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Abstract. We employ the sl(2) foam cohomology to define a cohomology theory for oriented

framed tangles whose components are labeled by irreducible representations of Uq(sl(2)). We

show that the corresponding colored invariants of tangles can be assembled into invariants of

bigger tangles. For the case of knots and links, the corresponding theory is a categorification

of the colored Jones polynomial, and provides a tool for efficient computations of the resulting

colored invariant of knots and links. Our theory is defined over the Gaussian integers Z[i] (and

more generally over Z[i][a, h], where a, h are formal parameters), and enhances the existing

categorifications of the colored Jones polynomial.

1. Introduction. In [9] Khovanov constructed a cochain complex associated to an

oriented framed link whose components are labeled by irreducible representations of

Uq(sl(2)). The graded Euler characteristic of the homology of this complex is the col-

ored Jones polynomial. Specifically, [9] provides a categorification of the colored Jones

polynomial by interpreting the defining formula for the polynomial

Jn(K) =

bn/2c∑
i=0

(−1)i
(
n− i
i

)
J(Kn−2i),

where Kj is the j-parallel cable of the knot K, as the Euler characteristic of a complex

whose objects require the original Khovanov homology [7] of the cablings Kn−2i, for

i = 0, . . . , bn2 c. As a consequence of the fact that the original Khovanov homology is

functorial with respect to link cobordisms only up to a negative sign, the construction

in [9] works over Z2.
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Mackaay and Turner [11] followed Khovanov’s proposed categorification [9] of the

colored Jones polynomial to define and compute the colored Bar-Natan theory. Mackaay–

Turner work uses Bar-Natan’s [1] filtered theory in place of Khovanov’s theory, and is

defined, once again, over Z2.

In [2] Beliakova and Wehrli developed homology theories of colored links over Z[1/2] by

using Bar-Natan’s geometric formal Khovanov bracket, which is an object in the category

Kob := Kom(Mat(Cob3/`)). Here Cob3/` is the category of 2-cobordisms modulo some

local relations `. For any additive category C, Mat(C) is the category whose objects are

formal direct sums of objects of C, and whose morphisms are matrices of morphisms

in C for which the composition law is modeled on matrix multiplication. Kom(C) is the

category of chain complexes over C whose objects are bounded (co)chain complexes, and

whose morphisms are chain transformations. The colored link invariant in [2] is a complex

whose objects are formal direct sums of formal Khovanov brackets. Beliakova and Wehrli

explained that there is a way to deal with the sign ambiguity in the functoriality property

of the formal Khovanov bracket, without the need of working over a field of characteristic

two (they showed that there is a satisfactory choice of signs making all squares in the

cube of resolutions associated to a link diagram anticommutative). Their arguments imply

that the categorification defined in [9] works over integers.

The goal of this paper is two-folded. First we enhance the existing categorifications

of the colored Jones polynomial by giving a clean definition of the colored invariant of a

knot or a link, in the sense that one is not restricted to work over Z2. For that, we employ

the universal sl(2) cohomology theory that uses foams (also called seamed cobordisms, or

singular cobordisms), constructed by the author in [5] (compare with [4]), and which is

properly functorial under link cobordisms with no sign ambiguity. The theory developed

in [5] is a Khovanov-type tangle cohomology theory defined over the ring R = Z[i][a, h],

where i2 = −1, and a and h are formal parameters. We refer to this theory as the

(universal) sl(2) foam cohomology. We will not make any specific computations here, so

one can let either a or h be zero (or both, for that matter). Cabling a knot or a link

introduces an unmanageable number of crossings from a computational point of view,

which brings us to the second goal of the paper, namely to define a theory in which the

invariants can be computed efficiently. For that, we use Bar-Natan’s “divide and conquer”

approach to computations and construct a local colored cohomology theory, in that it is

built with colored tangles in mind and which composes well under tangle composition.

We construct a triply-graded cohomology theory for colored oriented framed tangles,

which for the case of links (that can be considered as closed tangles) is a categorification

of the colored Jones polynomial. The resulting invariant of tangles has excellent compo-

sition properties, allowing one to obtain the invariant of a colored framed link from the

invariants of its subtangles. We will discuss the functoriality property of our invariant

with respect to tangle cobordisms (rel. boundary) in a subsequent paper.

The paper is organized as follows. Section 2 overviews the main facts about the uni-

versal sl(2) foam cohomology which will be extensively used in this paper, and recalls the

definition of the colored Jones polynomial of an oriented framed link. In Section 3 we de-

fine the new cohomology theory for colored framed links, categorifying the colored Jones
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polynomial. Section 4 is dedicated to tangles. We first consider the case of mono-colored

tangles with no closed components, and construct a cohomology theory for such tangles.

Then, we generalize our construction to arbitrary colored framed tangles. In both cases,

we show that there is a composition rule that takes the invariants of tangles to invariants

of bigger tangles, and thus produces the invariant of a knot or a link.

2. Brief review of necessary concepts

2.1. Universal sl(2) foam cohomology. We assume familiarity with the construction

in [5], but we briefly recall a few concepts, notations and results coming from the (univer-

sal) sl(2) foam cohomology theory, which are essential in understanding this paper. The

construction involves webs and dotted foams modulo local relations, along the lines of [1]

and [8]. A web here is a planar graph with bivalent vertices which are either “sources” or

“sinks”, and a foam is a 2-cobordism between webs. Foams contain seams, where a seam

is a singular arc or a singular circle where orientations disagree. The author constructed

in [5] a doubly graded cohomology theory (for oriented tangles) over the graded ring

R = Z[i][a, h], where i2 = −1, and a and h are parameters with deg(a) = 4, deg(h) = 2.

(The special case of h = 0 was treated in [4]; see also its longer and more detailed preprint

version [3].)

We denote by Foams the additive category whose objects are webs and whose mor-

phisms are R-linear combinations of dotted foams, and we denote by Foams/` the quotient

category of Foams by a finite set of relations `; that is, we mod out the morphisms of the

category Foams by the local relations `—these are generalized Bar-Natan relations [1] for

the local Khovanov homology, enhanced by additional relations involving the 2-sphere

with a seam. There is a functor F : Foams/` → R-mod taking us from the geometric

picture to the algebraic picture, where R-mod is the category of R-modules and module

homomorphisms. This functor is related to the universal rank-two Frobenius system de-

fined on the R-module A = R[X]/(X2 − hX − a), graded by deg(1) = −1, deg(X) = 1

(the universal Frobenius system was coined by Khovanov in [10]). With respect to the

generators 1 and X of the algebra A, the counit and comultiplication maps are given by

ε(1) = 0, ε(X) = 1 and ∆(1) = 1 ⊗X + X ⊗ 1 − h1 ⊗ 1, ∆(X) = X ⊗X + a1 ⊗ 1, re-

spectively. A dot on a foam corresponds to the multiplication by X endomorphism of A.

The TQFT corresponding to A factors through the quotient category of Foams by the

relations `.

We denote by Kof = Kom(Mat(Foams/`)) the category of complexes whose objects

are column vectors of webs and whose morphisms are matrices of dotted foams modulo

the local relations `. Moreover, let Kof/h = Kom/h(Mat(Foams/`)) be the homotopy

subcategory of the earlier.

Given a planar diagram D of an oriented tangle T , we constructed in [5] a formal

cochain complex [D] ∈ Kof , whose homotopy class is an invariant of T . By applying a

degree-preserving Bar-Natan type functor F : Foams/` → R-mod, which extends to a

functor F : Kof → Kom(Mat(R-mod)), we obtain a cochain complex F [D] whose ho-

mology H(D) := H(F [D]) is a doubly-graded invariant of T . If the tangle T is a link,

the graded Euler characteristic of the homology group H(D) is the quantum sl(2) poly-



16 C. CAPRAU

nomial of the link. Finally, we define [T ] := [D], for any planar diagram D representing

the tangle T .

Proposition 1. Let C ⊂ R3×[0, 1] be a tangle cobordism between tangles T1 and T2, and

denote by B the set of boundary points of T1 (and thus of T2). There exists an induced

graded map [T1]→ [T2] of degree −χ(C) + 1
2 |B|, well-defined under ambient isotopy of C

(rel. boundary), where χ(C) is the Euler characteristic of C, and |B| is the cardinality

of B.

For the scope of this paper, it is important to recall that the geometric invariant has

excellent composition properties, making the sl(2) foam cohomology theory ready for a

“divide and conquer” approach to computations. One can cut a link L into subtangles Ti,

compute the geometric invariant [Ti] for each of these tangles, and finally assemble the

obtained invariants into the invariant of L via the tensor product operation induced on

formal complexes. But before performing the assembling operation one can simplify each

[Ti] as much as possible, via the delooping and Gaussian elimination procedures. These

techniques provide computational efficiency of the sl(2) foam cohomology groups (and,

implicitly, of the original Khovanov homology groups). For more details about efficient

computations we refer the reader to [6]. In particular, it follows that the category Kof/h
has a natural structure of an oriented planar algebra.

Proposition 2. [ · ] is a planar algebra morphism from the planar algebra of oriented

tangles modulo the three Reidemeister moves to the planar algebra Kof/h.

The categories Foams and Foams/` are canopolies over the planar algebra of web

diagrams. A canopoly is both a category and a planar algebra. This term was coined by

Bar-Natan in [1]. The category Kof (and hence Kof/h) can also be viewed as a canopoly,

where the “tops” and “bottoms” of cans are formal complexes over Foams/`, and the

“cans” are morphisms between complexes. Cobordisms between oriented tangle diagrams

can also be composed like tangles, by placing them next to each other and connecting

the common ends. Therefore, they form a planar algebra, and thus the category Cob4 of

cobordisms between oriented tangle diagrams is a canopoly over the planar algebra of

oriented tangle diagrams.

Proposition 3. [ · ] descends to a degree preserving canopoly morphism [ · ] : Cob4/i →
Kof/h from the canopoly of movie presentations of cobordisms between oriented tangle di-

agrams, up to isotopy, to the canopoly Kof/h of formal complexes and morphisms between

them, up to homotopy.

The proofs of the above three propositions can be found in [3].

2.2. Colored Jones polynomial. Let n = (n1, . . . , nl) be a vector whose entries are

non-negative integers. Let (L, n) be an oriented framed link with l components colored

by n; that is, the i-th component of L is colored (or labeled) by ni, or equivalently, by

the (ni + 1)-dimensional irreducible representation of the quantum group Uq(sl(2)). We

denote the colored Jones polynomial of (L, n) by Jn(L). It is a Laurent polynomial in q,
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and is given by the formula

Jn(L) =

bn/2c∑
k=0

(−1)|k|
(
n− k
k

)
J(Ln−2k),

where

|k| =
∑
i

ki and

(
n− k
k

)
=

l∏
i=1

(
ni − ki
ki

)
.

Here, J(Ln−2k) stands for the original Jones polynomial of the (n − 2k)-parallel cable

of L, formed by taking the (ni − 2ki)-parallel cable of the i-th component of L with

respect to its framing, for all 1 ≤ i ≤ l.
If all components of L are labeled by 1, the invariant is the original Jones polynomial

of L.

When forming the m-parallel cable of a component Ki of L, we enumerate the strands

in a cross-section of the planar projection of the cable Km
i from left to right by 1 to m, and

orient the parallel cable-strands such that adjacent strands receive opposite orientations,

where we give strand 1 the original orientation of Ki.

3. Colored link cohomology. In this section we borrow definitions and some clever

ideas from [2] and [9] to construct a cohomology theory for colored framed links, but

instead of using the Khovanov homology we employ the universal sl(2) foam cohomology.

Although our construction for the case of links is similar to that in [2], it is much simpler.

Let (L, n) be an oriented framed link colored by n = (n1, . . . , nl) ∈ Nl, and let D be

a planar diagram for L whose blackboard framing agrees with the given framing of L.

Denote by D1, . . . , Dl the components of D.

The binomial coefficient
(
n−k
k

)
equals the number of ways of selecting k pairs of

neighbors from n dots placed on a line, such that each dot appears in at most one pair.

A dot-row s is a set of n dots on a line in which some adjacent dots are paired. Denote by

p(s) the number of pairs in s. Similarly,
(
n−k
k

)
is the number of ways of selecting k pairs

of neighbors from n dots placed on l lines, where the i-th line contains ni dots. Denote

by s = (s1, . . . , sl) a set of dot-rows si with ni dots, respectively, and call it a dot-row

vector. Let p(s) = (p(s1), . . . , p(sl)), and |p(s)| = p(s1) + . . .+ p(sl).

Let Γn be the directed graph whose vertices are in bijective correspondence with all

possible dot-row vectors s corresponding to n. Two vertices s and s′ in Γn are connected

by an edge e : s → s′ if and only if all pairs in s are pairs in s′, and |p(s′)| = |p(s)|+ 1.

The height of a vertex s is equal to p(s), and the edges are oriented from lower to higher

heights. In Figure 1 we show such a graph for a link with two components colored by

n = (2, 3).

To a dot-row vector s we associate the cable diagram Ds := Dn−2p(s) formed by

taking the (ni − 2p(si))-parallel cable of the i-th component Di of D, for 1 ≤ i ≤ l. In

other words, there is a cable-strand for each unpaired dot in s. To an edge e : s → s′

we associate the cobordism Se : Ds → Ds′ given by contracting the neighboring strands

in Ds corresponding to the pair of dots in s′ but not in s. In addition, the cobordism Se

receives the sign (−1)o(s, s
′), where o(s, s′) is the number of pairs in s to the right and
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above of the only pair in s′\s. Figure 1 explains the sign (−1)o(s, s
′) and Figure 3 displays

a cobordism Se. The Euler characteristic of the cobordism Se is 0, and thus deg(Se) = 0

(we are using the degree convention of the sl(2) foam cohomology theory).

_

+

+

+

_+

+

Fig. 1. The graph Γ(2,3)

The cochain complex Cn(D) for the colored link theory is obtained by applying to

the graph Γn (with link diagrams as vertices and link cobordisms as oriented edges) the

morphism [ · ] constructed in the sl(2) foam cohomology theory. Specifically,

Ds 7−→ [Ds] ∈ Obj(Kof/h)

Ds
Se−→ Ds′ 7−→ [Ds]

[Se]−→ [Ds′ ] ∈ Mor(Kof/h).

According to Proposition 1, [Se] is a well-defined homotopy class of chain maps. The

i-th cochain object of Cn(D) is a formal direct sum of complexes at height i:

Ci
n(D) :=

⊕
s

[Ds].

The sum above is taken over all dot-row vectors s (vertices in Γn) such that |p(s)| = i.

The i-th differential di : Ci
n(D)→ Ci+1

n (D) is a formal sum of all morphisms [Se] corre-

sponding to edges e at height i. That is, if v ∈ [Ds] then di(v) :=
∑

e[Se](v), where the

sum is over all edges e with tail s.

Observe that the maps di are degree-preserving, and that Cn(D) is an object in the

category Kom(Mat(Kof/h)) whose objects are formal direct sums of objects in Kof/h.

That is, Cn(D) is a complex of (direct sums of) formal complexes in Kof/h.

Theorem 4 (cf. [2, Theorem 1]). The isomorphism class of the cochain complex Cn(D)

is an invariant of the colored framed link (L, n).

Proof. Let D and D′ be diagrams representing isotopic colored framed links. Then, for

any dot-row vector s, the cable diagrams Ds and D′s represent isotopic links, thus the

formal complexes [Ds] and [D′s] constructed using the sl(2) cohomology theory are iso-

morphic as objects in Kof/h. The isotopy between the links represented by Ds and D′s
induces an isotopy between the cobordisms appearing in the definition of the differentials

of Cn(D) and Cn(D′). Thus, complexes Cn(D) and Cn(D′) are isomorphic.
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To obtain a cohomology theory and a computable invariant we apply a functor to

switch from the geometric category to an algebraic one. Specifically, we apply the functor

F : Foams/` → R-mod used in the sl(2) foam cohomology theory. Denote by FCn(D) the

resulting complex, and by Hn(D) := H(FCn(D)) its cohomology. The cochain objects

of the complex FCn(D) are doubly-graded R-modules, and therefore, Hn(D) is a triply-

graded R-module

Hn(D) =
⊕

i,j,k∈Z
Hi,j,k(D),

where i is the cohomological degree of Hn(D), and j and k are the cohomological and

polynomial degrees, respectively, of the cochain objects of FCn(D). Using Theorem 4

and the fact that the functor F is degree-preserving, we obtain that the isomorphism

class of Hn(D) is independent on the diagram D of the framed link L, and that is an

invariant of (L, n).

We form a three variable polynomial

P(L,n)(r, t, q) :=
∑
i,j,k

ritjqk rk(Hi,j,k(D)),

and define the total graded Euler characteristic of FCn(D) by

χ(FCn(D)) :=
∑
i,j,k

(−1)i+jqk rk(Hi,j,k(D)).

Then we have that χ(FCn(D)) = P(L,n)(−1,−1, q). Moreover, P(L,n)(−1,−1, q) = Jn(L),

as shown below.

Corollary 5. The Euler characteristic of FCn(D) is the colored Jones polynomial

Jn(L).

Proof.

χ(FCn(D)) =
∑
i,j,k

(−1)i+jqk rk(Hi,j,k(D))

=
∑
i

(−1)i
∑

s, |p(s)|=i

χ(F [Ds ])

=
∑
i

(−1)i
∑

s, |p(s)|=i

χ(F [Dn−2p(s) ])

=
∑
k

(−1)|k|
(
n− k
k

)
χ(F [Dn−2k ])

=

bn/2c∑
k=0

(−1)|k|
(
n− k
k

)
J(Ln−2k),

where k = (k1, k2, . . . , kl) is a vector whose entries are non-negative integers, and |k| =∑
i ki. Therefore, we obtain that χ(FCn(D)) = Jn(L).
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4. Colored tangle cohomology

4.1. The case of tangles without closed components. In this section we consider

oriented framed tangles T without closed components (unless T is a knot itself) whose

strands are colored by the same natural number n. The sl(2) foam cohomology theory

is a “local” theory in the sense that is defined for arbitrary tangles, therefore it can be

used to imitate the construction in Section 3 and associate to a diagram D of a colored

oriented framed tangle (T, n) a complex Cn(D) of formal complexes, and then a complex

FCn(D) of doubly-graded R-modules.

Consider the graph Γn whose vertices are marked by all dot-rows s corresponding to

n (that is, dot-row vectors s = (s) with one component). Figure 2 displays the graph Γ5.

_

+

+

+ +

+ + +

_
_

Fig. 2. The graph Γ5

Associate the cable-diagram Ds = Dn−p(s) to a dot-row s in Γn. Diagram Ds is the

(n−p(s))-parallel cable of D, where there is a parallel cable-strand for each unpaired dot

in s. Strand 1 is oriented in the same way as D, strand 2 is oppositely oriented, strand 3 is

oriented as strand 1, etc. Below we show a tangle diagram D and its 3-parallel cable D3.

D = D3 =

For an edge e : s→ s′, denote by o(s, s′) the number of pairs in s to the right of the

only pair in s′ \ s. The map Se associated to an oriented edge e : s → s′ in the graph

Γn is a tangle cobordism from Ds to Ds′ , multiplied by o(s, s′). This cobordism is the

identity everywhere except at the two adjacent strands in Ds corresponding to the only

pair in s′ \ s, where the map is the cobordism obtained by contracting the two strands.

In Figure 3 we show such a map Se for the rather boring (1, 1)-identity tangle colored by

n = 5.

To the latter graph we apply now the morphism [ · ] and form the complex Cn(D) for

the colored tangle theory. The cochain objects are given by

Ci
n(D) :=

⊕
s, p(s)=i

[Ds].



A COHOMOLOGY THEORY FOR COLORED TANGLES 21

e

Se

s s

Fig. 3. The map Se

The map di : Ci
n(D)→ Ci+1

n (D) is a formal sum of all morphisms [Se] corresponding to

edges e at height i, where [Se] : [Ds]→ [Ds′ ].

Proposition 6. The complex Cn(D) is an invariant of the colored framed tangle (T, n),

up to homotopy. That is, if D and D′ are isotopic colored framed tangle diagrams,

then the cochain complexes Cn(D) and Cn(D′) are isomorphic as objects in the cate-

gory Kom/h(Mat(Kof/h)).

Proof. The proof is exactly the same as that of Theorem 4, thus we omit it.

Finally, the colored tangle cohomology is obtained by applying the functor F to the

geometric invariant Cn(D) of T . This yields a complex FCn(D) whose cochain objects

are doubly-graded R-modules, and we take its cohomology.

Corollary 7. The isomorphism class of the cohomology group Hn(D) := H(FCn(D))

is a triply-graded invariant of the colored framed tangle (T, n).

Remark. If the tangle T is a knot K then the invariants Cn(D) and FCn(D) agree with

their analogues constructed in Section 3 for the colored link (K,n) with one component.

Corollary 8. If the tangle T is a knot K, then the graded Euler characteristic of

FCn(D) is the colored Jones polynomial Jn(K).

4.2. Behavior under tangle composition. The goal of this section is to show that the

geometric colored invariant of tangles defined in Section 4.1 composes well under (vertical)

tangle composition. Specifically, let D1 and D2 be tangle diagrams corresponding to

colored oriented framed tangles (T1, n) and (T2, n). Moreover, suppose that the vertical

composition D1 ◦D2 is defined:

1D ◦ 2D =
2

1

D

D

Here we consider again tangles with no closed components, therefore we need to

impose that not only D1 and D2 are free of closed components, but also the resulting

diagram D1 ◦D2.

We show that there exists a binary operation ∗ defined on Kom/h(Mat(Kof/h)) such

that Cn(D1) ∗ Cn(D2) = Cn(D1 ◦ D2), whenever the vertical composition D1 ◦ D2 is
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defined. This operation is defined as follows. Let Cn(D1) = (Ci
n(D1), di1) and Cn(D2) =

(Ci
n(D2), di2) where

Ci
n(D1) =

⊕
s,p(s)=i

[D1,s] and Ci
n(D2) =

⊕
s,p(s)=i

[D2,s]

and

di1(v1) =
∑
e

[S1,e](v1), di2(v2) =
∑
e

[S2,e](v2) for v1 ∈ [D1,s], v2 ∈ [D2,s],

where the formal sum above is taken over all edges e with tail s.

Let

Ci =
⊕

s,p(s)=i

([D1,s]⊗R [D2,s])

and

φi(v1 ⊗ v2) :=
∑
e

[S1,e](v1)⊗R [S2,e](v2), for v1 ⊗ v2 ∈ [D1,s]⊗R [D2,s],

where the sum is taken over all edges e with tail s, and define Cn(D1)∗Cn(D2) := (Ci, φi).
Here v1 and v2 are resolutions—web diagrams—of D1,s and D2,s, respectively, and

v1⊗v2 stands for the resolution of theD1,s◦D2,s obtained by gluing (composing vertically)

the webs v1 and v2 along their common boundary. The k-th direct summand of Ci,
[D1,s] ⊗R [D2,s], is the formal tensor product of the k-th direct summands of Ci

n(D1)

and Ci
n(D2). Specifically, the operation ⊗ here is the “tensor product” operation induced

on formal complexes by the composition operation on the canopoly Foams/`, and which

follows the gluing pattern used to make the tangle diagram D1 ◦ D2 from D1 and D2

(this tensor product operation is possible by Proposition 2).

Let e : s → s′ be an edge, with associated cobordisms S1,e : D1,s → D1,s′ and S2,e :

D2,s → D2,s′ , and their induced maps [S1,e] : [D1,s]→ [D1,s′ ] and [S2,e] : [D2,s]→ [D2,s′ ],

respectively. By Proposition 3, we have that the tensor product of these maps

[S1,e]⊗ [S2,e] : [D1,s]⊗R [D2,s]→ [D1,s′ ]⊗R [D2,s′ ]

is equal to the following map, up to homotopy,

[S1,e ◦ S2,e] : [D1,s ◦D2,s]→ [D1,s′ ◦D2,s′ ],

where S1,e ◦ S2,e is the cobordism obtained by “gluing” S1,e and S2,e following the same

pattern used to “glue” (compose) the tangle diagrams which are the source and target of

these cobordisms. Therefore,

[S1,e](v1)⊗R [S2,e](v2) = [S1,e ◦ S2,e](v1 ⊗ v2).

We remark that ∗ is the “direct sum” operation induced on complexes in

Kom(Mat(Kof/h)) by the composition operations on canopolies Kof/h and Cob4/i. The

following result holds at once.

Proposition 9. Cn(D1) ∗Cn(D2) is a cochain complex. Moreover, Cn(D1) ∗Cn(D2) =

Cn(D1 ◦D2) up to homotopy.

Remark. We showed that the geometric colored invariant Cn(T ) of mono-colored framed

tangles T with no closed components has good composition properties, therefore it is
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suitable for efficient calculations of the colored cohomology groups of a framed knot.

Specifically, we cut a colored oriented framed knot (K,n) (using horizontal lines) into

subtangles (Ti, n), compute the invariants Cn(Ti) and assemble them into Cn(K), as

prescribed in this section. Before the assembling operation, we simplify each Cn(Ti) as

much as possible by simplifying the cochain objects of Cn(Ti) (thus we simplify the formal

complexes [Di,s] ∈ Kof by making use of the “delooping” and “Gaussian elimination”

procedures, as described in [6]). Once that is taken care of, we apply the functor F to

arrive at the complex FCn(D), and take its cohomology.

4.3. The case of arbitrary tangles. In this section we show that we can do for links

what we did for knots, namely we show that the “divide and conquer” approach can be

used to compute more efficiently the colored cohomology groups of an oriented framed

link (L, n). For that, we need a colored theory for arbitrary tangles, that is, tangles that

might have closed components and whose strands might be colored by distinct natural

numbers.

Let L = T1 ◦ . . . ◦ Tk be an oriented framed link with l components, regarded as a

vertical composition of k tangles. Number the components of L from 1 to l, and color the

i-th component by ni ∈ N. Denote the colored link by (L, n), where n = (n1, . . . , nl).

The arcs of a subtangle Tj correspond to certain link components, and thus receive

the induced color from L. Denote by nj the coloring of Tj induced from the coloring of L,

and denote the resulting colored tangle by (Tj , nj). Whenever a link component Ki has

representative arcs in Tj , we say that Ki is represented in Tj . The vector nj has l entries,

and if all components of L are represented in Tj , then nj = n. Otherwise, if some link

component Ki is not represented in Tj then the i-th entry of nj is 0, and all the other

entries agree with the corresponding entries in n. Thus nj ∈ (N∪ {0})l for all 1 ≤ j ≤ k.

Let D be a diagram of L whose blackboard framing corresponds to the given fram-

ing of L, and write D = D1 ◦ . . . ◦ Dk, where Dj is a diagram of Tj . In Figure 4 we

show a colored link diagram with three components, decomposed into two colored tangle

diagrams.

As before, let s = (s1, . . . , sl) be a dot-row vector containing dot-rows si with ni
dots. Let p(s) = (p(s1), . . . , p(sl)), where p(si) is the number of pairs in si, and let

|p(s)| = p(s1) + . . .+ p(sl).

For each diagram Dj consider the (same) graph Γn whose vertices are marked by all

dot-row vectors s corresponding to n (as constructed in Section 3). Having a common

graph for all subtangle diagrams Dj is essential for obtaining a well-defined composition

operation of the geometric colored invariants of (arbitrary) tangles, and therefore, in

recovering the colored Jones polynomial of a link.

Consider the tangle diagram Dj , where j is fixed. To a dot-row vector s ∈ Γn associate

the cable diagram Dj,s := D
nj−2p(s)
j formed by taking the (ni − 2p(si))-parallel cable of

each arc in Dj colored by ni. If the i-th entry in nj is 0 (that is, if the component Ki

of L is not represented in Dj), or equivalently, if there are no arcs in Dj colored by ni,

then take the (ni − 2p(si))-cable of the empty tangle diagram for the missing arcs. To

an edge e : s → s′ associate the cobordism Sj,e : Dj,s → Dj,s′ given by contracting the

neighboring strands in Dj,s corresponding to the pair in s′ but not in s. Finally, multiply
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Fig. 4. A link decomposed into subtangles

each cobordism Sj,e by (−1)o(s,s
′), where o(s, s′) is the number of pairs in s to the right

and above of the only pair in s′ \ s (see Figure 1).

We are ready now to form the complex Cnj
(Dj) by applying the morphism [ · ] of sl(2)

foam cohomology theory. Let Cnj
(Dj) = (Ci

nj
(Dj), d

i
j). Then

Ci
nj

(Dj) :=
⊕
s

[Dj,s]

where the sum is taken over all dot-row vectors s with |p(s)| = i, and the map dij :

Ci
nj

(Dj) → Ci+1
nj

(Dj) is a formal sum of all morphisms [Sj,e] corresponding to edges e

with tail s.

The following proposition is proved much as Theorem 4.

Proposition 10. Cnj
(Dj) is a complex whose isomorphism class is an invariant of the

colored framed tangle (Tj , nj).

The operation ∗ of Cnj
(Dj) and Cnj+1

(Dj+1), for 1 ≤ j ≤ k − 1 goes as follows. Let

(Ci, φi) = Cnj
(Dj) ∗ Cnj+1

(Dj+1), and define

Ci :=
⊕
s

([Dj,s]⊗R [Dj+1,s])

where the sum is taken over all dot-row vectors s such that |p(s)| = i. Moreover, con-

sider the map φi : Ci → Ci+1 which is the formal sum of all morphisms [Sj,e] ⊗ [Sj+1,e]

corresponding to all edges e with tail s. It follows that (Ci, φi) is a complex whose con-

struction is modeled by the formal direct sum of complexes Cnj
(Dj) and Cnj+1

(Dj+1),

as explained in Section 4.2.
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Moreover, the isomorphism class of Cnj
(Dj) ∗Cnj+1

(Dj+1) is the colored invariant of

Tj ◦ Tj+1, by construction. Putting all together, Cn1
(D1) ∗ . . . ∗Cnk

(Dk) = Cn(D) up to

homotopy, and therefore, Cn1
(D1) ∗ . . . ∗Cnk

(Dk) is an up-to-homotopy invariant of the

colored link (L, n).

It is important to remark that, as in the case of knots, we simplify as much as possible

each of the invariants Cnj
(Dj), 1 ≤ j ≤ k, before we assemble them into the invariant

of the colored link (L, n). Applying the functor F we obtain a complex F(Cn1
(D1) ∗

. . . ∗ Cnk
(Dk)) of doubly-graded R-modules and homomorphism between them, and we

can take its cohomology. The isomorphism class of H(F(Cn1
(D1) ∗ . . . ∗Cnk

(Dk))) is an

invariant of the framed colored link (L, n), and its total graded Euler characteristic is the

colored Jones polynomial Jn(L).
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