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Abstract. Habiro gave principal ideals of Z[q, q−1] in which certain linear combinations of the

colored Jones polynomials of algebraically-split links take values. The author proved that the

same linear combinations for ribbon links, boundary links and Brunnian links are contained in

smaller ideals of Z[q, q−1] generated by several elements. In this paper, we prove that these ideals

also are principal, each generated by a product of cyclotomic polynomials.

1. Introduction. After the discovery of the Jones polynomial, Reshetikhin and Tu-

raev [7] defined an invariant of framed links whose components are colored by finite-

dimensional representations of a ribbon Hopf algebra. The colored Jones polynomial can

be defined as the Reshetikhin–Turaev invariant of links whose components are colored

by finite-dimensional representations of the quantized enveloping algebra Uh(sl2).

We are interested in the relationship between algebraic properties of the colored Jones

polynomial and topological properties of links.

In this paper, we consider the following three types of links.

A link is called a ribbon link if it bounds the image of an immersion from a disjoint

union of disks into S3 with only ribbon singularities.

An n-component link L = L1∪ . . .∪Ln is called a boundary link if it bounds a disjoint

union of n Seifert surfaces F1, . . . , Fn in S3 such that Li bounds Fi for i = 1, . . . , n.

A link L is called a Brunnian link if every proper sublink of L is trivial.

In [4], Habiro used certain linear combinations JL;P̃ ′l1 ,...,P̃
′
ln

, l1, . . . , ln ≥ 0, of the

colored Jones polynomials of a link L to construct the unified Witten–Reshetikhin–Turaev

invariants for integral homology spheres. He proved that JL;P̃ ′l1 ,...,P̃
′
ln

for an algebraically-

split, 0-framed link L is contained in a certain principal ideal of Z[q, q−1] (Theorem 2.1).
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This result was improved by the present author [8, 9, 10, 11] in the special case of ribbon

links, boundary links (Theorem 2.2) and Brunnian links (Theorem 2.4) by using ideals

Il1 , . . . , Iln of Z[q, q−1], where Theorem 2.2 for boundary links had been conjectured by

Habiro [4]. Here, in [8], we gave an alternative proof of the fact that the Jones polynomial

of an n-component ribbon link is divisible by the Jones polynomial of the n-component

trivial link, which was proved first by Eisermann [1]. The results in [4, 8, 9, 10, 11] are

proved by using the universal sl2 invariant of bottom tangles (cf. [3, 4]), which has the

universality property for the colored Jones polynomial of links.

In this paper, we prove that the ideal Il, l ≥ 0, is a principal ideal generated by a

product of cyclotomic polynomials (Theorem 3.1), and rewrite Theorems 2.1, 2.2 and 2.4

by using these generators (Proposition 3.3).

2. Results for the colored Jones polynomial. In this section, we recall results in

[4, 9, 10, 11] for the colored Jones polynomial. In what follows, we assume that links are

0-framed. For the definition of the quantized enveloping algebra Uh(sl2) see, e.g., [6, 4, 9].

We set q = exph.

For m ≥ 1, let Vm denote the m-dimensional irreducible representation of Uh(sl2). Let

R denote the representation ring of Uh(sl2) over Q(q1/2), i.e., R is the Q(q1/2)-algebra

R = SpanQ(q1/2){Vm |m ≥ 1}
with the multiplication induced by the tensor product. It is well known that R =

Q(q1/2)[V2].

Set

{i}q = qi − 1, {i}q,n = {i}q{i− 1}q · · · {i− n+ 1}q, {n}q! = {n}q,n,
for i ∈ Z, n ≥ 0.

Habiro [4] studied the following elements in R

P̃ ′l =
ql/2

{l}q!

l−1∏
i=0

(V2 − qi+1/2 − q−i−1/2),

for l ≥ 0, which are used in an important technical step in his construction of the unified

Witten–Reshetikhin–Turaev invariants for integral homology spheres.

For the definition of the colored Jones polynomial JL;X1,...,Xn
of L with ith component

Li colored by Xi ∈ R see, e.g., [5, 4, 9].

Habiro [4] proved the following.

Theorem 2.1 (Habiro [4]). Let L be an n-component algebraically-split link. We have

JL;P̃ ′l1 ,...,P̃
′
ln

∈ {2lmax + 1}q,lmax+1

{1}q
Z[q, q−1], (1)

for l1, . . . , ln ≥ 0, where lmax = max(l1, . . . , ln).

Set

fl,k = {l − k}q!{k}q!, (2)

for 0 ≤ k ≤ l. For l ≥ 0, let Il be the ideal of Z[q, q−1] generated by fl,0, . . . , fl,l.

In [9, 10], we proved the following.
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Theorem 2.2 ([9, 10]). Let L be an n-component ribbon or boundary link. For l1, . . . , ln
nonnegative, we have

JL;P̃ ′l1 ,...,P̃
′
ln

∈ {2lmax + 1}q,lmax+1

{1}q

∏
1≤i≤n, i 6=iM

Ili , (3)

where lmax = max(l1, . . . , ln) and iM is an integer such that liM = lmax.

Remark 2.3. Theorem 2.2 for boundary links had been conjectured by Habiro [4].

In [11], we proved the following.

Theorem 2.4 ([11]). Let L be an n-component algebraically-split Brunnian link with

n ≥ 2. We have

JL;P̃ ′l1 ,...,P̃
′
ln

∈ {2lmax + 1}q,lmax+1

{1}q{lmin}q!
∏

1≤i≤n, i 6=iM ,im

Ili , (4)

for l1, . . . , ln ≥ 0, where lmax = max(l1, . . . , ln), lmin = min(l1, . . . , ln) and iM , im,

iM 6= im, are integers such that liM = lmax, lim = lmin, respectively.

Note that the condition “algebraically-split” in Theorem 2.4 is not necessary when

n ≥ 3.

Let us compare Theorems 2.1, 2.2 and 2.4. For l1, . . . , ln ≥ 0, n ≥ 2, let Z
(l1,...,ln)
a ,

Z
(l1,...,ln)
r,b and Z

(l1,...,ln)
Br denote the ideals of Z[q, q−1] at the right hand sides of (1), (3)

and (4), respectively, i.e., we set

Z(l1,...,ln)
a =

{2lmax + 1}q,lmax+1

{1}q
Z[q, q−1],

Z
(l1,...,ln)
r,b =

{2lmax + 1}q,lmax+1

{1}q

∏
1≤i≤n, i 6=iM

Ili ,

Z
(l1,...,ln)
Br =

{2lmax + 1}q,lmax+1

{1}q{lmin}q!
∏

1≤i≤n, i 6=iM ,im

Ili .

For l1, . . . , ln ≥ 0, we have

Z
(l1,...,ln)
r,b ⊂ Z(l1,...,ln)

a , Z
(l1,...,ln)
r,b ⊂ Z(l1,...,ln)

Br ,

since we have

Z
(l1,...,ln)
r,b =

( ∏
1≤i≤n,i 6=iM

Ili

)
· Z(l1,...,ln)

a =
(
{lmin}q! Ilmin

)
· Z(l1,...,ln)

Br .

On the other hand, there is no inclusion which satisfies for all l1, . . . , ln ≥ 0 between

Z
(l1,...,ln)
a and Z

(l1,...,ln)
Br . For example, we have Z

(2,2,2,2)
a 6⊂ Z

(2,2,2,2)
Br and Z

(2,2,2,2)
Br 6⊂

Z
(2,2,2,2)
a since

Z(2,2,2,2)
a =

{5}q,3
{1}q

Z[q, q−1]

= (q − 1)2(q + 1)(q2 + q + 1)(q2 + 1)(q4 + q3 + q2 + q1 + 1)Z[q, q−1],

Z
(2,2,2,2)
Br =

{5}q,3
{1}q{2}q!

{1}4qZ[q, q−1]

= (q − 1)4(q2 + q + 1)(q2 + 1)(q4 + q3 + q2 + q1 + 1)Z[q, q−1].
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Thus we have the following refinement of Theorem 2.4.

Theorem 2.5. Let L be an n-component algebraically-split Brunnian link with n ≥ 2.

We have

JL;P̃ ′l1 ,...,P̃
′
ln

∈ Z(l1,...,ln)
a ∩ Z(l1,...,ln)

Br ,

for l1, . . . , ln ≥ 0.

3. Main result for the ideal Il. In this section, we state the main result of this paper.

For l ≥ 0, recall from (2) the generators fl,0, . . . , fl,l of the ideal Il. Set

gl = GCD(fl,0, . . . , fl,l).

It is clear that Il ⊂ glZ[q, q−1]. The opposite inclusion follows if and only if Il is principal.

Since Z[q, q−1] is not a principal ideal domain, there is a problem if Il is principal or not.

The main result in this paper (Theorem 3.1) is that Il is principal, where we determine

gl explicitly. The proof is in Section 4.

Form ≥ 1, let Φm =
∏
d|m(qd−1)µ(m/d) ∈ Z[q] denote themth cyclotomic polynomial,

where
∏
d|m denotes the product over all positive divisors d of m, and µ is the Möbius

function. For r ∈ Q, we denote by brc the largest integer smaller than or equal to r.

Theorem 3.1. For l ≥ 0, the ideal Il is the principal ideal generated by gl. Moreover,

we have

gl =
∏
m≥1

Φ
tl,m
m , (5)

where

tl,m =

{
b l+1
m c − 1 for 1 ≤ m ≤ l,

0 for l < m.

Here is a table of tl,m for 1 ≤ m ≤ 4, 0 ≤ l ≤ 16.

m \ l 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

3 0 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

4 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3

Remark 3.2. In [11], Theorem 3.1 is used in the proof of Theorem 2.4.

Theorem 3.1 implies that the ideals Z
(l1,...,ln)
r,b and Z

(l1,...,ln)
Br are principal. Moreover,

we can write a generator of each principal ideal Z
(l1,...,ln)
a , Z

(l1,...,ln)
r,b and Z

(l1,...,ln)
Br as a

product of cyclotomic polynomials as follows.
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Proposition 3.3. For l1, . . . , ln ≥ 0, the ideals Z
(l1,...,ln)
a , Z

(l1,...,ln)
r,b and Z

(l1,...,ln)
Br are

principal. Moreover, we have

Z(l1,...,ln)
a =

∏
m≥1

Φb(2lmax+1)/mc−blmax/mc−b1/mc
m Z[q, q−1],

Z
(l1,...,ln)
r,b =

∏
1≤m≤2lmax+1

Φ
b(2lmax+1)/mc−blmax/mc−b1/mc+

∑
1≤i≤n, i 6=iM

tli,m
m Z[q, q−1],

Z
(l1,...,ln)
Br

=
∏

1≤m≤2lmax+1

Φ
b(2lmax+1)/mc−blmax/mc−b1/mc−blmin/mc+

∑
1≤i≤n, i6=iM ,im

tli,m
m Z[q, q−1].

Proof. The assertion for Z
(l1,...,ln)
a follows from

{l}q,i =
∏
m≥1

Φbl/mc−b(l−i)/mcm , (6)

for 0 ≤ i ≤ l. The assertion for Z
(l1,...,ln)
r,b and Z

(l1,...,ln)
Br follows from (6) and Theorem

3.1.

Corollary 3.4. For l1, . . . , ln ≥ 0, we have

Z(l1,...,ln)
a ∩ Z(l1,...,ln)

Br

=
∏
m≥1

Φ
b(2lmax+1)/mc−blmax/mc−b1/mc+max(0,

∑
1≤i≤n, i 6=iM ,im

tli,m−blmin/mc)
m Z[q, q−1].

Example 3.5. Let L be an n-component algebraically-split link. By Theorem 2.1 and

Proposition 3.3, we have

JL;P̃ ′1,...,P̃ ′1
∈Φ1Φ2Φ3Z[q, q−1],

JL;P̃ ′2,...,P̃ ′2
∈Φ2

1Φ2Φ3Φ4Φ5Z[q, q−1],

JL;P̃ ′3,...,P̃ ′3
∈Φ3

1Φ2
2Φ3Φ4Φ5Φ6Φ7Z[q, q−1].

Let L be an n-component algebraically-split Brunnian link with n ≥ 2. By Theorem

2.5 and Corollary 3.4, we have

JL;P̃ ′1,...,P̃ ′1
∈ Φ

δn,2+n−2
1 Φ2Φ3Z[q, q−1],

JL;P̃ ′2,...,P̃ ′2
∈ Φ

2(δn,2+n−2)
1 Φ2Φ3Φ4Φ5Z[q, q−1],

JL;P̃ ′3,...,P̃ ′3
∈ Φ

3(δn,2+n−2)
1 Φ

δn,2+n−1
2 Φ3Φ4Φ5Φ6Φ7Z[q, q−1].

Let L be an n-component ribbon or boundary link. By Theorem 2.2 and Proposition 3.3,

we have

JL;P̃ ′1,...,P̃ ′1
∈ Φn1Φ2Φ3Z[q, q−1],

JL;P̃ ′2,...,P̃ ′2
∈ Φ2n

1 Φ2Φ3Φ4Φ5Z[q, q−1],

JL;P̃ ′3,...,P̃ ′3
∈ Φ3n

1 Φn+1
2 Φ3Φ4Φ5Φ6Φ7Z[q, q−1].
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Example 3.6. For n ≥ 3, let Mn be Milnor’s n-component Brunnian link depicted in

Figure 1. Note that M3 is the Borromean ring. We have

JMn;P̃ ′1,...,P̃
′
1

= (−1)nq−2n+4Φn−21 Φn−22 Φ3Φn−34 ,

which we will prove in a forthcoming paper [12]. This implies that Theorem 2.4 is best

possible for the divisibility by Φ1 and Φ3 of JL;P̃ ′1,...,P̃ ′1
with L Brunnian. By Theorem

2.2, this also implies that each Mn is not ribbon or boundary.

Fig. 1. Milnor’s link Mn

4. Proof of Theorem 3.1. For a1, . . . , am ∈ Z[q, q−1], let (a1, . . . , am) denote the ideal

in Z[q, q−1] generated by a1, . . . , am ∈ Z[q, q−1].

For l ≥ 0, recall that Il = (fl,0, fl,1, . . . , fl,l) with fl,i = {l − i}q!{i}q! for 0 ≤ i ≤ l.
For 0 ≤ k ≤ l, we have

(fl,0, fl,1, . . . , fl,k) = {l − k}q!(hl,k,0, hl,k,1, . . . , hl,k,k)

with

hl,k,i = fl,i/{l − k}q! = {l − i}q,k−i{i}q!,

for 1 ≤ i ≤ k. Set

Il,k = (hl,k,0, hl,k,1, . . . , hl,k,k),

gl,k = GCD(hl,k,0, hl,k,1, . . . , hl,k,k).

Note that Il,l = Il and gl,l = gl.

In what follows, for a ∈ Z[q, q−1]\{0} and m ≥ 1, let dm(a) denote the largest integer

i such that a ∈ ΦimZ[q, q−1]. For 0 ≤ k ≤ l, we can write

gl,k =
∏
m≥1

Φ
dm(gl,k)
m ,

since each hl,k,i is a product of cyclotomic polynomials.

Lemma 4.1. For 0 ≤ k ≤ l, we have

dm(gl,k) =

{
b l+1
m c − 1− b l−km c for 1 ≤ m ≤ k,

0 for k < m.
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Proof. We have

dm(gl,k) = min{dm
(
hl,k,i

)
|0 ≤ i ≤ k}

= min{dm
(
{l − i}q,k−i{i}q!

)
|0 ≤ i ≤ k}

= min
{⌊ l − i

m

⌋
−
⌊ l − k
m

⌋
+
⌊ i
m

⌋
|0 ≤ i ≤ k

}
= min

{⌊ l − i
m

⌋
+
⌊ i
m

⌋
|0 ≤ i ≤ k

}
−
⌊ l − k
m

⌋
.

If k < m, then we have dm(gl,k) = 0 since dm
(
hl,k,k

)
= dm

(
{k}q!

)
= 0.

Let 1 ≤ m ≤ k. Since we have⌊ l − (i+ am)

m

⌋
+
⌊ i+ am

m

⌋
=
⌊ l − i
m

⌋
+
⌊ i
m

⌋
,

for 0 ≤ i ≤ k and a ∈ Z, we have

min
{⌊ l − i

m

⌋
+
⌊ i
m

⌋
|0 ≤ i ≤ k

}
= min

{⌊ l − i
m

⌋
+
⌊ i
m

⌋
|0 ≤ i ≤ m− 1

}
.

Here, for 0 ≤ i ≤ m− 1, we have b imc = 0 and b l−im c takes the minimum with i = m− 1.

Thus we have

min
{⌊ l − i

m

⌋
+
⌊ i
m

⌋
|0 ≤ i ≤ m− 1

}
=
⌊ l − (m− 1)

m

⌋
=
⌊ l + 1

m

⌋
− 1.

This implies

dm(gl,k) =
⌊ l + 1

m

⌋
− 1−

⌊ l − k
m

⌋
.

Hence we have the assertion.

Note that we have the latter part (5) of Theorem 3.1 as follows.

Corollary 4.2. For l ≥ 0, we have

gl = gl,l =
∏
m≥1

Φ
tl,m
m .

From now, we prove the following generalization of Theorem 3.1.

Proposition 4.3. For 0 ≤ k ≤ l, the ideal Il,k is the principal ideal generated by gl,k.

For 1 ≤ k ≤ l, set

g̃l,k = gl,k/gl,k−1.

We have

g̃l,k =
∏

1≤m≤k

Φb(l+1)/mc−1−b(l−k)/mc−(b(l+1)/mc−1−b(l−k+1)/mc)
m

=
∏

1≤m≤k

Φb(l−k+1)/mc−b(l−k)/mc
m =

∏
m|l−k+1
1≤m≤k

Φm.

We use the following technical lemma.

Lemma 4.4. For 1 ≤ k ≤ l, we have(
{l − k + 1}q, {k}q

{k − 1}q!
gl,k−1

)
= (g̃l,k).

(Note that gl,k−1 = GCD({l}q,k−1, {l − 1}q,k−2{1}q, . . . , {k − 1}q!) divides {k − 1}q!.)
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Proof of Proposition 4.3 by assuming Lemma 4.4 . We use induction on k. For k = 0,

clearly we have

Il,0 = (gl,0) = (1).

For k ≥ 1, we have

Il,k = (hl,k,0, hl,k,1, . . . , hl,k,k)

=
(
{l}q,k, {l − 1}q,k−1{1}q, . . . , {l − k + 1}q{k − 1}q!, {k}q!

)
=
(
{l − k + 1}q({l}q,k−1, {l − 1}q,k−2{1}q, . . . , {k − 1}q!), {k}q!

)
= ({l − k + 1}qgl,k−1, {k}q!)

= gl,k−1

(
{l − k + 1}q, {k}q

{k − 1}q!
gl,k−1

)
= (gl,k−1g̃l,k) = (gl,k),

where the third equality is given by

hl,k,i = {l − k + 1}q · {l − i}q,k−i−1{i}q!,
for 0 ≤ i ≤ k − 1, and the fourth equality is given by the assumption of the induction.

Hence we have the assertion.

In what follows, we prove Lemma 4.4. We use the following two lemmas, which are

well-known.

Lemma 4.5 (cf. Habiro [2, Lemma 4.1]). For a, b ≥ 0, the following conditions are equiv-

alent :

(i) (Φa,Φb) = Z[q, q−1],

(ii) a
b 6= pi for any prime number p ≥ 0 and i ∈ Z.

Lemma 4.6. Let a1, . . . , am, b1, . . . , bn ∈ Z[q, q−1] such that (ai, bj) = Z[q, q−1] for all

1 ≤ i ≤ m, 1 ≤ j ≤ n. We have

(a1a2 · · · am, b1b2 · · · bn) = Z[q, q−1].

Proof of Lemma 4.4. It is enough to prove the following two equalities.

GCD
(
{l − k + 1}q, {k}q

{k − 1}q!
gl,k−1

)
= g̃l,k, (7)(

{l − k + 1}q/g̃l,k, {k}q
{k − 1}q!
gl,k−1

/g̃l,k

)
= Z[q, q−1], (8)

for 1 ≤ k ≤ l.
First, we prove (7). Recall that

g̃l,k =
∏

m|l−k+1
1≤m≤k

Φm. (9)

Since {l − k + 1}q =
∏
m|l−k+1 Φm and dm({k}q {k−1}q !gl,k−1

) = 0 for m > k, it is enough to

check that

dm

(
{k}q

{k − 1}q!
gl,k−1

)
≥ 1,
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for m|l − k + 1, 1 ≤ m ≤ k. Indeed, we have

dm({k}q) =

{
1 for m|k,
0 for m/|k,

(10)

dm

({k − 1}q!
gl,k−1

)
=

{
0 for m|k,
1 for m/|k.

(11)

Here, (10) is clear and (11) follows from

dm

({k − 1}q!
gl,k−1

)
=
⌊k − 1

m

⌋
− dm(gl,k−1)

=
⌊k − 1

m

⌋
−
⌊ l + 1

m

⌋
+ 1 +

⌊ l − k + 1

m

⌋
=
⌊um+ r − 1

m

⌋
−
⌊ (u+ u′)m+ r

m

⌋
+ 1 +

⌊u′m
m

⌋
=
⌊r − 1

m

⌋
+ 1

=

{
0 for r = 0,

1 for 1 ≤ r ≤ m− 1,

where we write k = um+ r and l − k + 1 = u′m with u, u′ ≥ 1 and 0 ≤ r ≤ m− 1.

We prove (8). By Lemmas 4.5 and 4.6, it is enough to prove that there is no pair of

integers m,n ≥ 1 such that

• n
m = pi for a prime p and i ∈ Z,

• dm({l − k + 1}q/g̃l,k) ≥ 1, and

• dn({k}q {k−1}q !gl,k−1
/g̃l,k) ≥ 1.

Note that

{l − k + 1}q/g̃l,k =
∏

m|l−k+1
m>k

Φm.

Let m|l − k + 1, m > k, i.e., dm({l − k + 1}q/g̃l,k) = 1. Recall that for n > k, we have

dn({k}q {k−1}q !gl,k−1
) = 0. Assume that 1 ≤ n ≤ k and n|m, which implies n|l − k + 1. The

conditions 1 ≤ n ≤ k and n|l − k + 1 imply dn(g̃l,k) = 1 by (9). By (10) and (11), we

have dn({k}q {k−1}q !gl,k−1
) = 1. Thus we have dn({k}q {k−1}q !gl,k−1

/g̃l,k) = 0, which completes the

proof.
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