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Abstract. We show that every knot can be realized as a billiard trajectory in a convex prism.

This proves a conjecture of Jones and Przytycki.

1. Introduction. The study of billiard trajectories in a polyhedron was introduced in

1913 by König and Szücs in [KS]. They proved density results for a billiard trajectory in

a cube. Their theorem is strongly related to the well-known Kronecker density theorem

(see [HW]).

More recently, Jones and Przytycki considered the periodic billiard trajectories with

no self-intersection as knots. They proved that billiard knots in a cube are isotopic to

Lissajous knots, and deduced that not all knots are billiard knots in a cube ([JP], see also

[La, C, BHJS, BDHZ]). They also proved that every torus knot (or link) of type (n, k),

where n ≥ 2k + 1, can be realized as a billiard knot in a cylinder (or in a prism with a

regular n-gonal floor). Przytycki went still deeper into the study of symmetrical billiards

in [P].

Lamm and Obermeyer [LO] proved that billiard knots in a cylinder are either periodic

or ribbon, hence not all knots are billiard knots in a cylinder. In [KP] we constructed

many other examples of billiard knots in convex polyhedrons (that is, irregular truncated

cubes). Dehornoy constructed in [D] (see also [O]) a billiard which contains all knots, but

this billiard is not convex.

In this paper we prove the following conjecture of Jones and Przytycki:

Conjecture. Every knot is a billiard knot in some convex polyhedron.
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Our result is more precise:

Theorem 8. Every knot (or link) is a billiard knot (or link) in some convex right prism.

Using a theorem of Lamm and Manturov, we first prove that every knot has a diagram

which is a star polygon. Then, by systematically distorting this polygon, we obtain an

irregular diagram of the same knot. We deduce that it is possible to suppose that 1 and

the arc lengths of the crossing points are linearly independent over Q. It is then possible

to use the classic Kronecker density theorem to prove our result.

2. Every knot has a projection which is a star polygon. A toric braid is a braid

corresponding to the closed braid obtained by projecting the standardly embedded torus

knot into the xy-plane. A toric braid is a braid of the form τk,n =
(
σ1 σ2 · · ·σk−1

)n
,

where σ1, . . . , σk−1 are the standard generators of the full braid group Bk. A quasitoric

braid of type (k, n) is a braid obtained by changing some crossings in the toric braid τk,n.

The quasitoric braids form a subgroup of Bk. Consequently there exist trivial quasitoric

braids of arbitrarily great length, and any quasitoric braid is equivalent to a quasitoric

braid of type (k, n) with n ≥ 2k + 1.

The Lamm–Manturov theorem tells us that every knot (or link) is realized as the

closure of a quasitoric braid ([M, La2]).

The following definition of polygonal stars will be useful for the description of links.

Definition 1. Let p, q be integers. The polygonal star {pq } ⊂ R2 is given by its vertices

e(k) = e2kiπ/p, and its sides (e(k), e(k + q)), k = 0, . . . , p− 1.

When p and q are coprime integers, this is the usual definition of star polygons. The

following picture shows the polygonal stars { 103 } , { 102 } and { 93}, as projections of the

billiard torus links T (10, 3), T (10, 2) and T (9, 3). The dotted lines correspond to the parts

z < 0 of the link.

Fig. 1. The polygonal stars { 10
3
}, { 10

2
} and { 9

3
}, projections of the torus links T (10, 3),

T (10, 2) and T (9, 3)

Theorem 2. Every knot (or link) has a projection that is a polygonal star.

Proof. Let our knot (or link) be realized as the closure of a quasitoric braid of type (k, n).

By our remark, we can suppose n ≥ 2k+1. Now, we use the result of Jones and Przytycki

which says that every torus knot (or link) of type (k, n), n ≥ 2k + 1, can be realized as
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a billiard knot in a cylinder. In their construction, the projection on the xy-plane is the

closure of the toric braid τk,n, which proves our result.

Remark 3. It is also possible to use a theorem of Lamm and Obermeyer [LO] to give

another proof of Theorem 2 in the knot case. A Rosette braid is a braid of the form(
σε11 · · ·σ

εk−1

k−1
)n

, εi = ±1, and a Rosette knot is the closure of a Rosette braid. The

theorem of Lamm and Obermeyer tells us that every Rosette knot can be represented by

a billiard knot in a cylinder. The knot diagrams obtained in their proof are star polygons

isotopic to the closures of some quasitoric braids.

3. Breaking the symmetry. Since we want to obtain all knots, we need irregular

diagrams.

First, let us recall some facts about billiard trajectories. If ABC is a piece of a polygo-

nal line, then the mirror placed at B is the hyperplane which is orthogonal to the internal

bisector of B̂ at B. The mirror room at B is the closed half-space containing A,B,C and

the mirror at B.

We define a billiard trajectory as a finite union of polygonal lines, which is contained

in all its mirror rooms. A billiard knot (or link) is a polygonal knot (or link) ([A, C])

which is a billiard trajectory.

The following result allows us to forget about the (convex) billiard, and focus our

attention on the trajectory. It is valid in every dimension.

Lemma 4. Let Q = (Q0, . . . , Qn−1) be a billiard trajectory such that every mirror of Q
contains only one point of Q. Then, if P = (P0, . . . , Pn−1) is sufficiently close to Q, it is

a billiard trajectory in some convex polyhedron.

Proof. Let −→uk(Q) be the unit vector of the internal bisector of Q̂k. The hypothesis of

Lemma 4 means that for every k, i, i 6= k, the scalar product −→uk(Q) .
−−−→
QkQi is positive.

Since −→uk(Q) and
−−−→
QkQi depend continuously on Q, this condition remains true for any

polygonal trajectory P that is sufficiently close to Q.

Proposition 5. Let K be a knot. There exists a plane billiard trajectory P which is a

projection of a knot isotopic to K, and which satisfies the following irregularity condition:

If the arc lengths ti of the vertices and crossings of P are measured from a vertex,

then the numbers 1 and ti, ti 6= 0, are linearly independent over Q.

Proof. Let Q = (Q0, . . . , Qn−1), Qn = Q0, be a star polygon which is a projection of K.

Let us suppose that each line (QkQk+1) has an equation of the form y = αkx+βk. Then,

if (ak, bk) are sufficiently close to (αk, βk), the lines {y = akx+bk} determine a nonconvex

polygon P = (P0, . . . , Pn−1) close to Q. By our lemma, P is a periodic billiard trajectory

in some convex polygon.

By Baire’s theorem, we can suppose that the numbers a0, a1, . . . , an−1 and

b0, b1, . . . , bn−1 are algebraically independent over Q.

Let I be the set of integer pairs (i, j), j 6= i−1, such that the intersection of [Pi, Pi+1]

and [Pj , Pj+1] is a point Pi,j .

The vertex Pi is the point Pi−1,i. The abscissa of Pi,j is xi,j =
bi−bj
aj−ai , and the length

of [Pi, Pi,j ] is |`i,j |, where `i,j =
√

1 + a2i
(
xi,j − xi−1,i

)
.
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Fig. 2. Naming the vertices and crossings of a pentagonal trajectory

Let us show that the numbers `i,j and 1 are linearly independent over Q. Suppose that

we have a linear relation with rational coefficients
∑

(i,j)∈I λi,j`i,j = λ, with λ, λi,j ∈ Q.

This is an algebraic relation between the ai and the bi. Since these numbers are

algebraically independent over Q, this relation must be an identity.

Let k ≤ n− 1 be a fixed non-negative integer, and let us substitute bk = 1 and bi = 0

if i 6= k in this identity.

We thus obtain a new identity between the ai.

n−1∑
j=0

λk,j

√
1 + a2k

( 1

aj − ak
− 1

ak−1 − ak

)
−
(n−1∑
j=0

λk+1,j

)√1 + a2k+1

ak+1 − ak

+

n−1∑
i=0

λi,k

√
1 + a2i

ai − ak
= λ

where λk,k = λk,k−1 = λk+1,k = 0. Substituting ak =
√
−1, in this identity, we obtain

−
(n−1∑
j=0

λk+1,j

) √1 + a2k+1

ak+1 −
√
−1

+

n−1∑
i=0

λi,k

√
1 + a2i

ai −
√
−1

= λ.

Let h 6= k + 1 be an integer, and let ah →
√
−1. From lim

z→
√
−1

√
1+z2

z−
√
−1 = ∞, we obtain

λh,k = 0. Since this is true for every h and k, we deduce that λi,j = 0 for all (i, j) ∈ I.

Finally, since the arc lengths of the points Pi,j are given by ti,j = |`0,1|+ |`1,2|+ . . .+

|`i−1,i|+ |`i,j |, this concludes the proof of Proposition 5.

Proposition 6. Let L be a link. There exists a plane billiard trajectory P which is a

projection of a link isotopic to L, and which satisfies the following condition.

If R is a component of P, and if the arc lengths ti of the vertices and crossings of R
are measured from a vertex, then the numbers 1 and ti, ti 6= 0, are linearly independent

over Q.
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Proof. The proof is almost identical to the preceding one.

There is a link isotopic to L whose plane projection is a union of polygons

P = P(1) ∪ P(2) ∪ . . . ∪ P(d)

whose vertices are (P0, P1, . . . , PN−1). Let R be a component of P; we can then suppose

that the vertices of R are (P0, P1, . . . , Pn−1).

Furthermore, we can suppose that the equations y = akx + bk of the sides of P are

such that the numbers ak and bk, k = 1, . . . , N −1, are algebraically independent over Q.

In this case we have modified the definition of I, which is now the set of integer pairs

(i, j), i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , N − 1}, j 6= i − 1, which correspond bijectively to

the arc lengths of the vertices and crossings contained in R.

Then, the rest of the proof is exactly the same as in the case of knots.

4. Proof of the theorem. We will use Kronecker’s theorem ([HW, Theorem 443]):

Theorem 7 (Kronecker (1884)). If θ1, θ2, . . . , θk, 1 are linearly independent over Q, then

the set of points
(
(nθ1), . . . , (nθk)

)
is dense in the unit cube. Here (x) denotes the frac-

tional part of x.

Now, we can prove our main theorem.

Theorem 8. Every knot (or link) is a billiard knot (or link) in some convex prism.

Proof. First, we consider knots. By Theorem 2 there exists a knot isotopic to K whose

projection on the xy-plane is a periodic billiard trajectory in a convex polygon D. If ti are

the arc lengths corresponding to the crossings, we can suppose by Proposition 5 that the

numbers t1, . . . , tk, 1 are linearly independent over Q. Using a dilatation, we can suppose

that the total length of the trajectory is 1.

Consider the polygonal curve defined by (x(t), y(t), z(t)), where z(t) is the sawtooth

function z(t) = 2
∣∣(nt+ϕ)−1/2

∣∣ depending on the integer n and on the real number ϕ. If

the heights z(Pk) of the vertices are such that z(Pk) 6= 0, 1, then it is a periodic billiard

trajectory in the prism D × [0, 1] (see [JP, La, LO, P, KP]). If we set ϕ = 1/2 + z0/2,

z0 ∈ ]0, 1[, we have z(0) = z0. Now, using Kronecker’s theorem, there exists an integer n

such that the numbers z(ti) are arbitrarily close to any chosen collection of heights, which

completes our proof.

The case of links is similar. First, we find a plane billiard diagram of our link, and

then we parameterize each component.

Remark 9. If the diagram has some regularity, then it is generally impossible to use

Kronecker’s theorem. This is illustrated by Lissajous knots and cylinder knots. This is

also true for more general diagrams.

For example, suppose that the diagram contains a parallelogram. That means that

there are four crossings of arc lengths t1, t2, t3, t4 such that t2 − t1 = t4 − t3. So, if

z(t) = 2
∣∣(nt+ϕ)− 1

2

∣∣ is the height function, then εizi = 2(nti+ϕ)−1, with εi = ±1. We

deduce that ε1z1 − ε2z2 − ε3z3 + ε4z4 = 0. Consequently, we see that z1 = z2 = z3 = 1

implies z4 = 1. This clearly shows that the heights of the crossings cannot be chosen

arbitrarily. Hence, the sufficient condition of Kronecker’s theorem is also necessary.
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Note added in proof. With the help of the deep theory of Jacobian elliptic functions,

the ideas of this paper can be used to prove the existence of a universal convex billiard.

More precisely, it is proved in [Pe], that if D is a right elliptic cylinder, then every knot

(or link) is a billiard knot (or link) in D. This result was conjectured by Lamm (see

[La2, O]).
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