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Abstract. We will present relationships between the modular ρ∗ and the norm in the dual
spaces (LΦ)∗ in the case when a Musielak-Orlicz space LΦ is equipped with the Orlicz norm.
Moreover, criteria for extreme points of the unit sphere of the dual space (LoΦ)∗ will be presented.

1. Introduction. The triple (T,Σ, µ) stands for a positive, nonatomic, σ-�nite and

complete measure space. By L0 = L0(µ) we denote the space of all (equivalence classes

of) Σ-measurable real functions x de�ned on T . A mapping Φ : T × R −→ R+ is said

to be a Musielak-Orlicz function if it satis�es the Carathéodory conditions , i.e. for any

u ∈ R, the function Φ(·, u) is Σ-measurable and there is a set T0 ∈ Σ with µ(T0) = 0 such

that for any t ∈ T \ T0 the function Φ(t, ·) is an Orlicz function, i.e. it is convex, even,

vanishing at zero and satisfying Φ(t, u)/u→ +∞ as u→ +∞.

For every Musielak-Orlicz function Φ we de�ne its complementary function in the

sense of Young Ψ : T × R→ [0,∞) by the formula

Ψ(t, v) = sup
u>0
{u |v| − Φ(t, u)}

for every v ∈ R and t ∈ T . Given any Musielak-Orlicz function Φ de�ne on L0 a convex

modular IΦ by

IΦ(x) =
∫
T

Φ(t, x(t)) dµ

for every x ∈ L0. Then the Musielak-Orlicz function space LΦ and its subspace EΦ are
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de�ned as follows:

LΦ = {x ∈ L0 : IΦ(λx) < +∞ for some λ > 0},
EΦ = {x ∈ L0 : IΦ(λx) < +∞ for any λ > 0}.

It is easy to see that EΦ is the subspace of order continuous elements in LΦ.

The spaces LΦ and EΦ coincide if and only if Φ satis�es the so-called ∆2-condition.

Recall that Φ satis�es the ∆2-condition (Φ ∈ ∆2 for short), if there are a set T0 of measure

zero, a constant K > 0 and a Σ-measurable nonnegative function h de�ned on T such

that
∫
T
h(t) dµ < +∞ and Φ(t, 2u) ≤ KΦ(t, u) + h(t) for every t ∈ T \ T0 and u ∈ R.

For any t ∈ T \ T0, by p(t, u) and q(t, u) we denote the right derivatives of Φ(t, ·) and
Ψ(t, ·) at any �xed point u ∈ R, respectively. For every u, v ∈ R and all t ∈ T \ T0, we

have the following Young inequality

uv ≤ Φ(t, u) + Ψ(t, v),

and for a given t ∈ T \ T0 the equality uv = Φ(t, u) + Ψ(t, v) holds whenever u ∈ R and

v ∈ [q(t, u), p(t, u)].
For any x ∈ LΦ the Luxemburg norm is de�ned by

‖x‖ = inf {k > 0 : IΦ(x/k) ≤ 1} ,

and the Orlicz norm is de�ned by

‖x‖o = sup
{∫

T

x(t)y(t) dµ : IΨ(y) ≤ 1
}
.

Let us note that the Orlicz norm on LΦ can be also de�ned by the very useful Amemiya

formula [F]:

‖x‖o = inf
k>0

1
k

(1 + IΦ(kx)).

Lemma 1.1 (see [K]). Let Φ be a Musielak-Orlicz function. Then there exists an ascending

sequence (Tn)∞n=1 of measurable sets with 0 < µ(Tn) < +∞ such that sup
t∈Tn

Φ(t, λ) < +∞

for every λ > 0, for any n ∈ N and µ (T \
⋃∞
n=1 Tn) = 0.

This yields that χTn (the characteristic function of Tn) belongs to EΦ for any n ∈ N .

We denote by L∗Φ the dual space of LΦ and ϕ ∈ L∗Φ is called a singular functional

(ϕ ∈ F for short), if ϕ(EΦ) = {0}, that is, ϕ(x) = 0 for any x ∈ EΦ.

Any functional f ∈ L∗Φ has the unique decomposition

f = v + ϕ (v ∈ LΨ, ϕ ∈ F ),

where v means in fact the regular functional de�ned by the function v from LΨ by the

formula 〈v, x〉 =
∫
T
v(t)x(t) dµ for any x ∈ LΦ.

Let us de�ne for each f ∈ L∗Φ:

‖f‖oΨ = ‖f‖o = sup {f(u) : ‖u‖ = 1} , ‖f‖Ψ = ‖f‖ = sup{f(u) : ‖u‖o = 1}.
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The following results are due to H. Hudzik and Z. Zb¡szyniak [HZ]:

Lemma 1.2. Let f ∈ L∗Φ. Then

‖f‖o = ‖v‖o + ‖ϕ‖o ,
‖f‖ = inf{λ > 0 : IΨ(v/λ) + ‖ϕ‖ /λ ≤ 1}.

Lemma 1.3. For any ϕ ∈ F ,

‖ϕ‖ = ‖ϕ‖o = sup{ϕ(u) : IΦ(u) < +∞}.

2. Result

Proposition 2.1. Let f ∈ L∗Φ. If ‖f‖o ≤ 1 then

(i) IΦ(q(|v|)) ≤ 1,
(ii) ρ∗(f) ≤ ‖f‖o.

Proof. By virtue of Lemma 1.1 we can repeat the proof of Proposition 2.2 in [CHL] with

the sequence of sets (Tn)∞n=1 from Lemma 1.1.

Proposition 2.2. Let Φ be a Musielak-Orlicz function satisfying condition Φ(t, u)/u→ 0
as u → 0 for µ-a.e. t ∈ T . Then the convergence to zero in the Orlicz norm ‖·‖o and in

the modular in L∗Φ are equivalent if and only if Ψ ∈ ∆2.

Proof. We can repeat here the proof of the necessity of Proposition 2.3 from [CHL].

Su�ciency. Let fn ∈ L∗Φ, where fn = vn + ϕn for any n ∈ N and ρ∗(fn) = IΨ(vn) +
‖ϕn‖ → 0. Then IΨ(vn) → 0 and ‖ϕn‖ → 0. Since Ψ ∈ ∆2 and Ψ vanishes only

at zero, we can deduce from Theorem 3.3 in [KH] that ‖vn‖o → 0, and consequently

‖fn‖o = ‖vn‖o + ‖ϕn‖o → 0.

The proofs of the next three propositions and of Proposition 2.6 (2)�(5) can proceed

analogously as the respective proofs in [CHL].

Proposition 2.3. Let f ∈ L∗Φ. If there exists k > 0 such that∫
T

Φ
(
t, q(t, k |v(t)|)

)
dµ = 1,

then ‖f‖o =
∫
T
|v(t)| q(t, k |v(t)|) dµ+ ‖ϕ‖ = 1

k (1 + ρ∗(kf)).

Proposition 2.4. If f ∈ L∗Φ, then

‖f‖o = inf
k>0

1
k

(1 + ρ∗(kf)).

Proposition 2.5. If f ∈ L∗Φ, then

(1) ‖f‖ ≤ 1 =⇒ ρ∗(f) ≤ ‖f‖,
(2) ‖f‖ > 1 =⇒ ρ∗(f) > ‖f‖,
(3) ‖f‖ ≤ ‖f‖o ≤ 2 ‖f‖.

Proposition 2.6. Suppose Ψ ∈ ∆2, Φ(t, u)/u → 0 as u → 0 for µ-a.e. t ∈ T and

fn, f ∈ L∗Φ, where fn = vn + ϕn, f = v + ϕ, (vn, v ∈ LΨ, ϕn, ϕ ∈ F ). Then

(1) ρ∗(fn)→∞ =⇒ ‖fn‖ → ∞,

(2) ‖f‖ = 1 =⇒ ρ∗(f) = 1,
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(3) ∀ε > 0 ∃δ > 0 (‖f‖ ≥ ε =⇒ ρ∗(f) ≥ δ),
(4) ∀ε ∈ (0, 1) ∃δ ∈ (0, 1) (ρ∗(f) ≤ 1− ε =⇒ ‖f‖ ≤ 1− δ),
(5) ∀ε ∈ (0, 1) ∃δ ∈ (0, 1) (ρ∗(f) ≥ 1 + ε =⇒ ‖f‖ ≥ 1 + δ).

Proof. Let us prove implication (1). Suppose that Ψ ∈ ∆2, where the function h is de�ned

on T and Ψ(t, 2u) ≤ KΨ(t, u) + h(t) for every t ∈ T \ T0 with µ(T0) = 0 and u ∈ R. We

have for a constant L > 1
Ψ(t, Lv) ≤ K̃Ψ(t, v) + h̃(t)

for all t ∈ T \ T0 and v ∈ R with a positive constant K̃ and a nonnegative integrable

function h̃.

Then ‖f‖ ≤ L implies that ‖f/L‖ ≤ 1, whence

ρ∗(f/L) = IΨ(v/L) + ‖ϕ/L‖ ≤ 1

and so

IΨ(v/L) ≤ 1 and ‖ϕ/L‖ ≤ 1.

In consequence, setting M =
∫
T
h̃(t) dµ, we obtain

ρ∗(f) = IΨ(v) + ‖ϕ‖ =
∫
T

Ψ
(
t,

1
L
Lv(t)

)
dµ+ ‖ϕ‖

≤
∫
T

[
K̃Ψ

(
t,

1
L
v(t)

)
+ h̃(t)

]
dµ+ ‖ϕ‖

= K̃IΨ(v/L) +
∫
T

h̃(t) dµ+ ‖ϕ‖ ≤ K̃ +M + L.

By the transposition law this �nishes the proof of (1).

Proposition 2.7. If the Musielak-Orlicz function Φ satis�es the condition Φ(t, u)/u→ 0
as u → 0 for µ-a.e. t ∈ T and Ψ ∈ ∆2, then for any L > 0 and ε > 0, there ex-

ists δ > 0 such that for all f, g ∈ L∗Φ with ρ∗(f) ≤ L and ρ∗(g) ≤ δ the inequality

|ρ∗(f + g) + ρ∗(f)| < ε is satis�ed.

Proof. Since Ψ(t, u) vanishes only at zero for µ-a.e. t ∈ T , by virtue of Lemma 1.6 in [H]

there exists a set A ∈ Σ with µ(A) = 0 such that for any ε > 0 there exist a function

hε(·) ≥ 0,
∫
T
hε(t) dµ ≤ ε and a constant Mε ≥ 2, such that

Ψ(t, 2u) ≤MεΨ(t, u) + hε(t)

for any u ∈ R and t ∈ T \A. Therefore

ρ∗(2f) = IΨ(2v) + 2 ‖ϕ‖ =
∫
T

Ψ(t, 2v(t)) dµ+ 2 ‖ϕ‖

≤Mε

∫
T

Ψ(t, v(t)) dµ+
∫
T

hε(t) dµ+ 2 ‖ϕ‖

≤MεIΨ(v) + ε+Mε ‖ϕ‖
= Mε(IΨ(v) + ‖ϕ‖) + ε = Mερ

∗(f) + ε,

which means that the modular ρ∗ satis�es in L∗Φ the condition ∆s
2 de�ned in [CH]. By

Lemma 2.1 in [CH] the proof is complete.
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Theorem 2.8. Let Φ be a Musielak-Orlicz function such that Φ(t, u)/u → 0 as u → 0
for µ-a.e. t ∈ T . Then a functional ϕ ∈ S(F ) is an extreme point of B(L∗Φ) if and only

if ‖ϕ|E‖ =
∥∥ϕ|T\E∥∥ = 0 for every E ∈ Σ.

Proof. The proof proceeds in the same way as the proof of Theorem 3.1 in [CHL].

Theorem 2.9. A functional f = v + ϕ ∈ S(L∗Φ) is an extreme point of B(L∗Φ) if and

only if the following conditions are satis�ed :

(1) ρ∗(f) = 1,
(2) v(t) is a point of strict convexity of Ψ for µ-a.e. t ∈ T ,
(3) ϕ/ ‖ϕ‖ is an extreme point of B(L∗Φ).

Proof. The su�ciency follows in the same way as the su�ciency of Theorem 3.2 in [CHL].

Necessity. Let f = v + ϕ ∈ ExtB(L∗Φ) and let us assume that condition (1) is not

satis�ed. If ε = 1− ρ∗(f) > 0, then we can choose E ∈ Σ such that

0 <
∫
E

Ψ(t, 2v(t)) dµ ≤ ε.

De�ne

v1(t) =

{
v(t) for t ∈ T \ E
0 for t ∈ E

and v2(t) =

{
v(t) for t ∈ T \ E
2v(t) for t ∈ E.

Then v1 6= v2 and v1 + v2 = 2v. De�ning f1 = v1 + ϕ and f2 = v2 + ϕ, we have

ρ∗(f1) = IΨ(v1) + ‖ϕ‖ < IΨ(v2) + ‖ϕ‖ = ρ∗(f2)

< IΨ(v) + ε+ ‖ϕ‖ = ρ∗(f) + ε = 1,

whence ‖f1‖ ≤ 1 and analogously ‖f2‖ ≤ 1. We have 1 = ‖f‖ = ‖(f1 + f2)/2‖ ≤
1
2 (‖f1‖+ ‖f2‖) ≤ 1 and consequently ‖f1‖ = ‖f2‖ = 1, which contradicts the assumption

that f ∈ ExtB(L∗Φ).
Assume now that condition (2) is not satis�ed. Then there exist a set A ∈ Σ with

µ(A) > 0 and two numbers a, b with 0 < a < b < ∞ such that a < v(t) < b and

Φ(t, ·) is a�ne on [a, b] for all t ∈ A. Further there exist ε > 0 and K ∈ Σ with K ⊂ A

and µ(K) > 0 such that a + ε < v(t) < b − ε for all t ∈ K. Let us write Ψ(t, u) for

(t, u) ∈ K × [a, b] in the form Ψ(t, u) = α(t)u + β(t) with α(t) > 0, β(t) > 0 for µ-a.e.

t ∈ K.

Next, let us de�ne on Σ ∩K the measure

µα(B) =
∫
B

α(t) dµ (∀B ∈ Σ ∩K).

This is an atomless measure, so there exist two sets K1,K2 ∈ Σ ∩ K such that

K1 ∩K2 = ∅, K1 ∪K2 = K and µα(K1) = µα(K2). This means that∫
K1

α(t) dµ =
∫
K2

α(t) dµ.
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Let us de�ne two functions v1 and v2 by

v1(t) =


v(t) for t ∈ T \ (K1 ∪K2)

v(t)− ε for t ∈ K1

v(t) + ε for t ∈ K2,

v2(t) =


v(t) for t ∈ T \ (K1 ∪K2)

v(t) + ε for t ∈ K1

v(t)− ε for t ∈ K2.

Then v1 6= v2 and v1 + v2 = 2v. Let us de�ne f1 = v1 + ϕ, f2 = v2 + ϕ. Then

IΨ(v1) =
∫
T\K

Ψ(t, v(t)) dµ+
∫
K1

[α(t)(v(t)− ε) + β(t)] dµ

+
∫
K2

[α(t)(v(t) + ε) + β(t)] dµ

=
∫
T\K

Ψ(t, v(t)) dµ+
∫
K

[α(t)v(t) + β(t)] dµ =
∫
T

Ψ(t, v(t)) dµ = IΨ(v),

which gives

ρ∗(f1) = IΨ(v1) + ‖ϕ‖ = IΨ(v) + ‖ϕ‖ = ρ∗(f) = 1.

Similarly we deduce that ρ∗(f2) = 1, whence it follows that ‖f1‖ = ‖f2‖ = 1. Since
f1 6= f2, this contradicts the assumption that f is an extreme point of B(L∗Φ).

If (3) does not hold, then there exist ϕ1, ϕ2 ∈ S(F ), ϕ1 6= ϕ2 such that 2 ϕ
‖ϕ‖ = ϕ1+ϕ2.

Let ϕ′1 = ‖ϕ‖ϕ1, ϕ
′
2 = ‖ϕ‖ϕ2. Then ‖ϕ′1‖ = ‖ϕ′2‖ = ‖ϕ‖. De�ning f1 = v + ϕ′1,

f2 = v + ϕ′2, we have ρ
∗(f1) = IΨ(v) + ‖ϕ′1‖ = IΨ(v) + ‖ϕ‖ = ρ∗(f) = 1 and similarly

ρ∗(f2) = 1, which contradicts the assumption that f ∈ ExtB(L∗Φ).
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