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Abstract. We construct an infinite commutative lattice of groups whose dual spaces give

Kauffman finite-type invariants of long virtual knots. The lattice is based “horizontally” upon

the Polyak algebra and extended “vertically” using Manturov’s functorial map f . For each n, the

n-th vertical line in the lattice contains an infinite-dimensional subspace of Kauffman finite-type

invariants of degree n. Moreover, the lattice contains infinitely many inequivalent extensions of

the Conway polynomial to long virtual knots, all of which satisfy the same skein relation. Bounds

for the rank of each group in the lattice are obtained.

1. Introduction

1.1. Overview. In [10], it was shown that there exists a sequence of finitely generated

abelian groups ~Pt and surjections ~Pt → ~Pt−1:

. . . // ~Pt // ~Pt−1
// . . . // ~P2

// ~P1 ,

such that the elements of HomZ(~Pt,Q) are Kauffman finite-type invariants of long virtual

knots of degree not exceeding t. The sequence contains many interesting classical knot

invariants. For example, the Conway polynomial has several combinatorial formulae which

lie in this group.

Many examples of finite-type invariants are beyond description of these groups [6, 7, 9].

In [9], the sequence of Polyak groups was extended by parity to a sequence of Kauffman

finite-type invariants which contain many invariants which are not of Goussarov–Polyak–

Viro finite-type. Each of the groups has finite rank. In the present paper, we construct
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a commutative lattice of groups ~Xt[m] with surjective arrows (see Equation (1)).

. . . // ~Xt[∞]

dt[∞→m] ��

// ~Xt−1[∞]

dt−1[∞→m] ��

// . . . // ~X2[∞]

d2[∞→m] ��

// ~X1[∞]

d1[∞→m] ��

· · ·
...

dt[3→2]

��

...

dt−1[3→2]

��

· · ·
...

d2[3→2]

��

...

d1[3→2]

��
. . . // ~Xt[2]

dt[2→1]

��

// ~Xt−1[2]

dt−1[2→1]

��

// . . . // ~X2[2]

d2[2→1]

��

// ~X1[2]

d1[2→1]

��
. . . // ~Xt[1] // ~Xt−1[1] // . . . // ~X2[1] // ~X1[1]

(1)

The lattice satisfies the following properties (denoted throughout as Properties 1–5).

1. The elements of the dual space HomZ(~Xt[m],Q) yield Kauffman finite-type invari-

ants of degree ≤ t.
2. The group ~Xt[m] contains an isomorphic copy of the Polyak group ~Pt which deter-

mines the value of an invariant in HomZ(~Xt[m],Q) on the set of classical knots.

3. The lattice contains combinatorial representations of infinitely many inequivalent

extensions of the Conway polynomial to long virtual knots.

4. For each t, the t-th column in the lattice contains combinatorial representations of

an infinite-dimensional subspace of finite-type invariants of degree t.

5. The rank of ρt[m] of ~Xt[m] satisfies:

t+ 1

m

(
m+ t

1 + t

)
≤ ρt[m] ≤ Ωt[m],

where Ωt[m] is defined in Section 5.1.

The groups ~Xt[m] in the commutative lattice are constructed as a generalized Polyak

group [10, 9]. In other words, it is a quotient of a free abelian group of labelled Gauss

diagrams by some relations which roughly correspond to the sum of subdiagrams of all

Reidemeister relations. In our case, the labels will come from iterates of Manturov’s

functorial map f .

The organization of this paper is as follows. In the remainder of Section 1, we review

virtual knot theory which is relevant to the present paper. In Section 2, we define the

groups in the lattice, show that it is commutative, and establish Properties 1 and 2. In

Section 3, we define the extensions of the Conway polynomial and verify Property 3. In

Section 4, we establish Property 4. Finally, in Section 5, we prove the bounds on the rank

of the lattice groups given in Property 5.
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was originally titled Combinatorial Formulae for Finite-Type Invariants of Virtual Knots
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conversations with A. Gibson. The author is grateful for his interest in this work. In

addition, M. Polyak and H. Morton asked questions after and during (respectively) the

presentation. The answers to those questions are contained herein.

1.2. Background. Let D denote the set of Gauss diagrams on R or the set of Gauss

diagrams on S1. In diagrammatic form, the Reidemeister moves may be written as in

Figure 1. Here, the total number of necessary Reidemeister moves has been reduced via

Östlund’s theorem [18] as in [10]. Two Gauss diagrams D, D′ are said to be Reidemeister

equivalent if there is a sequence D = D1 ↔ D2 ↔ . . .↔ Dn = D′ of Reidemeister moves

transforming D into D′.

Ω1 //oo Ω2 //oo

Ω3 //oo

Fig. 1. Sufficient set of Reidemeister moves in Gauss diagram notation

The lattice is constructed using parity [13, 15, 17, 14, 16, 11]. Let D be a Gauss

diagram. Let C(D) denote the set of arrows of D. If D � D′ is a Reidemeister move,

then there is a one-to-one correspondence between arrows not involved in the move.

For w ∈ C(D), we denote the corresponding unaffected arrow as w′ ∈ C(D′). Let

D(1,0) denote the set of Gauss diagrams where each arrow is labelled with an element of

Z2 = {0, 1}. A parity is a function P : D→ D(1,0) satisfying the following four properties.

1. If D ∈ D has an arrow x with consecutive endpoints then P assigns the label 0

to x.

2. If D ∈ D and x, y ∈ C(D) have opposite sign and are embedded as the two affected

arrows in a Reidemeister 2 move, then P assigns the same label to x and y.

3. Suppose that D 
 D′ is a Reidemeister 3 move. Let {x, y, z} denote the set of

arrows of D which are changed by the move and {x′, y′, z′} the set of corresponding

arrows in D′. Then P assigns the label 1 to either zero or two elements of {x, y, z}.
If t ∈ {x, y, z}, then P assigns the same label to t and t′ in {x′, y′, z′}.

4. IfD 
 D′ is any Reidemeister move, and (y, y′) is a corresponding pair of unaffected

arrows, then P assigns the same label to y and y′.

The standard example of a parity is the Gaussian parity. Let D be a Gauss diagram.

To D we associate its intersection graph. Two arrows a and b are said to intersect (or

to be linked) if their endpoints alternate on R or S1. We write (a, b) = (b, a) = 1 if a
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P1 : = 0, P2 : + + = 0,

P3 : + + + =

+ + +

Fig. 2. Polyak relations

and b intersect and (a, b) = 0 otherwise. The intersection graph is the graph with a vertex

for each arrow of the diagram and an edge between two vertices a and b exactly when

(a, b) = 1.

Given a Gauss diagram D and its intersection graph G, the Gaussian parity is defined

as follows. An arrow in D is labelled 1 if the degree of its vertex in G is odd and a 0 if the

degree of its vertex in G is even. It is easy to see that this definition satisfies the parity

axioms.

We will say that P is a parity of flat virtual knots if for all diagrams D, D′ such that

D′ is obtained from D be changing the direction of an arrow, then P assigns the same

label to corresponding arrows of D and D′. For example, the Gaussian parity is a parity

of flat virtual knots.

Lastly, we will need the functorial map f : Z[D] → Z[D] due to Manturov (see e.g.

[9]). Let P be any parity. f(D) is defined to be the Gauss diagram which deletes all arrows

in D which are odd with respect to P. We note that if P (D) has all arrows marked 0

then f(D) = D. Also note that if D and D′ are related by a Reidemeister move, then

either f(D) = f(D′) or f(D) and f(D′) are related by a Reidemeister move.

1.2.1. Finite-type invariants of virtual knots. There are two notions of finite-type invari-

ants of virtual knots. The first type is the natural generalization of Vassiliev invariants

to virtual knots. Finite-type invariants such as these were first studied by Kauffman.

Therefore, we say that an invariant of virtual knots is said to be of Kauffman finite-type

of degree ≤ n if it vanishes on all diagrams having more than n graphical vertices [12].

Graphical vertices are defined via the following filtration:

:= − .

The second kind of finite-type invariants of virtual knots arises from the Polyak groups.

This notion was originally studied by Goussarov, Polyak, and Viro. Let ~A denote the set

of Gauss diagrams with arrows drawn as dashed lines. Let ~At denote those diagrams

having more than t arrows. Let Z[ ~A] denote the free abelian group generated by ~A. The

Polyak algebra [10] has relations given in Figure 2.



FINITE-TYPE INVARIANTS OF VIRTUAL KNOTS 31

The Polyak group is given by the quotient

~Pt =
Z[ ~A]

〈 ~P1, ~P2, ~P3, ~At〉
.

The virtual knot invariants that arise from the Polyak groups are defined using the

subdiagram map I:

I(D) =
∑
D′⊂D

i(D′),

where i makes every arrow of D′ dashed and the sum is taken over all subdiagrams of D.

If v ∈ HomZ(Pt,Q), then v ◦ I is a virtual knot or virtual long knot invariant. Moreover,

v ◦ I is a Kauffman finite-type invariant of degree ≤ t [10].

Not all Kauffman finite-type invariants are represented by these groups. Those invari-

ants which factor through ~Pt are said to be of Goussarov–Polyak–Viro finite-type.

2. Properties 1, 2: the lattice of finite-type invariants. The present section defines

the fm-labelled Polyak groups and shows how they form the commutative lattice given

in Equation (1). In addition, Properties 1 and 2 are established.

2.1. Definition and commutativity of the lattice. Let P be any parity. Let

m ∈ N ∪ {∞}. For a Gauss diagram D, consider P (D) (i.e. the diagram D with ar-

rows labelled as prescribed by P ). For an arrow x ∈ C(D), let i be the smallest number

1 ≤ i ≤ m such that x /∈ C(f i(D)). If x ∈ C(f i(D)) for all i, 1 ≤ i ≤ m, set i = m+1 (or

i =∞ if m =∞). The label of the arrow x is the natural number i. A labelling of a Gauss

diagram according to this procedure will be called an fm-labelling. The fm-labelling of

a Gauss diagram D satisfies the following properties:

1. The label of an isolated arrow is m+ 1.

2. The label of two arrows involved in an Ω2 move are identical. Deleting the two

arrows in the move does not affect the fm-labelling of the other arrows in the

diagram.

3. The labels {i, j, k} of the corresponding arrows on LHS and RHS of an Ω3 move

are the same. Also, the labels satisfy one of the relations: i > j = k, j > i = k,

k > i = j, i = j = k = m+ 1.

Let ~A[m] denote the set of signed arrow diagrams where all of the arrows are arbitrarily

labelled from 1 to m + 1 and the arrows are drawn formally dashed. We define the map

Λ[m] : Z[D] → Z[ ~A[m]] to be the map which assigns the fm-labelling to each Gauss

diagram and makes all of the arrows dashed. Define the map I[m] : Z[ ~A[m]] → Z[ ~A[m]]

by

I[m](D) =
∑
F⊂D

F,

where the sum is over all subdiagrams of D. Note that the label and sign of each arrow

is preserved in the subdiagram.
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We define some relations on Z[ ~A[m]] as follows:

~Q1[m] : = 0, ~Q2[m] : + + = 0

~Q3[m] :

+ + +

= + + +

In ~Q2[m], we only have arrows with labels up tom+1. In ~Q3[m], we include all possibilities

where i = i′, j = j′, k = k′, and either i > j = k, j > i = k, k > i = j, or i = j = k =

m+ 1.

We note that these relations generate the image of the relations in Figure 1 under the

map I[m] ◦ Λ[m], subject to the properties of the iterates of f (compare with [10]).

Let ~At[m] denote those diagrams having more than t arrows and all labels ≤ m+ 1.

We define:

~X[m] =
Z[ ~A[m]]

〈 ~Q1[m], ~Q2[m], ~Q3[m]〉
, ~Xt[m] =

Z[ ~A[m]]

〈 ~Q1[m], ~Q2[m], ~Q3[m], ~At[m]〉
.

For Gauss diagrams on R, the rational vector space Q ⊗Z ~X[m] has the structure of an

algebra. The multiplication is given by a map ~A[m] × ~A[m] → ~A[m] which is defined

by (D1, D2) → D1D2, i.e. the simple concatenation of the arrow diagrams. This is the

same multiplication map that we have for the Polyak algebra [10]. We will not use the

structure of the algebra, but this is what we mean by “algebra” in the term “fm-labelled

Polyak algebra”.

The fact that the fm-labelled Polyak algebra gives rise to invariants of Kauffman

finite-type follows from the definitions and arguments which are available in the literature.

For example, the m = 1 case was considered in [9]. We record the result as a lemma below.

Lemma 1 (Property 1). Let P be a parity of long flat virtual knots. If

v ∈ HomZ(~Xt[m],Q),

then v ◦ I[m] ◦ Λ[m] : Z[D]→ Q is a Kauffman finite-type invariant of order ≤ t.
Next we prove that the lattice is surjective and commutative.

Lemma 2 (Horizontal surjectivity of the lattice). Let πt[m] : ~Xt[m] → ~Xt−1[m] denote

the natural map of the quotient spaces. The following sequence is exact for all m ∈ Z:

~Xt[m] // ~Xt−1[m] // 0 .

Proof. This follows from the fact that ~At[m] ⊆ ~At−1[m].
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We now describe the vertical maps in the lattice. We define maps for 1 ≤ n ≤ m ≤ ∞
as follows:

d[m→ n] : Z[ ~A[m]]→ Z[ ~A[n]].

If D ∈ ~A[m], relabel any arrow of D having label k > n + 1 by n + 1. The resulting

diagram is d[m → n](D). We note that by this definition, d[m → m] = 1 (the identity

map).

Lemma 3 (Vertical surjectivity of the lattice). For any t ∈ N, d[m → n] : Z[ ~A[m]] →
Z[ ~A[n]] descends to a map of the quotients dt[m → n] : ~Xt[m] → ~Xt[n]. Moreover, the

following sequence is exact :

~Xt[m]
dt[m→n]// ~Xt[n] // 0 .

Proof. Since d[m→ n] preserves the number of arrows, it is only necessary to check the

relations ~Q1[m], ~Q2[m], and ~Q3[m]. In a ~Q1[m] relation, the isolated arrow having label

m+ 1 ≥ n+ 1 gets relabelled with an n+ 1. Therefore, the image of a ~Q1[m] relation is

a ~Q1[n] relation. For a ~Q2[m] relation, the labels of the affected arrows are the same and

hence will be the same after the application of d[m→ n].

The ~Q3[m] relation has several cases. If x, y, z ≥ n + 1 or x, y, z < n + 1, the result

is trivially true. Suppose then that exactly one label, say x, is ≥ n + 1. Then it must

be that y = z < n + 1. Hence, the labels x′, y′, z′ in the image of d[m → n] will satisfy

y′ = z′ < n+ 1 = x′. Therefore, the image of any ~Q3[m] relation is a ~Q3[n] relation.

Since d[m→ n] is a surjection, it follows that the sequence is exact.

Theorem 4. The following sequence is exact. Hence, HomZ(~Xt[n],Q) may be identified

as a subgroup of HomZ(~Xt[m],Q) for all m ≥ n.

0 // HomZ(~Xt[n],Q)
(dt[m→n])∗// HomZ(~Xt[m],Q)

Proof. This follows immediately from Lemma 3.

Theorem 5 (Commutativity of the lattice). The following diagram commutes for all t,

m, n, with m ≥ n.

~Xt[m] //

��

~Xt−1[m]

��
~Xt[n] // ~Xt−1[n]

Proof. This is clear from the definitions of the maps πt[m] and d[m→ n] and the proofs

of Lemmas 2 and 3.

Lastly we need to show that each row is an extension of the Polyak sequence of

groups ~Pt. Let ~V1[m], ~V2[m], ~V3[m] denote those ~Q1[m], ~Q2[m], ~Q3[m] relations, respec-

tively, where all arrows are labelled m + 1. Let ~E[m] denote those dashed signed arrow

diagrams where all arrows are labelled m+ 1. Let ~Et[m] denote those diagrams in ~E[m]
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which have more than t arrows. We define the quotient group ~Et[m] to be

~Et[m] =
Z[ ~E[m]]

〈 ~Et[m], ~V1[m], ~V2[m], ~V3[m]〉
.

Theorem 6 (Property 2). For all m and t, ~Et[m] is isomorphic to the Polyak group ~Pt.

Moreover, the following sequence is exact for every m:

0→ ~Et[m]→ ~Xt[m].

Moreover, for every v ∈ HomZ(~Xt[m],Q), the value of v ◦ I[m] ◦ Λ[m] on any classical

diagram is determined by the restriction of v to the subgroup ~Et[m].

Proof. The first fact is clear from the definitions (see [10]). For the second fact, note that

for any classical diagram D we have f(D) = D. Therefore, Λ[m](D) labels all the arrows

of D with m+ 1. The conclusion follows from the definition of ~Et[m].

3. Property 3: fm-labelled Conway polynomial. In this section, we define an

fm-labelled Conway polynomial for every m. It is proved that each polynomial has a

representation in the lattice. For this restriction, we consider only the Gaussian par-

ity and Gauss diagrams on R. Under these conditions, the polynomials are all distinct.

However, all of the extensions satisfy the same skein relation.

3.1. The classical Conway polynomial. The Conway polynomial for classical links

is uniquely determined by the following skein relation:

∇

( )
−∇

( )
= z · ∇

( )
,

and the condition that ∇(©) = 1. The classical link diagrams K⊕, K	, K0 form what is

known as a Conway triple.

There are many known extension of the Conway polynomial to virtual knots and

virtual long knots. Some of them satisfy a straightforward generalization of the skein

relation [4] while some do not [20]. Recently, Chmutov, Khoury, and Rossi showed that

there exist two natural extensions of the Conway polynomial ∇asc and ∇desc to virtual

long knots (see also, [5]) which satisfy a certain skein relation. In addition, they found

Gauss diagram formulae which compute the coefficients of the Conway polynomial up

to any order. Related work for other knot polynomials has been done by Chmutov and

Polyak [5] and Brandenbursky and Polyak [2].

→

Fig. 3. The oriented smoothing at an arrow

The invariant ∇asc may be defined as follows [4]. Let D be a Gauss diagram on R
and x an arrow of D. We consider R to be identified with the x-axis in R2 where it

bounds the lower half-plane. The oriented smoothing of D at x is obtained by gluing an
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untwisted band [0, 1]× [0, 1] to the intervals around the endpoints of x. This is illustrated

in Figure 3. If we take the oriented smoothing at every crossing of D, we call the resulting

orientable surface the Seifert smoothing of D. The diagram is said to have one component

if the number of boundary components of the Seifert smoothing is one. While traversing

a one component diagram from −∞→∞, each arrow is passed exactly twice. If the first

pass of each arrow is in the same direction of the arrow, the one component diagram D

is said to be ascending.

Let C2n denote the sum of all ascending Gauss diagrams on R having exactly 2n

arrows, where each summand is weighted according to the product of the signs of its

arrows. It follows from [4] and [5] that if c2n(K) is the coefficient of z2n in ∇(K), then

c2n(K) = 〈C2n, I(DK)〉, where I(D) =
∑
D′⊆D

D′,

〈·, ·〉 is the pairing 〈D,E〉 = δDE , and DK is a Gauss diagram of K. In addition, there is

an extension ∇asc of the Conway to long virtual knots defined as follows:

∇asc(K) =

∞∑
n=0

〈C2n, I(DK)〉z2n.

Example ([4]). There is only one ascending Gauss diagram on R of order 2. Then c2 is

given by

c2(K) =

〈
, I(DK)

〉
.

3.2. Definition of fm-Conway polynomial. The fm-labelled Conway polynomial is

constructed by decomposing the combinatorial formula into its “even part” and “odd

part”. The “even part” is killed and replaced with its “∞ part”.

We note that parity has been used to improve a number of virtual knot polynomials.

For example, this was done in [1]. In addition, there is the parity bracket polynomial of

V. O. Manturov. The technique presented in the present paper is somewhat different.

A combinatorial formula is a linear combination of Gauss diagrams, F =
∑N
i=1 aiFi,

where ai ∈ Z for 1 ≤ i ≤ N . A combinatorial formula generates a virtual knot invariant

by 〈F, I(·)〉, where 〈·, ·〉 and I were defined in the previous section. Let F ei [m] be the

dashed arrow diagram Fi with all its arrows labelled m + 1 (for m = ∞, all arrows are

labelled ∞). We define the fm-even part of F to be

F e[m] =

N∑
i=1

aiF
e
i [m].

The fm-odd part of F is defined as follows. Let O(D) be the set of diagrams in ~A[m]

whose arrows and signs are identical with D and such that not all of the arrow labels are

m+ 1. Then the fm-odd part of F is defined to be

F o[m] =

N∑
i=1

∑
F o

i [m]∈O(Fi)

aiF
o
i [m].

For m =∞, we set F o[m] = 0. If n = 0, we set F o[m] = 0 as well.
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We say that a combinatorial formula F =
∑
Fi is homogeneous of order n if each of

the Fi has exactly n arrows. For example, the formulae for the Conway coefficients, C2n

are homogeneous of order 2n.

Theorem 7. Let m ∈ N ∪ {∞}. If F is a homogeneous GPV combinatorial formula of

order n, then 〈F e[m], ·〉 ∈ HomZ(~Xn[m],Q), 〈F o[m], ·〉 ∈ HomZ(~Xn[m],Q), and for every

long virtual knot K we have

〈F, I(DK)〉 = 〈F e[m], I[m] ◦ Λ[m](DK)〉+ 〈F o[m], I[m] ◦ Λ[m](DK)〉.

Proof. This follows exactly as in the case m = 1 [9].

We define invariants c2n[m] : K→ Z as follows:

c2n[m](K) =
〈
Ce2n[∞], I[∞] ◦ Λ[∞](DK)

〉
+
〈
Co2n[m], I[m] ◦ Λ[m](DK)

〉
.

Then we define the fm-Conway polynomial to be

∇[m](K) =

∞∑
n=0

c2n[m](K)z2n.

Theorem 8 (Property 3). For all m, the function ∇[m] is an invariant of long virtual

knots. The c2n[m] coefficient of z2n in ∇[m] is a finite-type invariant of degree ≤ 2n.

Moreover, ∇[m] is represented in the lattice given in Equation (1). If K is a classical

knot, then ∇[m](K) = ∇(K).

Proof. The fact that ∇[m] is an invariant which is represented in the lattice follows

from Theorem 7. The fact that the coefficients are of Kauffman finite-type follows from

Theorem 1. The final claim follows from the fact that the fm-label of any classical knot

is m+ 1 for every m. Hence, the odd part Co2n[m] vanishes on classical knots for every m

and n.

3.2.1. The ∇[m] are distinct. We prove that for all k, the c2k[m] are distinct. To do

this, we define a knot diagram Km,k, and count the number ascending one component

subdiagrams of its Gauss diagram DKm,k
.

Let Dk denote the chord diagram on R whose intersection graph is the complete graph

on 2k vertices. To each chord of Dk, we add an “earring” of width m− 1 as follows. An

earring of width w is a chord diagram whose Gauss code is

121324354 · · · (w − 1)(w − 2)w(w − 1)w.

In particular, the intersection graph of an earring of length w is a path of length w.

Number the chords of Dk by the order of their leftmost endpoints. We add an earring of

width m−1 to the left of the chord 1 in Dk so that the first chord of the earring becomes

the leftmost chord and the last chord of the earring is linked with chord numbered 1

in Dk. The intersection graph of this chord diagram is a coalescence of the complete

graph on k vertices with a path of length m at an endpoint of the path. Similarly, we

add an earring of width m − 1 on the immediate left of the left endpoint of each odd

numbered chord of Dk and extending to the immediate right of the right hand endpoint

of each even numbered chord of Dk. The resulting Gauss diagram is denoted by Dm,k.
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→

Fig. 4. Adding earrings to the vertices of a complete graph

Note that vertices of Dk are f∞-labelled m. Each earring has the labels 1, 2, . . . ,m− 1,

with the arrow labelled m− 1 being linked with a vertex of Dk.

Example. Consider the case of c2[m]. Then Dm,2 is given below:

Dm,2 = .

Now we create a signed and directed Gauss diagram ~Dm,k from Dm,k. First, we choose

the ⊕ sign for each of the chords in Dm,k. Secondly, we orient all of the odd numbered

chords in Dk from left to right and all of the even numbered chords of Dk from right to

left. We may orient the chords of the earrings arbitrarily.

Lemma 9. For all k, the subdiagram of ~Dm,k corresponding to Dk is a one component

ascending diagram.

Proof. By Zulli’s Theorem [22], the number of boundary components is one more than

the nullity of the Z2 adjacency matrix of K2k (i.e. the complete graph on two vertices).

The adjacency matrix is the 2k × 2k matrix:
0 1 1 · · · 1

1 0 1 · · · 1

1 1 0 · · · 1
...

. . .
. . . · · ·

...

1 1 1 · · · 0

 .
It can be shown by induction that this matrix has nullity 0 (see also [8]). Hence, Dk is

of one component. It is ascending because in the left-to-right ordering of the chords, the

odd chords with respect to this ordering point right and the even chords with respect to

this ordering point left.

Lemma 10. For all n, 1 ≤ n < m, we have

c2k[m]( ~Dm,k)− c2k[n]( ~Dm,k) ≥ 1.

Proof. First note that the fn-labels of ~Dm,k may be obtained from the fm-labels by

erasing all of the fm-labels greater than n and setting them equal to n + 1. Also note
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that no subdiagram of ~Dm,k is counted by Ce2k[∞]. It therefore suffices to show that

Co2k[m] counts at least one more subdiagram of ~Dm,k than Co2k[n].

Any ascending subdiagram of ~Dm,k which is counted by Co2k[n] is also counted by

Co2k[m]. This is because such a subdiagram must have at least one arrow whose fn-label

is less than n+ 1. Hence, its fm-label must also be less than m+ 1.

Now consider the subdiagram Dk of ~Dm,k whose intersection graph is isomorphic to

the complete graph on 2k vertices. By Lemma 9, this subdiagram is ascending. Recall

that all of the arrows of Dk are all fm-labelled as m. Then the fn-label is n+1. It follows

that Dk contributes 1 to c2k[m] and 0 to c2k[n]. This completes the proof of the lemma.

It follows immediately that for all k, if m1 6= m2, then there exists a long virtual

knot K such that c2k[m1](K) 6= c2k[m2](K). Hence, ∇[m1](K) 6= ∇[m2](K).

3.2.2. The ∇[m] satisfy a skein relation. In this section, we show that the fm-labelled

Conway polynomials also satisfy a skein relation

∇[m](K⊕,⊕)−∇[m](K⊕,	)−∇[m](K	,⊕) +∇[m](K	,	) = z2∇[m](K00),

where the affected crossings are linked, both f∞-labelled ∞, and the smoothing does

not change the f∞-labels of the remaining crossings. This Conway quintuple is given in

Figure 5. The relative configuration of the crossings is depicted in Figure 6.

(
,

) (
,

)
K⊕,⊕ K⊕,	(
,

) (
,

)
K	,⊕ K	,	

(
,

)
K0,0

Fig. 5. A virtual Conway quintuple

We note that when the arrows are crossed, then smoothing along both arrows gives

another virtual knot i.e. the number of connected components is preserved. It is necessary

to use a Conway quintuple as opposed to the traditional Conway triple for this very reason.

Fig. 6. Configuration of arrows in the fm-skein relation

Lemma 11. Let m be given. Suppose that (K⊕,⊕,K⊕,	,K	,⊕,K	,	,K00) is a virtual

Conway quintuple, such that the drawn arrows are linked, both f∞-labelled ∞, and such
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that the oriented smoothing does not change the f∞-labelling of the remaining arrows.

Then

c2k[m](K⊕,⊕)− c2k[m](K⊕,	)− c2k[m](K	,⊕) + c2k[m](K	,	) = c2k−2[m](K00).

Proof. The proof is similar to the proof of the skein relation in [4]. We set up a one-to-one

correspondence of ascending diagrams involved in the relation and show that they are

counted with the same weight.

Consider fm-labelled subdiagrams of Kε1,ε2 where ε1 · ε2 6= 0. Note that all cor-

responding arrows for the LHS diagrams have the same fm-label. A subdiagram may

contain 0, 1, or 2 of the drawn arrows. Diagrams with zero arrows have no contribution

on LHS. Every subdiagram which has one of the drawn arrows occurs also as a subdia-

gram of some Kε3,ε4 such that the coefficient c2k[m](Kε3,ε4) is −1 times the coefficient

of c2k[m](Kε1,ε2). Hence, there is no contribution.

Hence we must show that there is a one-to-one correspondence between those as-

cending subdiagrams on LHS which contain both of the drawn arrows and the ascending

subdiagrams of K00. Moreover, the correspondence must preserve the weight of each di-

agram. It is sufficient to show that if D00 is an ascending subdiagram of K00 which is

counted by Ce2k[∞] or Co2k[m], then there is exactly one ε1 and ε2 such that Dε1,ε2 is

an ascending subdiagram of Kε1,ε2 and such that D00 is counted by the corresponding

formula Ce2k[∞] or Co2k[m] with the same weight.

Fix a pair of signs ε1, ε2 and an ascending subdiagram D of Kε1,ε2 which contains both

of the drawn arrows. Let D00 denote the Gauss diagram obtained from D by smoothing

along the two arrows. We may consider this as a subdiagram of K00. It is easy to see

that D00 is still ascending. If all the f∞-labels of D are ∞, then Ce2k[∞] counts D with

a weight of ε1 · ε2 · σ while the Ce2k−2[∞] counts D00 with a weight of σ. We see that the

total contribution to LHS and RHS is the same. If every arrow of D is f∞-labelled m+ 1

or greater then there is no contribution on LHS or RHS of the equation. Finally suppose

that there is an arrow of D having f∞-label less than m + 1. Then by hypothesis, D00

(considered again as a subdiagram of K00) also has an arrow with fm-label less than

m + 1). Hence, there is an equal contribution on LHS from Co2k[m] and on RHS from

Co2k−2[m].

Now we consider subdiagrams of K00. First note that the virtual knot diagram K00

specifies a pair of arcs A1, A3 from the smoothing of the first crossing and a pair of

arcs A2, A4 from the smoothing of the second crossing. This can be used to draw a

homeomorphic copy of R as in Figure 7. We may draw on this copy of R a Gauss diagram

of K00 (or any of its subdiagrams) that preserves the order of passing of the arcs Ai.

Let D00 be an ascending one component subdiagram of K00. Delete the arcs Ai and

fill in the intervals αj on R. Draw two chords x and y with endpoints in αa, αc and

αb, αd. Orient these chords so that the diagram is ascending. As all directions of these

two chords are included on LHS of the skein relation, these directions specify a unique

choice of signs ε1, ε2. We denote the constructed subdiagram of Kε1,ε2 as Dε1,ε2 .

Note also that the fm-labels of the arrows x and y are m + 1 in all of K⊕,⊕, K⊕,	,

K	,⊕, and K	,	. Hence we may give the fm-label of the arrows x and y in Dε1,ε2 to be

m+ 1. Moreover, the f∞-labels of x and y are both ∞.
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Now, if the product of the signs in D00 is σ, then the product of the signs in Dε1,ε2

is ε1 · ε2 · σ. Hence the weights of the D00 and Dε1,ε2 will be the same whenever they are

both counted.

Fig. 7. A non-standard copy of R

Theorem 12. The fm-labelled Conway polynomials satisfy a skein relation

∇[m](K⊕,⊕)−∇[m](K⊕,	)−∇[m](K	,⊕) +∇[m](K	,	) = z2∇[m](K00),

where the affected crossings are linked, both f∞-labelled ∞, and the smoothing does not

change the f∞-labels of the remaining crossings.

Proof. We compare the coefficients of z2n on the left hand side of the equation with the

coefficient of z2n−2 on the right hand side of the equation. By the previous lemma, the

weighted sum of the coefficients on the left must be the same as the coefficient on the

right. This completes the proof.

4. Property 4: infinite-dimensionality of lattice columns. Let P be the Gaussian

parity. First we will give a set of simple finite-type invariants. Then we will show that

they have an infinite-dimensional subspace. Finally, we will use discrete calculus to show

that these finite-type invariants are represented by combinatorial formulae in the lattice.

For D ∈ ~A[m], let θ[m]
(
D, ↑k⊕

)
denote the number of arrows of D signed ⊕ and

labelled k. Similarly, let θ[m]
(
D, ↑k	

)
denote the number of arrows of D signed 	 and

labelled k. For 1 ≤ k ≤ m, we define a function θ[m|k] : Z[ ~A[m]]→ Z on generators by

θ[m|k](D) = θ[m]
(
D, ↑k⊕

)
− θ[m]

(
D, ↑k	

)
.

Note that the definition of θ[m|k] is the same for Gauss diagrams on R and Gauss

diagrams on S1.

Lemma 13. The function θ[m|k] ◦Λ[m] : Z[D]→ Z is an invariant of virtual knots/long

virtual knots.

Proof. This follows from definition of the functorial map f .

For t ∈ N, define θt[m|k] : ~A[m]→ Z by

θt[m|k](D) = θ[m|k](D) · θ[m|k](D) · . . . · θ[m|k](D)︸ ︷︷ ︸
t times

.



FINITE-TYPE INVARIANTS OF VIRTUAL KNOTS 41

In addition, we have the map θt1,...,ts [m|k1, . . . , ks] : ~A[m]→ Z which is defined by

θt1,...,ts [m|k1, . . . , ks](D) =

s∏
j=1

θtj [m|kj ](D).

For simplicity, we will always assume that the set {k1, . . . , ks} of labels has exactly s

elements (i.e. all the ki are distinct).

Theorem 14. Let P be the Gaussian parity. Let n ∈ N. Let Sn = {θn[m|m] : m ∈ N}.
Then Sn is a rationally linearly independent set of Kauffman finite-type invariants of

degree exactly n. Hence, the set of Kauffman finite-type invariants of degree exactly n is

infinite-dimensional for every n.

Proof. It is easy to see that θ1[m|m] is a Kauffman finite-type invariant of degree 1. To

prove θn[m|m] is of degree exactly n, one can use a twist sequence argument (see [6]). We

will first show that for every m, there is a virtual knot Lm such that θn[m|m](Lm) 6= 0

and if m1 < m, then θn[m1|m1] = 0. Indeed, we take Lm to be Dm,2 (see Example,

Section 3.2.1) except that the m− 1 most rightward arrows are signed 	. Also note that

the arrow directions are irrelevant. We compute:

θn[m1|m1](Lm) =

{
0 m1 6= m

2n m1 = m.

Now suppose that there are m1, . . . ,mk, mi ≤ mj for i ≤ j, and α1, . . . , αk ∈ Q such

that

α1θn[m1|m1] + . . .+ αkθn[mk|mk] = 0.

For each i, 1 ≤ i ≤ k, evaluate both sides of this equation at Lmi
. It follows that αi = 0.

Hence, Sn is linearly independent over Q.

Theorem 15. The invariant θt1,...,ts [m|k1, . . . , ks] is represented by a combinatorial for-

mula in the lattice:〈
Ft1,t2,...,ts [m|k1, k2, . . . , ks], ·

〉
∈ HomZ(~Xt1+...+ts [m],Q).

Hence, the columns of the lattice represent an infinite-dimensional space of Kauffman

finite-type invariants when P is the Gaussian parity.

Proof. Recall the definition of the i-th discrete derivative of a function F : Zw → G,

where G is an abelian group.

∂0,...,1,...,0F (x1, . . . , xi, . . . , xw) = F (x1, . . . , xi + 1, . . . , xw)− F (x1, . . . , xi, . . . , xw).

Using “equality of mixed partials”, we can define for any w-tuple of nonnegative integers

(a1, . . . , aw) a derivative ∂a1,...,aw . We may interpret θt1,...,ts [m|k1, . . . , ks] as a function

Z(w,w′) → Z, where w = (a1, . . . , as) is the number of arrows of the form ↑k1⊕ , . . . , ↑
ks
⊕

and w′ = (a′1, . . . , a
′
s) is the number of arrows of the form ↑k1	 , . . . , ↑

ks
	 (see [9] for more

details).

Let D(a1, . . . , as, a
′
1, . . . , a

′
s) denote the subset of diagrams D ∈ ~A[m] such that for

each i, 1 ≤ i ≤ s, D has exactly ai arrows of the form ↑ki⊕ and exactly a′i arrows of the
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form ↑ki	 . The combinatorial formula is given by:

Ft1,t2,...,ts [m|k1, k2, . . . , ks] =
∑

(ai,a
′
i)

0≤
∑
ai+a

′
i≤

∑
ti

c(ai, a
′
i)

∑
D∈D(ai,a′i)

D,

c(a1, a2, . . . , as, a
′
1, a
′
2, . . . , a

′
s) = ∂a1,a2,...,as,a

′
1,a
′
2,...,a

′
sθt1,...,ts [m|k1, . . . , ks](~0).

The proof that this really is a combinatorial formula in HomZ(~Xt1+...+ts [m],Q) follows

exactly as in [9].

5. Property 5: bounds on rank of ~Xt[m]. In the present section, we compute bounds

for the rank of each group in the lattice. For simplicity, we consider only Gauss diagrams

on R. The upper bound is crude and is done using only combinatorial considerations.

A lower bound is found by considering the action on labelled diagrams by arrow “flipping”.

5.1. Ωt[m] and an upper bound on the rank. We compute a crude upper bound

on the rank ρt[m]. Define Ωt[m] by the following sum.

Ωt[m] = 4m+ (2t− 1)!!2t(m+ 1)t −
b(2t+1)/3c∑

j=1

(
2(t− j) + 1

j

)
(2(t− j)− 1)!!2tmt−j

+

t−1∑
k=2

(2k − 1)!!22k(m+ 1)k −
t−1∑
k=2

b(2k+1)/3c∑
j=1

(
2(k − j) + 1

j

)
(2(k − j)− 1)!!22kmk−j .

Lemma 16. The rank of ~Xt[m] is not more than Ωt[m].

Proof. Note first that the chord diagrams on R having k chords are in one-to-one corre-

spondence with order 2 permutations on 2k letters which have no fixed points. As is well

known, the number of such permutations is (2k − 1)!!. The arrows may be signed and

directed in 22k ways. If k = t, we may ignore the signs of the arrows.

Note also that each chord diagram can be labelled in (m+ 1)
k

ways. When k = 1,

only m of them do not vanish under a ~Q1[m] relation.

Finally suppose that you have chosen a chord diagram with (k − j) chords where

j ≤ (2k + 1)/3. Also suppose that this diagram is signed, directed, and labelled by

numbers between 1 and m. For this diagram, choose j of the 2(k − j) + 1 intervals

between the endpoints of the chords. In each of the j intervals, we insert an arrow with

adjacent endpoints and label it m+1 (see Figure 8). Each such diagram is trivial in ~Xt[m],

and hence, it does not contribute to the rank. Moreover, all of the diagrams constructed

in this was are distinct.

Accounting for all such unnecessary diagrams gives the formula for Ωt[m] exactly as

above.

5.2. Arrow flipping and chord diagrams. In the next four sections, we consider the

action on ~Xt[m] by arrow flipping and use it to find a lower bound on the rank of ~Xt[m].

Let A[m] denote the set of signed dashed chord diagrams with labels from 1 to m + 1.
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Fig. 8. Different ways to add isolated arrows labelled m + 1

We define the average map, µ[m] : Z[A[m]]→ Z[ ~A[m]] schematically as in [19]:

µ[m]


 = + .

The right hand side is a sum over all possible ways there are to direct the chords. If D

has t chords, then µ[m](D) is a sum of 2t diagrams. Also note that µ[m] preserves the

sign and labels of each chord on the corresponding arrow. An important property of µ[m]

is that it maps a diagram with t chords to a sum of diagrams having t arrows each.

Given ~D ∈ ~A[m], denote by D the dashed chord diagram obtained from ~D by erasing

all arrowheads. This gives a map Bar[m] : ~A[m] → A[m]. For a dashed signed chord

diagram D ∈ A[m] having n chords, we have

Bar[m] ◦ µ[m](D) = 2n ·D.

It is important to note that both Bar[m] and µ[m] preserve the number of arrows or

chords of a diagram.

We define some relations on A[m] using the map Bar[m] : Z[ ~A[m]] → Z[Ā[m]] as

follows:

Q1[m] = Bar( ~Q1[m]),

Q2[m] = Bar( ~Q2[m]),

Q3[m] = Bar( ~Q3[m]).

Let At[m] = Bar[m]( ~At[m]). We define groups:

Xt[m] =
Z[A[m]]〈

Q1[m],Q2[m],Q3[m], At[m]
〉 .

The significance of this group can be described in terms of arrow flipping. We will

say that two diagrams ~D1 and ~D2 are equivalent by arrow flipping if ~D2 can be obtained

from ~D1 by changing the direction of zero or more arrows of ~D1 (see Figure 9). We will

denote the resulting equivalence relation by ∼.

↔ , ↔

Fig. 9. The virtualization move, arrow flipping
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Lemma 17 (Arrow flipping). The quotient of ~Xt[m] by the action of arrow flipping

(diagrams in A[m]) is isomorphic to Xt[m].

Proof. The fibers of the surjection Bar[m] : ~Xt[m] → Xt[m] are the equivalence classes

of ∼.

When P is a parity of flat virtual knots, the dual spaces of the groups Xt[m] yield

virtual knot invariants which are invariant under the virtualization move (see Figure 9).

This is the content of the next theorem.

Theorem 18. Let P be a parity of flat virtual knots. If v ∈ HomZ(Xt[m],Q), then

v ◦ Bar[m] ◦ I[m] ◦ Λ[m] : Z[D] → Q is a Kauffman finite-type invariant of order ≤ t

which is invariant under the virtualization move.

Proof. Note that Bar : ~Xt[m] → Xt[m] is a surjection. Hence, v can be identified as

an element ~v[m] ∈ HomZ(~Xt[m],Q). In particular, we have v ◦ Bar[m] = ~v[m]. For any

D,D′ ∈ ~A[m] which differ by the direction of some arrows, we have that Bar[m](D) =

Bar[m](D′). Hence,

~v[m](D) = v ◦ Bar[m](D) = v ◦ Bar[m](D′) = ~v[m](D′).

Let E be a Gauss diagram of a virtual knot. Since P is a parity of flat virtual knots,

f assigns the same label to every diagram equivalent to E by changing the direction of

an arrow. This proves the theorem by definition of the virtualization move.

It follows from Theorem 15 that the invariants θt1,...,ts [m|k1, . . . , ks] are in the image

of Bar∗[m], the dual of the surjection ~Xt[m] → Xt[m] → 0. Indeed, the combinatorial

formula is unchanged by changing the direction of any arrow.

5.3. Algebraic structure of ~Xt[m] and Xt[m]. In this section, we investigate the

relations between the sequence of groups ~Xt[m] and Xt[m] in m and t. We establish

Lemma 19 which allows the rank of ~Xt[m] to be underestimated. We write Xt[m] for
~Xt[m] or Xt[m]. We determine the structure of these groups simultaneously. First, we

have the following sequence of surjections:

. . . // Xt[m] // Xt−1[m] // . . . // X2[m] // X1[m] .

Denote the kernel of the surjection by Kert[m]. This gives a short exact sequence

0 // Kert[m] // Xt[m] // Xt−1[m] // 0 .

To understand this quotient, we introduce the fm-labelled versions of the six term, one

term, and sign relations for signed arrow diagrams.

~1T±t[m] : = 0, ~NS±t[m] : + = 0,

~6T±t[m] :

− + − + − = 0.
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In the ~6T±t[m] relation, all drawn arrows have the same sign. Also, it is required that

either x > y = z, y > x = z, z > x = y or x = y = z = m+ 1.

For each of these relations ~R there are also images of these relations under the map

Bar. These images are denoted by R. For example, 6T±t[m] = Bar( ~6T±t[m]). If R is

written instead of ~R or R, the given statement holds in either case. For example, we

write 6T±t[m] for either ~6T±t[m] or 6T±t[m] when the statement is true for either. Also,

if instead of ±t we write |t| in a relation, we mean that the signs of the arrows in the

relation are to be erased.

Lemma 19. Let A|t|[m] (= ~A|t|[m] or A|t|[m]) denote the free abelian group generated by

those Gauss diagrams with labels up to m+ 1 having exactly t unsigned arrows. Then the

following sequence is exact :

0 −→ HomZ(Xt−1[m],Q) −→ HomZ(Xt[m],Q) −→ HomZ

(
A|t|[m]

〈6T|t|[m], 1T|t|[m]〉
,Q
)
.

Proof. The idea is similar to that in [19]. Full details of an analogous argument are

in [7].

5.4. fm-labelled four term and six term relations. To estimate the rank, we re-

quire an additional relation known as the four-term relation (compare [7]). In this section,

we define the fm-labelled version of the 4T relation and investigate its properties.

In our case, 4T|t|[m] ∈ A|t|[m] for a given t and m. Pictorially, it is given as below.

4T|t|[m] : − = −

= − .

We require as usual that either x > y = z, y > x = z, z > x = y, or x = y = z = m+ 1.

For a fixed embedding of the three vertical strands into a chord diagram, we describe

an fm-labelled version of a notation originally due to Polyak [19]. We denote by αxij the

undirected chord between strands i and j with label x. Specific groupings of chords are

denoted as follows:

− = [αx12, α
z
23],

− = [αy13, α
z
23],

− = [αx12, α
y
13].

If [a, b] is one of the terms given immediately above, define [b, a] = −[a, b]. We denote by

axij the arrow directed from strand i to strand j having label x. Using this notation, we
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may write the ~6T|t|[m] relation

[ax12, a
z
23] + [ax12, a

y
13] + [ay13, a

z
23] = 0.

Lemma 20. Let σ ∈ S3 denote a permutation of the three vertical intervals of a 6T|t|[m]

relation. Then the following relation holds:

[axσ(1)σ(2), a
z
σ(2)σ(3)] + [axσ(1)σ(2), a

y
σ(1)σ(3)] + [ayσ(1)σ(3), a

z
σ(2)σ(3)] = 0.

Proof. The relation is true when σ = 1. Consider the permutation σ = (2 3) which is

written in cycle notation. This corresponds to fixing the first string and interchanging

the second and third strings. In terms of a diagram, this can be written as follows:

− + − + − = 0.

Each of the three pairs D − E in the above diagram matches one of the terms in the

directed bracket notation. It is then simply a matter of writing out the relation to check

that it works:

[ax13, a
z
32]− [ay12, a

x
13] + [ay12, a

z
32] = [ax13, a

z
32] + [ax13, a

y
12] + [ay12, a

z
32]

= [axσ(1)σ(2), a
z
σ(2)σ(3)] + [axσ(1)σ(2), a

y
σ(1)σ(3)] + [ayσ(1)σ(3), a

z
σ(2)σ(3)].

The other four cases follow similarly. For the reader’s convenience, the bracket notation

for all six relations are given together below:

σ = (1)(2)(3), [ax12, a
z
23] + [ax12, a

y
13] + [ay13, a

z
23] = 0, (2)

σ = (23), [ax13, a
z
32]− [ay12, a

x
13] + [ay12, a

z
32] = 0, (3)

σ = (123), −[az31, a
x
23]− [ay21, a

x
23] + [ay21, a

z
31] = 0, (4)

σ = (13), −[az21, a
x
32]− [ay31, a

x
23]− [az21, a

y
31] = 0, (5)

σ = (12), [ax21, a
z
13] + [ax21, a

y
23]− [az13, a

y
23] = 0, (6)

σ = (321), −[az12, a
x
31] + [ax31, a

y
32]− [az12, a

y
32] = 0. (7)

This completes the proof of the lemma.

Lemma 21. The following relations hold in ~A|t|[m]/〈 ~6T|t|[m], ~1T|t|[m]〉, where either

x > y = z, y > x = z, z > x = y, or x = y = z = m+ 1:

1. [ax12, a
z
23] + [ax12, a

z
32] = [az32, a

y
13] + [az23, a

y
13]

2. [ax12, a
z
23] + [ax21, a

z
23] = [ay13, a

x
12] + [ay13, a

x
21]

3. [ay21, a
x
32] + [ay21, a

x
23] = [ax32, a

z
31] + [ax23, a

z
31]

4. [az21, a
x
32] + [az12, a

x
32] = [ay31, a

z
21] + [ay31, a

z
12].

Proof. We prove the first relation only. We write out relations (3) and (4) from the proof

of Lemma 20 using distinct indices:

[ax12, a
z
23] + [ax12, a

y
13] + [ay13, a

z
23] = 0,

[ai13, a
k
32]− [aj12, a

i
13] + [aj12, a

k
32] = 0.
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Set j = x, i = y, k = z. The middle terms cancel out when they are added together.

The resulting expression can be rearranged using the identity [b, a] = −[a, b] to obtain

the first relation above.

The following lemma is the fm-labelled version of a theorem of Polyak (see [19]).

Lemma 22. The average map µ[m] satisfies the following properties.

1. µ[m]
(
〈1T|t|[m]〉

)
⊂ 〈 ~1T|t|[m]〉

2. µ[m]
(
〈4T|t|[m]〉

)
⊂ 〈 ~6T|t|[m]〉

3. The average map descends to the quotient

µ[m] :
A|t|[m]

〈4T|t|[m], 1T|t|[m]〉
→

~A|t|[m]

〈 ~6T|t|[m], ~1T|t|[m]〉
.

Proof. The first claim is clear from the definitions. For the second claim, we compute

µ[m] and apply relations from Lemma 21. If x 6= z, set y = min{x, z}. If x = z < m+ 1,

any y > x will do. If x = z = m + 1, set y = m + 1. The following computations are all

performed in the quotient group ~A|t|[m]/〈 ~6T|t|[m]〉.

µ[m]
(
[αx12, α

z
23]
)

=
∑

[ax12, a
z
23] + [ax21, a

z
23] + [ax12, a

z
32] + [ax21, a

z
32]

=
∑

[ay13, a
x
12] + [ay13, a

x
21] + [ay31, a

x
21] + [ay31, a

x
12]

= µ[m]
(
[αy13, α

x
12]
)
.

Here the sum is taken over all fixed choices of the directions of the arrows outside three

drawn vertical intervals. It follows that in the quotient group,

µ[m]
(
[αx12, α

z
23]− [αy13, α

x
12]
)

= 0.

This proves a case of the result. The other cases follow by applying different identities

from Lemma 21.

5.5. Proof of Property 5. We establish a lower bound on the rank of ~Xt[m] by com-

puting the rank of the free group HomZ(Xt[m],Q). In the sequel, we will make frequent

use of the following isomorphism (see [21]). Let M be any Z-module,

HomZ(M,Q) ∼= HomZ
(
M,HomZ(Q,Q)

) ∼= HomZ(Q⊗M,Q).

The crux of the proof revolves around the following commutative diagram:

Q⊗ A|t|[m]〈
4T|t|[m],1T|t|[m]

〉 2tµ′[m] //

µ[m] ((

Q⊗ A|t|[m]〈
6T|t|[m],1T|t|[m]

〉

Q⊗
~A|t|[m]〈

~6T|t|[m], ~1T|t|[m]
〉

Bar[m]

66

where µ′[m] = 1
2t Bar[m] ◦ µ[m]. We note that for any D ∈ Q ⊗ A|t|[m]

〈4T|t|[m],1T|t|[m]>
,

µ′[m](D) = D and hence µ′[m] is a surjection.
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In addition, we have the following two-term or commutativity relations:

2T|t|[m] : = .

Here, y and z are any two labels ≤ m+ 1.

Lemma 23. There is an isomorphism of groups:

Q⊗
A|t|[m]

〈6T|t|[m], 1T|t|[m]〉
∼= Q⊗

A|t|[m]

〈2T|t|[m], 1T|t|[m]〉
.

Proof. Since µ′[m] is a surjection, it follows that Q⊗ A|t|[m]

〈6T|t|[m],1T|t|[m]〉 is a homomorphic

image of Q ⊗ A|t|[m]

〈4T|t|[m],1T|t|[m]〉 . Since the four term relations are satisfied in the second

group, they must also be satisfied in the first. Therefore, both the four term and six term

relations are satisfied in Q⊗ A|t|[m]

〈6T|t|[m],1T|t|[m]〉 .

Suppose that y, z are given, 1 ≤ y, z ≤ m + 1. If y = z = m + 1, set x = m + 1. If

y 6= z, set x = min{y, z}. If y = z < m+ 1, choose any x satisfying z < x ≤ m+ 1. Then

we write out the corresponding undirected six-term relation:

− + −︸ ︷︷ ︸
4T|t|[m]

+ −︸ ︷︷ ︸
2T|t|[m]

= 0.

Since the left bracket expression vanishes, it follows that the right bracket expression is

also zero. Hence, all commutativity relations are satisfied.

Now, the six term relation 6T|t|[m] can be written as a sum of three two term relations

2T|t|[m]. This proves the lemma.

It follows that the equivalence classes of Q⊗ A|t|[m]

〈2T|t|[m],1T|t|[m]〉 may be identified with

monomials in the variables x1, . . . , xm with total degree t:

xt11 · x
t2
2 · . . . · xtmm .

Indeed, since the commutativity relations are satisfied, diagrams with the same number

of arrows with the same labellings are necessarily equivalent. Likewise, diagrams with an

arrow labelled m+ 1 are equivalent to a one term relation. Note that the number of such

monomials is given by the so-called multinomial coefficient [3].

Under this correspondence, the map in Lemma 19 sends Ft1,...,ts [m|k1, . . . ks] to the

monomial t1!t2! · . . . · ts!xt1k1 · . . . · x
ts
ks

. It follows that the rightmost map in Lemma 19 is a

surjection and that the sequence extends to a short exact sequence. Also, our argument

has shown that the rightmost group in Lemma 19 is free. Thus, the short exact sequence

splits. It follows by induction that the rank of HomZ(Xt[m],Q) is the sum of multino-

mial coefficients and the rank of HomZ(〈 〉,Q) (i.e. the dual space of the diagram
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containing no arrows):

1 +

t∑
k=1

((
m

k

))
= 1 +

t∑
k=1

(
m+ k − 1

k

)
= 1 +

t+ 1

m

(
m+ t

t+ 1

)
− 1.

The last equality follows from a computation in Mathematica. This establishes the lower

bound on the rank.
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