢,u)/u — +00 as u — +o0.

For every Musielak-Orlicz function ® we define its complementary function in the
sense of Young ¥ : T x R — [0,00) by the formula

U(t,v) = sup{u|v| — D(t,u)}
u>0

for every v € R and t € T. Given any Musielak-Orlicz function ® define on L° a convex
modular Ig by

Ip(x) = /T B(t, () du

for every = € L°. Then the Musielak-Orlicz function space Lg and its subspace Fg are
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defined as follows:

Ly ={x € L°: Is(\z) < +o0 for some \ > 0},
s ={z € LY : Is(\z) < +oo for any A > 0}.

It is easy to see that Eg is the subspace of order continuous elements in L.

The spaces Lg and Eg coincide if and only if ® satisfies the so-called As-condition.
Recall that ® satisfies the As-condition (® € As for short), if there are a set Ty of measure
zero, a constant K > 0 and a Y-measurable nonnegative function h defined on T such
that [ h(t) dp < +o00 and ®(t,2u) < K®(t,u) + h(t) for every t € T\ T and u € R.

For any t € T'\ Ty, by p(t,u) and ¢(t, u) we denote the right derivatives of ®(¢,-) and
U(t,-) at any fixed point u € R, respectively. For every u,v € R and all ¢t € T\ Ty, we
have the following Young inequality

uv < (¢, u) + U(t,v),

and for a given ¢t € T\ Tp the equality uwv = ®(¢,u) + U(¢,v) holds whenever v € R and
v € [q(t,u), p(t, u)].
For any x € Lg the Luzemburg norm is defined by

lz]| = inf {k > 0: Ip(x/k) < 1},

and the Orlicz norm is defined by
Joll” = sup{ [ a(oyte) du: 1ae) < 1}.
T

Let us note that the Orlicz norm on Lg can be also defined by the very useful Amemiya
formula [F]:

o . o1
J]° = inf (1 + T (k).

LeMMA 1.1 (see [K]). Let ® be a Musielak-Orlicz function. Then there exists an ascending

sequence (T,)22, of measurable sets with 0 < p(T,) < 400 such that sup ®(t, \) < +oo
tET,
for every A >0, for any n € N and p (T \U,_, T,,) = 0.

n=1

This yields that x7, (the characteristic function of T),) belongs to Eg for any n € N.

We denote by L3 the dual space of Ly and ¢ € Lj is called a singular functional
(¢ € F for short), if o(Eg) = {0}, that is, p(z) = 0 for any x € Es.

Any functional f € L} has the unique decomposition

f=v+¢ (veELy, peF),

where v means in fact the regular functional defined by the function v from Ly by the
formula ( = [po(t)z(t) du for any x € Lg.
Let us deﬁne for each f € Ly:

1A% = 117 =sup{f(u) : [lull =1}, [[fly = If]| = sup{f(w) : Jul® = 1}.
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The following results are due to H. Hudzik and Z. Zbaszyniak [HZ]:
LEMMA 1.2, Let f € Ly. Then
LA = 1ol + [l
LF]l = inf{A >0 Tw(v/A) + [l /A < 1}.
LeMMA 1.3. For any p € F,
lell = llell® = sup{p(u) : Io(u) < +oo}.

2. Result
PROPOSITION 2.1. Let f € L. If || f||° < 1 then

(i) Te(q(lv])) <1,

i) p(f) < lIf1l°-
Proof. By virtue of Lemma 1.1 we can repeat the proof of Proposition 2.2 in [CHL] with
the sequence of sets (7},)52; from Lemma 1.1. =
PROPOSITION 2.2. Let ® be o Musielak-Orlicz function satisfying condition ®(t,u)/u — 0
as u — 0 for u-a.e. t € T. Then the convergence to zero in the Orlicz norm ||-||° and in
the modular in L} are equivalent if and only if ¥ € A,.

Proof. We can repeat here the proof of the necessity of Proposition 2.3 from [CHL].
Sufficiency. Let f,, € L%, where f, = v, + ¢, for any n € N and p*(f,,) = Te(v,) +
lenll — 0. Then Igy(v,) — 0 and |j@,|| — 0. Since ¥ € A, and ¥ vanishes only
at zero, we can deduce from Theorem 3.3 in [KH] that ||v,|” — 0, and consequently
1fnll” = llvall® + o]l — 0. =
The proofs of the next three propositions and of Proposition 2.6 (2)—(5) can proceed
analogously as the respective proofs in [CHL].

ProprosSITION 2.3. Let f € L}. If there exists k > 0 such that
[ otate ko)) du =1,
T

then [|f|° = [ [v(®)| a(t, klo@®)]) du+ [lo]l = £ (1 + p* (k).
ProrosiTioN 2.4. If f € Ly, then

1
°=inf =(1 *(kf)).
1£1° = inf = (14 p* (k)
ProrosiTiON 2.5. If f € Ly, then

W <1 = p*(f) < £,

@) [Ifl>1 = p*(f) > Il

@) A< 1A < 2011
PROPOSITION 2.6. Suppose U € Ay, ®(t,u)/u — 0 as u — 0 for p-a.e. t € T and
fn, f € L}, where fr, = v, +¢pn, f=v+ ¢, (Vn,v € Ly, o, € F). Then

(1) p*(fn) = 00 = ||full — oo,
@) Ifll=1 = p*(f) =1,
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(3) Ve>036>0 (||fl|>e =
(4) Ve € (0,1) 36 € (0,1) (
(56) Ve € (0,1) 36 € (0,1) (

p*(f) = 9),
Sl—e = [Ifl <1-09),
>

p*
p* l+e = [fl>1+9).

(f)
(f)
Proof. Let us prove implication (1). Suppose that ¥ € Ay, where the function h is defined
on T and ¥(t,2u) < KU(t,u) + h(t) for every t € T \ Tp with p(Tp) = 0 and v € R. We
have for a constant L > 1

W(t, Lv) < KWU(t,v) + h(t)

for all ¢ € T\ Ty and v € R with a positive constant K and a nonnegative integrable
function h.
Then || f|| < L implies that ||f/L|| < 1, whence

p"(f/L) =Iu(v/L) + |lo/L| <1
and so
Iy(v/L) <1 and |l¢/L| < 1.

In consequence, setting M = fTﬁ(t) dp, we obtain
. 1
p'(0) = Lo + ol = [ (e L0) du+ o]
T
</ K i lv(o) L@ | du+ [l
— T 7L

= KIy(v/L) + / h(t)du+ ||| < K + M + L.
T

By the transposition law this finishes the proof of (1). =

PROPOSITION 2.7. If the Musielak-Orlicz function ® satisfies the condition ®(t,u)/u — 0
as u — 0 for p-a.e. t € T and ¥ € Ay, then for any L > 0 and ¢ > 0, there ex-
ists 6 > 0 such that for all f,g € Ly with p*(f) < L and p*(g) < ¢ the inequality
lo*(f + 9) + p*(f)| < € is satisfied.

Proof. Since U(t,u) vanishes only at zero for p-a.e. t € T, by virtue of Lemma 1.6 in [H]
there exists a set A € ¥ with u(A) = 0 such that for any € > 0 there exist a function
he(:) >0, [; he(t)dp < e and a constant M. > 2, such that

U(t,2u) < M U (t,u) + he(t)

for any v € R and ¢t € T'\ A. Therefore
p*(2f) = Tu(2v) + 2||¢|| = /T‘I’(t72v(t))du+ 2[el
< [ weo@)dut [ hodar 2ol
T T
< MIy(v) +e+ M. ol
= M:(Iy(v) + lloll) +& = Mcp™(f) + ¢,

which means that the modular p* satisfies in L} the condition A§ defined in [CH]. By
Lemma 2.1 in [CH] the proof is complete. m
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THEOREM 2.8. Let ® be a Musielak-Orlicz function such that ®(t,u)/u — 0 as u — 0
for p-a.e. t € T. Then a functional ¢ € S(F) is an extreme point of B(L}) if and only
if lelell = H@‘T\EH =0 for every E € X..

Proof. The proof proceeds in the same way as the proof of Theorem 3.1 in [CHL]. =

THEOREM 2.9. A functional f = v+ ¢ € S(L%) is an extreme point of B(L}) if and
only if the following conditions are satisfied :

1) p*(f) =1,

(2) v(t) is a point of strict convexity of ¥ for p-a.e. t € T,
(3) @/ |lell is an extreme point of B(LY).

Proof. The sufficiency follows in the same way as the sufficiency of Theorem 3.2 in [CHL).

Necessity. Let f = v+ ¢ € Ext B(L%) and let us assume that condition (1) is not
satisfied. If e = 1 — p*(f) > 0, then we can choose FE € ¥ such that

0< / W(t, 20(t)) dpt < .
E
Define

v(t) forteT\FE v(t) forteT\E
vi(t) = and  vy(t) =
0 forte £ 20(t) forteE.

Then vy # vy and vy + vo = 2v. Defining f; = v1 + ¢ and fo = v9 + @, we have

p*(f1) = Tw(ve) + llell < Tw(v2) + el = p*(f2)
<Iy(@) +e+lloll =p*(f) +e=1,

whence ||f1]] < 1 and analogously || fz|| < 1. We have 1 = ||f]| = ||(f1 + f2)/2] <
(Al +11f21) £ 1 and consequently | fi|| = || f2|| = 1, which contradicts the assumption
that f € Ext B(L%).

Assume now that condition (2) is not satisfied. Then there exist a set A € X with
w(A) > 0 and two numbers a,b with 0 < a < b < oo such that a < v(t) < b and
®(t,-) is affine on [a,b] for all ¢ € A. Further there exist € > 0 and K € ¥ with K C A
and p(K) > 0 such that a + ¢ < v(t) < b—¢ for all ¢ € K. Let us write U(¢,u) for
(t,u) € K x [a,b] in the form U(¢t,u) = a(t)u + B(¢) with a(t) > 0, 8(t) > 0 for p-a.e.
te K.

Next, let us define on X N K the measure

ua(B):/Ba(t)du (VBeXnK).

This is an atomless measure, so there exist two sets K;, Ko € ¥ N K such that
KiNKy=02, K1 UKy =K and po(K1) = pio(K2). This means that

./I<1 cu(t)alu—‘/K2 a(t) du.
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Let us define two functions v; and vs by

’U(t) fOI‘tGT\(Kl UKQ) U(t) fOI‘tET\(Klqu)
vi(t) = qo(t) —e forte K, va(t) = u(t) +¢e forte Ky
v(t)+e forte Ky, v(t) —e fort e Ks.

Then vy # vy and vy + vo = 2v. Let us define f; = v1 + ¢, fo = vo + ¢. Then

Lu(vr) = /T RaOrs /K [ (t)(0(t) — <) + B(1)] dp
+ /K [ (t) (u(8) + €) + B(E)] dp

— [ o)+ [ oot + o0 du= [ (t.0) du= Tu(o),
T\K K T

which gives

p*(f1) = Lu(v1) + lloll = Tw(v) + [loll = p*(f) = 1.
Similarly we deduce that p*(f2) = 1, whence it follows that | f1]| = ||f2]] = 1. Since
fi # fa, this contradicts the assumption that f is an extreme point of B(L}).

If (3) does not hold, then there exist ¢1,p2 € S(F), ¢1 # @2 such that 2ﬁ = p1+P3.
Let ¢) = [lello1, 5 = [loll 2. Then |lgi[| = [l@s]l = [l¢]l. Defining fi = v + i,
fa = v+ ¢y, we have p*(f1) = Lw(v) + [#1]] = Tw(v) + [loll = p*(f) = 1 and similarly
p*(f2) = 1, which contradicts the assumption that f € Ext B(L%). m
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