KNOTS IN POLAND III
BANACH CENTER PUBLICATIONS, VOLUME 100
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2014

ABOUT PRESENTATIONS OF BRAID GROUPS
AND THEIR GENERALIZATIONS

V. V. VERSHININ

Département des Sciences Mathématiques, Université Montpellier 11
Place Fugéne Bataillon, 34095 Montpellier cedex 5, France

and Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
E-mail: vershini@math.univ-montp2.fr, versh@math.nsc.ru

Abstract. In the paper we give a survey of rather new notions and results which generalize
classical ones in the theory of braids. Among such notions are various inverse monoids of partial
braids. We also observe presentations different from standard Artin presentation for generaliza-
tions of braids. Namely, we consider presentations with small number of generators, Sergiescu
graph-presentations and Birman—-Ko-Lee presentation. The work of V. V. Chaynikov on the
word and conjugacy problems for the singular braid monoid in Birman—Ko—Lee generators is
described as well.
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1. Introduction. The purpose of this paper is to give a survey on some recent notions
and results concerning generalizations of the braids.

Classical braid groups Br;, can be defined in several ways. Either as a set of isotopy
classes of system of n curves in a three-dimensional space (what is the same as the
fundamental group of the configuration space of n points on a plane) or as the mapping
class group of a disc with n points deleted D,, with its boundary fixed, what is equivalent
to the subgroup of the braid automorphisms of the automorphism group of a free group
Aut F,,. For the exact definitions we make a reference here to a monograph on braid,
for example the book of C. Kassel and V. Turaev [46] or to the previous surveys of the

author [79] [81], [84].
The pure braid group P, is defined as the kernel of the canonical epimorphism 7,
from braids to the symmetric group X,:

1— P, > Br, =%, = 1.

We fix the canonical Artin presentation [2] of the braid group Br,. It has generators
oi,i=1,...,n—1, and two types of relations:

(1.1)

{O’Z‘Uj = 0,03, if |i—j|>1,

0i0i4+10; = 0;410;0i41-

The generators o; correspond to the following automorphisms of F,:
Tiv> Tiy1,

(1.2) Tiy1 x[ﬁliﬂi%iﬂ,
T — x5, jF i+ 1.

Of course, there exist other presentations of the braid group. Let

(1.3) 0 =0102...0n_1,

then the group Br,, is generated by o1 and o because

(1.4) o1 =0'oot, i=1,...,n—2.

The relations for the generators o7 and o are the following

(1.5) {Jlaiola_i =oloo oy for 2<i<n/2,

"= (goqy)" L.

g
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The presentation was given by Artin in the initial paper [2]. It was also mentioned
in the books by F. Klein [48] and by H. S. M. Coxeter and W. O. J. Moser [23].
V. Ya. Lin in [55] gives a slightly different form of this presentation. Let 8 € Br,, be
defined by the formula
B =o00.

Then there is the presentation of the group Br, with generators o1 and 8 and relations:

{[‘30’ilﬂ =0'Bo" 180" for 2 <i<n/2,
o" = ﬁnfl'
This presentation is called special in [55].

An interesting series of presentations was given by V. Sergiescu [72]. For every planar
graph he constructed a presentation of the group Br,,, where n is the number of vertices
of the graph, with generators corresponding to edges and relations reflecting the geometry
of the graph. To each edge e of the graph he associates the braid 8. which is a clockwise
half-twist along e (see Figure . Artin’s classical presentation in this context
corresponds to the graph consisting of the interval from 1 to n with the natural numbers
(from 1 to n) as vertices and with segments between them as edges.

Fig. 1.1. Edges and geometric braids

To be precise, let I' be a planar graph. We call it normal if T" is connected, and it
has no loops or intersections. Let S(I") be the set of vertices of I'. If I" is not a tree then
we define next what is a pseudocycle on it. The bounded part of the complement of I" in
the plane is the disjoint union of a finite number of open disks D;,..., D,,, m > 1. The
boundary of D; on the plane is a subgraph I'(D;) of I". We choose a point O in the interior
of Dj, and an edge o of I'(D;) with vertices v1,vo. We suppose that the triangle Ovivy
is oriented anticlockwise. We denote o by o(e1). We define the pseudocycle associated to
D; to be the sequence of edges o(e1)...o(ep) such that:

— if the vertex v,11 is not univalent, then o(e;41) is the first edge on the left of o(e;)
(we consider o(e;) going from v; to v;11) and the vertex v;yo is the other vertex
adjacent to o(e;jt1);

— if the vertex v;41 is univalent, then o(ej+1) = o(e;) and vj49 = v;;

— the vertex v,41 is the vertex v;.
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Let v = o(e1)...0(ep) be a pseudocycle of T'. Let ¢ = 1,...,p. If o(e;) = o(e;) for
some j # i, then we say that

o o(e;) is the start edge of a reverse if j =1+ 1 (we set ep1 = 1),
o o(e;) is the end edge of a reverse if j =i — 1 (we set ey = ep).

In the following we set o7 .. .o, for the pseudocycle o(eq)...o(ep).

THEOREM 1.1 (V. Sergiescu [72]). Let I be a normal planar graph with n vertices. The
braid group Br, admits a presentation (Xr|Rr), where Xr = {o|o is an edge of T}
and Ry is the set of following relations:

o Disjointedness relations (DR): if o; and o; are disjoint, then ;05 = 0;0;.

o Adjacency relations (AR): if 0;,0; have a common vertez, then 0,0;0; = 0;0,0;.

e Nodal relations (NR): if {o1,09,03} have only one common vertex and they are
clockwise oriented (Figure , then

01090301 — 09030109.

e Pseudocycle relations (PR): if o1...0m is a pseudocycle and o1 is not the start
edge or o, the end edge of a reverse (Figure , then

0102 ...0m—1 = 0203 ...0m.-

g

4
Fig. 1.2. Nodal relation Fig. 1.3. Pseudocycle relation; on the left
0102 ...0m-1=02...0m = ... =O0Om ...0m_2.

On the right 0102032, = 02032,04 = 030401
and 03040102 = 04010203

REMARK 1.1. Theorem is true for infinite graphs. Let I" be the direct limit of its
finite subgraphs I';, then the braid group Brr is the direct limit of the subgroups Brr,.

The graph presentation of Sergiescu underlines the geometric character of braids,
its connection with configuration spaces. In this survey we confirm this proposing a
statement: for every generalization of braids of geometric character there exists a graph
presentation.

Birman, Ko and Lee [I4] introduced the presentation with the generators a;s with
1 < s <t <n and relations

AtsOrg = UrgQis for t—r)t—q)(s—71)(s—q) >0,
tslgr = QprQrs = AgrQyr  for 1<r <s<t<n.
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Fig. 1.4.

The generators a;s are expressed by the canonical generators o; in the following form:
-1 -1 _-1
aps = (04-101—2 - 0541)0s(0, 1 -0, _50,_) for 1 <s<t<n.

Geometrically the generators a,: are depicted in Figure @ These generators are very
natural and for this presentation Birman, Ko and Lee proposed an algorithm which
solves the word problem with the speed O(m?n) while Garside algorithm [37] improved
by W. Thurston has a speed O(m?nlogn), where m is the length of a word and n is
the number of strands (see [30], Corollary 9.5.3). The question of generalization of this
presentation for other types of braids was raised in [14].

In Section 2] we describe generalizations of braids that will be involved. In Section [3]
we give the presentations with few generators, in Section [f] we study graph-presentations
in the sense of V. Sergiescu and in Section [§] we give the Birman-Ko-Lee presentation
for the singular braid monoid. In Section |§| we describe the work of V. V. Chaynikov [20]
on the word and conjugacy problems for the singular braid monoid in Birman—-Ko-Lee
generators. In Sections [7H9 we study inverse monoids of partial braids.

The author is thankful to the organizers of Knots in Poland III, Jo6zef Przytycki and
Pawel Traczyk for the excellent conference.

2. Generalizations of braids. It is interesting to obtain the analogues of the presen-
tations mentioned in the Introduction for various generalizations of braids [3], [13], [16],

27, [35], [80].

2.1. Artin—Brieskorn braid groups. Let I be a set and M = (m; ;) be a matrix,
m;,; € Nt U{oo}, i, € I, with the following conditions: m;; = 1 and m; ; > 1 for i # j.
J. Tits in [74] defines the Coxeter group of type M as a group with generators w;, i € I,
and relations

(wiwj;)™ =e, 1,j€l.
The corresponding braid groups, which are called Artin—Tits groups, have the elements
si, © € I, as the generators and the following set of defining relations:

prod(m; j; si, s;) = prod(m; ;; sj, 8i),

where prod(m;x,y) denotes the product zyzy ... (m factors).
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Classification of irreducible finite Coxeter groups is well known (see for example The-
orem 1, Chapter VI, §4 of [I5]). It consists of the three infinite series: A, B and D as well
as the exceptional groups Eg, E7, Eg, Fy, G2, Hs, Hy and I>(p).

Let N be a finite set of cardinality n, say N = {vy,...,v,}. Let us equip elements
of N with the signs, i.e. let SN = {§yv1,...,0,v,}, where §; = £1. The Coxeter group
W (B,,) of type B can be interpreted as a group of signed permutations of the set SN:

(2.1) W (B,,) = {o—bijection of SN : (—z)o = —(x)o for z € SN}.

The generalized braid group (or Artin—Brieskorn group) Br(W) of W [16], [27] corre-
sponds to the case of finite Coxeter group W. The classical braids on k strings Bry are
obtained by this construction if W is the symmetric group on k symbols. In this case
Mmii+1 = 3, and m;; = 2 lf_] 7é ’L,’L + 1.

The braid group of type B, has the canonical presentation with generators o;,
i=1,...,n—1, and 7, and relations:

005 = 005, if |i—j|>1,
(2.2) 004107 = 04107041,
TO; = 0T, if 1>2,
TO1TO1 — O01TO1T.

This group can be identified with the fundamental group of the configuration space
of distinct points on the plane with one point deleted [52], [76], what is the same as
the braid group on n strands on the annulus, Br,(Ann). A geometric interpretation of
generators 7,04, ...,0,_1 is given in Figure 2.1}

e BT

r

_—

|

1 O
Fig. 2.1. Geometric interpretation of generators 7,01,...,0n—1 of Bry,(Ann)

The braid groups of the type D, has the canonical presentation with generators o;
and p, and relations:
00 = 005 if |i—j|>1,
0i0i4+10; = O 4+10;0;41,
(23) 10U14107 1+1030¢+4+1 . .
PO = 0ip if i=1,3,...,n—1,

poO2p = 02002.
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Let V' be a complex finite-dimensional vector space. A pseudo-reflection of GL(V)
is a non-trivial element s of GL(V) which acts trivially on a hyperplane, called the
reflecting hyperplane of s. Suppose that W is a finite subgroup of GL(V) generated by
pseudo-reflections; the corresponding braid groups were studied by M. Broué, G. Malle
and R. Rouquier [I§] and also by D. Bessis and J. Michel [I2]. As in the classical case
these groups can be defined as fundamental groups of complement in V' of the reflecting
hyperplanes. The following classical conjecture generalizes the case of braid groups:

The universal cover of complement in V of the reflecting hyperplane is contractible.

(See for example the book by Orlik and Terao [63], p. 163 and p. 259.)

This conjecture was proved by David Bessis [I1]. It means that these groups have
naturally defined finite-dimensional manifold as K(m, 1)-spaces.

2.2. Braid groups on surfaces. Let 3 be a surface. The nth braid group of ¥ can be
defined as the fundamental group of configuration space of n points on X. Let S? be a
sphere. The corresponding braid group Br,(S?) has simple geometric interpretation as
a group of isotopy classes of braids lying in a layer between two concentric spheres. It

has the presentation with generators d;, i = 1,...,n— 1, which satisfy the braid relations
(1.1) and the following sphere relation:
(2.4) 8102 ... 0n 202 10p_o...0001 = 1.

This presentation was found by O. Zariski [88] in 1936 and then rediscovered by E. Fadell
and J. Van Buskirk [32] in 1961.

Presentations of braid groups on all closed surfaces were obtained by G. P. Scott [71]
and others.

2.3. Braid-permutation group. Let BP, be the subgroup of Aut F;,, generated by
both sets of the automorphisms o; of (1.2]) and &; of the following form:

Ti > Tivl,
(2.5) Tif1 > Ty,

Tj > T4, jF i+ 1,
This is the nth braid-permutation group introduced by R. Fenn, R. Rimanyi and C. Rourke
[35] who gave a presentation of this group: it consists of the set of generators: {&;,o; :

i=1,2,...,n—1} such that o; satisfy the braid relations, &; satisfy the symmetric group
relations and both of them satisfy the following mixed relations:

0:i&; = &0y, if |i — 4] > 1,
(2.6) i&it10i = 0ip1&ibita,
0i0i+1&i = §i+10i0i41.
R. Fenn, R. Rimanyi and C. Rourke gave a geometric interpretation of BP, as a
group of welded braids.
This group was also studied by A. G. Savushkina [70] under the name of group of
conjugating automorphisms and notation C,,.

Braid-permutation group has an interesting geometric interpretation as a motion
group. This group was introduced in the Ph.D. thesis of David Dahm, a student of
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Ralph Fox. It appeared in literature in the paper of Deborah Goldsmith [41] and then
has been studied by various authors, see [44], for instance. This is an analogue of the
interpretation of the classical braid group as a mapping class group of a punctured disc.
Instead of n points in a disc we consider n unlinked unknotted circles in a 3-ball. The
fundamental group of the complement of n circles is also the free group F,,. Interchanging
two neighbour points in the case of the braid group corresponds to an automorphism
of the free group. In the case of circles this automorphism corresponds to a motion of two
neighbour circles when one of the circles is passing inside the other. Simple interchange
of two neighbour circles corresponds to the automorphism .

Another motivation for studying braid-permutation groups is given by the pure braid-
permutation group PX,, the kernel of the canonical epimorphism BP, — ¥,. In the
context of the motion group it is called the group of loops, but it has even a longer
history and is connected with classical works of J. Nielsen [62] and W. Magnus [56] (see
also [57]), as follows. Let us denote the kernel of the natural map

Aut F,, - GL(n,Z)

by IA,,. These groups are similar to the Torelli subgroups of the mapping class groups.
Nielsen and Magnus gave automorphisms which generate I A,, as a group. These auto-
morphisms are named as follows:

® X, fori# k with 1 <4,k <n, and
o O(k;[s,t]) for k,s,t distinct integers with 1 < k,s,t <n and s < t.

The definition of the map xi; is given by the formula
e itk # J,
)= {<xﬁ><xk><xi> itk = j.
The map 6(k; [s,t]) is defined by the formula
T it k#j,
(k) - ([xs,xe]) ik =3.

for which the commutator is given by [a,b] =a™! b7 -a-b.

O(k; [s,t]) (2;) = {

The group I As is isomorphic to the group of inner automorphisms Inn(F»), which is
isomorphic to the free group Fy. The group I Az is not finitely presented [51].

Consider the subgroup of IA,, generated by the xi;, the group of basis conjugating
automorphisms of a free group. This is exactly PX,,. McCool gave a presentation for
it [59].

The cohomology of PX,, was computed by C. Jensen, J. McCammond, and J. Meier
n [44]. N. Kawazumi [47], T. Sakasai [68], T. Satoh [69] and A. Pettet [66] have given
related cohomological information for I A,,. The integral cohomology of the natural direct
limit of the groups Aut F,, is given in work of S. Galatius [36].

THEOREM 2.1 (A. G. Savushkina [T0]). The group BP,, is the semi-direct product of the
symmetric group on n-letters ¥, and the group PX,, with a split extension

1 —— PY, —— BP, pI 1.
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The Lie algebra structure obtained from the descending central series of the group
PX, was studied by F. R. Cohen, J. Pakianathan, V. V. Vershinin and J. Wu [2]]
and by B. Berceanu and S. Papadima [9]. Certain subgroups of PX,, were studied by
V. Bardakov and R. Mikhailov [6].

2.4. Singular braid monoid. The set of singular braids on n strands, up to isotopy,
forms a monoid. This is the singular braid monoid or Baez-Birman monoid SB, [3], [L3].
It can be presented as the monoid with generators gi,gi_l,xi, it =1,...,n—1, and
relations
oi0; = 0504, if |i—j] > 1,
rix; = xjx,, if |i—j| > 1,
xio; = ojx,, if i —j| # 1,
0i0i+10; = 0i+10i0441,
0i0i+1%i = Xi+10i04+1,
0i+10i%i+1 = Li0i4+104,

1

71 _ — o
0,0, =0, 0;=1.

In pictures o; corresponds to canonical generator of the braid group and x; represents an
intersection of the ith and (i + 1)th strand as in Figure The singular braid monoid
on two strings is isomorphic to Z @ Z*. This monoid embeds in a group SG,, [34] which

1 1—1 4 i+1:+2 n

Fig. 2.2.

is called the singular braid group:
SB, = SG,,.

So, in SG,, the elements x; become invertible and all relations of SB,, remain true.
Principal motivations for study of the singular braid monoid lie in the Vassiliev the-
ory of finite type invariants [75]. Essential step in this theory is that a link invariant is
extended from usual links to singular ones. Singular links and singular braids are con-
nected via singular versions of Alexander theorem proved by Birman [I3] and Markov
theorem proved by B. Gemein [38], so that as well as in the classical case a singular link
is an equivalence class (by conjugation and stabilization) of singular braids. Therefore
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the study of singular braid monoid, especially such questions as conjugation problem,
is interesting not only because of its general importance in Algebra but because of the
connections with Knot Theory.

2.5. Other generalizations of braids that are not considered in the paper.
Garside’s solution of the word and conjugacy problems for braids had a great influence for
the subsequent research on braids. Tools developed by Garside were put as the definitions
for Gaussian and Garside groups [26], [24] or even Garside groupoids [50]. The latter
notion is connected also with the mapping class groups.

Another direction of generalizations are the parenthesized braids [43], [17], [25]. Moti-
vations for these studies are in D. Bar-Natan’s works on noncommutative tangles [4], [5]
and, on the other hand, in connections with Thompson’s group [19].

3. Presentations of generalizations of braids with few generators. The presen-
tation with two generators gives an economic way (from the point of view of generators)
to have a vision of the braid group. We give here the extension of this presentation for
the natural generalizations of braids. The results of this section were obtained in [83].

3.1. Artin—Brieskorn groups and complex reflection groups. For the braid
groups of type B, from the canonical presentation (2.2 we obtain the presentation with
three generators o1, 0 and 7 and the following relations:

oyoioio”t = oloyoTioy  for 2<i<n/2,
_ -1
(31) a" 4_ (Uql)n '7 4
Toloio ' =cloioT T for 2<i<n-—2,

TO1TO1 = O01TO1T.

If we add the relations

to (3.1)), we arrive at a presentation of the Coxeter group of type B,,.
Similarly, for the braid groups of the type D,, from the canonical presentation (2.3))
we can obtain the presentation with three generators o1, o and p and the relations:

o10toi07t = gloyo oy for 2<i<n/2,
_ -1
(32) O—nl* (Uql)n 47 .
potoioTt =cloroTp for 1 =0,2,...,n— 2,

paala_lp = 0010_1,00010_1.

0%:1,
p*=1

to (3.2]) we come to a presentation of the Coxeter group of type D,,.

If we add the relations
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For the exceptional braid groups of types Fs—FEg our presentations look similar to the
presentation for the groups of type D (3.2). We give it here for Fs: it has three generators
01, 0 and w and the following relations:

i

oiotoiot = olojo oy for i =2,3,4,

s _ 7
(3.3) ot =(oo))t,
wo'oio” ' =c'oyo'w for 1=0,1,3,4,5,6,

w0201072w = 02010720.20201072.

of =1,
w?=1

to (3.3) we arrive at a presentation of the Coxeter group of type Es.
As for the other exceptional braid groups, Fj has four generators and it follows from its

Similarly, if we add the relations

Coxeter diagram that there is no sense to speak about analogues of the Artin presentation
, G2 and Ir(p) already have two generators and Hj has three generators. For Hy it
is possible to diminish the number of generators from four to three and the presentation
will be similar to that of Bj.

We can summarize informally what we were doing. Let a group have a presentation
which can be expressed by a “Coxeter-like” graph. If there exists a linear subgraph corre-
sponding to the standard presentation of the classical braid group, then in the “braid-like”
presentation of our group the part that corresponds to the linear subgraph can be re-
placed by two generators and relations (|1.5)). This recipe can be applied to the complex
reflection groups [73] whose “Coxeter-like” presentations is obtained in [I8], [I2]. For the
series of the complex braid groups B(2e,e,r), e > 2, r > 2, which correspond to the
complex reflection groups G(de, e, r), d > 2 [I8], we take the linear subgraph with nodes
To,...,Tr, and put as above 7 = 79...7,.. The group B(2e,e,r) have presentation with
generators 79, T, 0,74 and relations
ToT o™t = Tl iy for 2<i <12,

T

7" = (179)" !

b
oT'TeT ' =T'Tor ‘o for 1<i<r—2,
!/ !/
OTyTy = TyToO
(34) 2 2 )

7'2’7'7'27'717'2’ = 7'7'27'717'2’7'7'27'71,

TToT ATy ToTToT Ao Ty = ToToTToT oo 1,

TQUTéTQTQ/TQTé vl = O—TéTQTéTQTéTQ cee
e+1 factors e+1 factors
If we add the relations
ol =1,
3 =1,
2 =1

to (3.4) we come to a presentation of the complex reflection group G(de, e, r).
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The braid group B(d, 1,n), d > 1, has the same presentation as the Artin—Brieskorn
group of type B, but if we add the relations

to then we arrive at a presentation of the complex reflection group G(d, 1,n), d > 2.
For the series of braid groups B(e, e, r), e > 2, r > 3, which correspond to the complex

reflection groups G(e, e, r), e > 2, r > 3, we take again the linear subgraph with the nodes

To, ..., Tr, and put as above 7 = 75 ... 7. The group B(e, e,r) may have the presentation

with generators 75, 7, 74 and relations

Tl = Tl iy for 2< i <r/2,

T

7" = (179)" !

)

TyTToT 7y = TToT o TToT ™,

3.5
( ) -1,/ —1_ / -1,/ —1
TT2T ToTTT2T ToT2 = ToT2TT2T ToTTT2T ;
/ / / / / /
ToToToToTaTy ... = ToTaToToToTa . . ..
e factors e factors

If e = 2 then this is precisely the presentation for the Artin—Brieskorn group of type D,
. If we add the relations
3 =1,
{752 =1

to , then we obtain a presentation of the complex reflection group G(e,e,r), e > 2,
r>3.

As for the exceptional (complex) braid groups, it is reasonable to consider the groups
Br(Gsp), Br(Gs3) and Br(G3s4) which correspond to the complex reflection groups Gsg,
G33 and G34.

The presentation for Br(Gsg) is similar to the presentation of Br(B,) with the
last relation replaced by the relation of length 5: the three generators o1, ¢ and 7 and
the following relations:

0102010_2 = 02010_201,

(36) 04 = (00;1)37

ToloyoT" = oloroT T for 1 =2,3,

TO1TO1T = 01T0O1T0O1.

If we add the relations

to , then we obtain a presentation of complex reflection group Gsgp.

As for the groups Br(Gs3) and Br(Gs4), we give here the presentation for the latter
one because the “Coxeter-like” graph for Br((G33) has one node less in the linear subgraph
(discussed earlier) than that of Br(Gs4). This presentation has the three generators s, z
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(z = stuvz in the reflection generators) and w and the following relations:

sztsz Tt = zlsz s for i =2,3,
20 = (25)°,

(3.7) wzlsw™t = 2tsz w for 1 =0,3,4,
wzlsz iw = 2'sz wztszt for i=1,2,
wz?sz2wzsz M welsz T2 = zsz lwzsz  Pwesz w.

In the same way if we add the relations

s2=1,
w?=1

to , then we come to a presentation of the complex reflection group Gsy.

We can obtain presentations with few generators for the other complex reflection
groups using the already observed presentations of the braid groups. For G5 and G3o we
can use the presentations for the classical braid groups Brs and Brs with the only
additional relation

o? =1.
3.2. Sphere braid groups: few generators. The presentation has two generators d,
0 which satisfy relations ([L.5) (where o7 is replaced by d1, and o is replaced by §) and

the following sphere relation:
sh(sHrt =1

3.3. Braid-permutation groups. For the case of the braid-permutation group BP,
we add the new generator o, defined by ((1.3)) to the set of standard generators of BP,;
then relations (1.4]) and the following relations hold

§i+120'i£10'_i, z:17,n—2
This gives a possibility to get rid of &; as well as of og; for i > 2.

THEOREM 3.1. The braid-permutation group BP, has a presentation with generators
o1, 0, and &1 and relations

ootoio™t = oloyo oy for 2<i<n/2,

o' = (o—o—l)nila

&oloo Tt =0looT¥ for i=2,...,n—2,
&ol& o =007 for i=2,...,n—2,
&roéi07 oy = 00107 10607,

§ro€107 16 = o107 06107,

e2=1

3.4. Few generators for the singular braid monoid. If we add the new generator o,
defined by (|1.3) to the set of generators of SB,, then the following relations hold

(3.8) Tigy =o'xio7t, i=1,...,n—2.

This gives a possibility to get rid of z;, i > 2.
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THEOREM 3.2. The singular braid monoid SB, has a presentation with generators o1,
1

or ', 0,07t and x1 and relations
o10toi0”t = dloyo "oy for 2<i<n/2,

o = (0.0.1)71—17

ri0toi07 = oloyo ey for i=0,2,...,n—2,
x10'x107 = o'xyo ey for 2 <i<n/2
o"r; = x10",

-1 _ -1 -1
r10010 01 =0010 010110 s

0101_1 :01_101 =1,

4. Graph-presentations

4.1. Braid groups of type B via graphs. Graph presentations for the braid groups
of the type B and for the singular braid monoid were studied by the author. We recall
that the group Br,(Ann) embeds in the braid group Br,4+1 as the subgroup of braids
with the first strand fixed.

In the following we consider a normal planar graph I" such that there exists a distin-
guished vertex v and such that the graph I' minus the vertex v and all the edges adjacent
to v is connected also. We call such I' a 1-punctured graph.

THEOREM 4.1. Let T' be a 1-punctured graph with n + 1 vertices. The braid group
Bry,(Ann) admits the presentation (Xr|Rr), where Xr = {04,7p|a is an edge of T
not adjacent to the distinguished vertex v and b is an edge adjacent to v} and Ry is the
following set of relations:

e Disjointedness relations (DR): if the edges a and c (respectively b and ¢) are disjoint,
then o,0. = 0.0, (respectively T,0. = 0.Tp).

o Adjacency relations (AR): if the edges a and c (respectively b and c) have a common
vertez, then 0,0.04 = 0:040: (Th0cTh0c = OcThO:Th).

e Nodal relations (NR): Let a,b,c be three edges which have only one common vertex
and are clockwise ordered. If the edges a, b, c are not adjacent to v, then

0q0b0c0q = O0p0c0q0b;
if the edges a,c are not adjacent to v and b is adjacent to v, then
0a0bTcOq = ObTcOaqOb,
TbOcOqThOc = OqTp0c0qTh-

o Pseudocycle relations (PR): if the edges ai,...,a,, form a pseudocycle, ay is not
the start edge or a,, the end edge of a reverse and all a; are not adjacent to v, then

0a,0ay -+-0Oa,, 1 = 0ay0a;s ---0a,, -
If a1, a,, are adjacent to v, then

Ta1Cas -+ Oap_1 = Oas0ag - - - Tay, -
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REMARK 4.1. As in Theorem the nodal relation (NR) implies also the equality
OaOp0c04 = Op0c040h = 004040

The geometric interpretation of generators is the following. The distinguished vertex
corresponds to the deleted point of the plane. To any edge a that is not adjacent to v we
associate the corresponding positive half-twist. To any edge b adjacent to v we associate
the braid 7, as in Figure

REMARK 4.2. This Theorem as well as Theorem [[.1] is true for infinite graphs via the
direct limit arguments.

N

Th

Fig. 4.1. Geometric interpretation of 7

To prove the relation m,0.0,70. = 0,T0:.0,7 we add two edges d and e, with their
corresponding braids 74 and 7. as in Figure [I.2] The braid 74 is equivalent to the braid

1

o, Tpo. and the braid 7. is equivalent to the braid o,7p0, L Then the braids o; Lo

and o, commute, as well as 0,70, 1 and o.. So we have the following equalities, that
can be easily verified on corresponding braids:

TpOcOqTpO e = acac_lTbacaaTbac = Ucaaac_lTbachac

= O'CJa(T;lO'CTbJCTb = (TCO'aTbCT;l(TaUCTb = O’aTbCT;l(TCO'aJCTb = 04Tp0c0qTh-

Fig. 4.2. Nodal relation 7,0.04Ts0c = 0aT0c0aTy holds in Br,(Ann)

COROLLARY 4.1. The automorphism group of Br,(Ann) contains a group isomorphic to
the dihedral group D,_1.

One can associate to the graph given in Figure a presentation for Br,(Ann).
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aj (12

Fig. 4.3. A graph associated to Bry(Ann)

It is possible to generalize such an approach to braid groups on a planar surface, i.e. a
surface of genus 0 with [ > 1 boundary components. In this case one considers a normal
planar graph with k (= [ —1) distinguished vertices vy, ..., vy such that there are no edges
connecting distinguished vertices and such that the graph I" minus the vertices vy, ..., vk
and all the edges adjacent to vy, ..., vy is also connected. We label by {71 ;,..., T ;} the
edges adjacent to v; and by {o1,...,0,} the edges disjoint from the set {vq,...,v}. We
say that I is a k-punctured graph. As in Theorem[f.I]one can associate to any k-punctured
graph I' on n vertices a set of generators for the braid group on n strands on surface of
genus 0 with k£ + 1 boundary components, with the above geometrical interpretation of
generators.

4.2. Graph-presentations for the surface braid groups. These presentations were
considered in [§]. Let T’ be a normal graph on an orientable surface 3 and S(I") denote
the set of vertices of I'. In the same way as earlier we associate to the edges of I' the
corresponding geometric braids on ¥ (Figure and we define Brp(X) as the subgroup
of Brigr)|(X) generated by these braids.

PROPOSITION 4.1. Let 3 be an oriented surface such that m(X) # 1 and let T be a
normal graph on . Then Brr(X) is a proper subgroup of Brisry (2).

4.3. Sphere braid groups presentations via graphs. Now let the surface ¥ be a
sphere S? and I' denote a normal finite graph on this sphere. We define a pseudocycle
as in Introduction: we consider the set S? \ T' as the disjoint union of a finite number of
open disks Dy,..., Dy, m > 1, and define the pseudocycle associated to D; exactly in
the same way.

Let A be a maximal tree of a normal graph I" on ¢ + 1 vertices. Then A has ¢ edges.
Let v1,v2 be two vertices adjacent to the same edge o of A. Write o(f1) for 0. We define
the circuit o(f1)...0(f2q) as follows:

— if the vertex v;11 is not univalent, then o(f;+1) is the first edge on the left of o(f;)
(we consider o(f;) going from v; to vj4+1) and the vertex v;yo is the other vertex
adjacent to o(fj4+1);

— if the vertex v;4; is univalent, then o(f;4+1) = o(f;) and v,42 = v;.
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This way we come back to v, after passing twice through each edge of A. Write
8,05 (A) for the word in X corresponding to the circuit o(f1)...0(f2q) (Figure [£.4)).

Fig. 4.4. 054(A) = 0a?B20v622¢? and 8y . (A) = 0752y oa?B?

THEOREM 4.2. Let ' be a normal graph with n vertices. The braid group Br, (S?) admits
a presentation (Xt | Rr), where Xp = {o |0 is an edge of '} and Rr is the set of follow-
ing relations: disjointedness relations (DR); nodal relations (NR, Figure; pseudocycle
relations (PR, Figure 7 exactly as in Theorem and the new tree relations (TR):
0z,y(A) =1, for every mazimal tree A of T' and every ordered pair of vertices x,y such
that they are adjacent to the same edge o of A.

REMARK 4.3. The statement of Theorem is highly redundant. For instance one can
show that a relation (TR) on a given maximal tree of T', together with the relations
(DR), (AR), (NR) and (PR), generate the (TR) relation for any other maximal tree of T
Anyway, these presentations are symmetric and one can read off the relations from the
geometry of T

REMARK 4.4. Let v C T be a star (a graph which consists of several edges joined in one
point). For any clockwise ordered subset {o,,...,0i; | j > 2} of edges of 7 the following
relation holds in the group (Xt | Rr):

(oF ...0'1'].0'1'1 = Ui].Uil ...Uij.

4.3.1. Geometric interpretation of relations. It is geometrically evident that the rela-
tions (AR) and (DR) hold in Br,(S?). Let ' contain a triangle 01,09, 7 as in Figure
Corresponding braids satisfy the relation 7 = 010907 L and thus TOp = 0109 in

Fig. 4.5. Adding or removing a triangle
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Br,,(5?). The relation o109 = o027 follows from the braid relation alagafl = 0510102.
Let 01,092,053 be arranged as in Figure We add three edges 71,72, 73. The nodal
relation follows from the pseudocycle relations on triangles 70203, 720103 and T30109.
In fact, 01020301 = 09730301 = 09037301 = 09030102. All other pseudocycle relations
follow from induction on the length of the cycle.

Fig. 4.6. Nodal relation holds in Br,,(S?)

Let A be a maximal tree of I". Let o be an edge of A and let x,y be the two ad-
jacent vertices. The element J, ,(A) corresponds to a (pure) braid such that the braid
obtained by removing the string starting from the vertex z is isotopic to the trivial braid.
This string goes around (with clockwise orientation) all other vertices (Figure 4.7|on the
left). The braid d,,(A) is isotopic to the trivial braid in Br,(S?) and so 6, ,(A) = 1
(Figure . Therefore the natural map ¢r : (Xr | Rr) — Br,(S?) is a homomorphism.

=

\
X

.

-

NS

Fig. 4.7. The braid d.,0(A) associated to the tree A =T\ 7

4.4. Singular braids and graphs. As in the case of classical braids, one can extend
the group Br, (X)) to the monoid SB,,(X) of singular braids on n strands on the surface X.
Presentations for this monoid are given in [7] and [42].

In this section we provide presentations by graphs for the monoid SB,, and for the
monoid SB,,(Ann) of singular braids on n strands of the annulus.
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Let T be a normal planar graph. We associate to any edge a three singular braids:
o, will denote the positive half-twist associated to a (as in Figure [1.1]), o

a
the corresponding negative half-twist and z, the corresponding singular crossing.

1 will denote

THEOREM 4.3. Let T’ be a normal planar graph with n vertices. The singular braid monoid
SB,, has the presentation (X, Rr) where Xt = {04,0, ", 24| a is an edge of T'} and Ry
is formed by the following siz types of relations:

e disjointedness: if the edges a and b are disjoint, then
0q0p = 0p0q, Talh = TpTa, OqTp = TpOq,

e commutativity:
Oalaq = Tq0aqa,
o jnvertibility:

—1
a

0a0 !

=0, 0q=1,
e adjacency: if the edges a and b have a common vertez, then
0aq0b0q = O0bp0q0b,
TqO0pOq = Op0qTh,
e nodal: if the edges a, b and ¢ have a common vertex and are placed clockwise, then
0q0p0c0q = 0p0c0q0p = 0c0q0p0¢;,
LaO0b0c0q = 0q0b0cTa,s
0q0pTc0q = OpTcO0aq0p,
LaO0pLcOq = OpLcOaTh,
e pseudocycle: if the edges ay, ..., a, form an irreducible pseudocycle and if a1 is not
the starting edge nor a, is the end edge of a reverse, then

Ogy---0ap_y = Ogy---0Oq,,
Ta,0ay++-0q,_ 1 = Oag---0q, 1 Lq, -

The last aim of this section is to give graph presentations for the singular braid monoid
on n strands of the annulus.

THEOREM 4.4. The singular braid monoid on n strands of the annulus SB,(Ann) admits
the following presentation:

— Generators: 0,0, Lw (i=1,...,n—1), 7,77 L.
— Relations:
R1) o005 =004, if li—j]>1;
R2) zzj = xjz,, if li—jl>1;
rio; = ojx,  if = jl#F L

j=s]
~

0i0i+10; = 0j4+10i0+1;

=]
ot

0i0i4+1%; = Tj4+10i0i41;

A~ o~~~ o~
(=2} w
= I D D = —

0i+10iTi+1 = Li0i4+104;
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(R7) 7101701 = 017017

(R8) 7To17X1 = I1TO1T,

(R9) 70; =047, if 12>2;
(R10) 72y = ayT, if i>2;

(R11) oot =0 'oy =71t =171l = 1.

The geometric interpretation of o; and 7 is given in Figure

We get the Reidemeister moves for singular knot theory in a solid torus if we add the
move depicted in Figure to the regular (without singularities) Reidemeister moves
of knot theory in a solid torus. This Reidemeister move means how a singular point
goes around the axis of the torus (fixed string). The proof that the list (R1)—(R11) is a
complete set of relations is standard: every isotopy can be decomposed in a sequence of
elementary isotopies which correspond to relations (R1)—(R11) (see also [42]).

-

::D/ T T f—

S -

g
| B

a |
a
- 4 4 ::)\ . 4 4

Fig. 4.8. The words 7o17z1 and z17017 represent the same element in SB,,(Ann)

REMARK 4.5. The singular braid monoid on n strands of the annulus differs from the
singular Artin monoid of type B as defined by R. Corran [22], where the numbers of
singular and regular generators are the same. The singular generator associated to 7
cannot be interpreted geometrically as above.

As in Section [I.I] we consider 1-punctured graphs. To any edge a disjoint from the
distinguished vertex v of I' we associate three singular braids: o, will denote the positive
half-twist associated to a, o, ! will denote the corresponding negative half-twist and 7,
denotes the corresponding singular crossing.

The graph presentations for the singular braid monoid in the solid torus arise from
Theorems [£.3] and .41

THEOREM 4.5. Let I' be a 1-punctured graph on n vertices. The monoid SBy,(Ann) ad-
mits the presentation (Xr, Rr), where

— Xr ={04,0, ', 24, Tb,lel}, for any edge a of T not incident with the distinguished
verter v, and for any edge b of I' adjacent to the distinguished vertex v;
— Ry is formed by the relations given in Theorems [£.1] and [£3] and the following new

nodal and invertibility relations:

1

- -1
OaThOcLq = TeOgTh0c, ThTeOaToTe = TqThOcTaTh, ™, =T, Tp=1.
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5. Birman—Ko—Lee presentation for the singular braid monoid. An analogue of
the presentation of Birman, Ko and Lee for the singular braid monoid was given in [85].
For1 <s<t<mnand1l<p<q<n we consider the elements of SB,, which are defined
by

ars = (01-104—2 - 0s1)0s(0 )} o h0) for 1<s<t<nmn,

ag' = (04_101—2 - 0si1)oy Hogy oo l)  for 1<s<t<n,

-1 -1 -1
bgp = (0g—104—2 - - O'p+1)(£p(0'p+1 e 0q720q71) for 1<p<qg<n.

Geometrically the generators as; and b, ; are depicted in Figure

Fig. 5.1.

THEOREM 5.1. The singular braid monoid SB,, has a presentation with generators as,
at_s1 for1 <s<t<nandby for 1 <p < q < n and relations

Atsrg = QrgQys for (t—7)t—q)(s—71)(s—q) >0,

Qpslgr = Qprlrs = AgrQyr  for 1 <r <s<t<n,

atsa;sl = a;slats =1 for 1<s<t<n,

atsbrg = brgQus for (t—r)t—q)(s—7r)(s—q)>0,
(5.1) atsbrs = bysays for 1<s<t<n,

pshsr = byrQys for 1<r<s<t<n,

srbir = bistg, for 1<r<s<t<n,

Qtrbrs = bgrayy for 1<r<s<t<n,

bisbrq = brgbis for (t—7)(t—q)(s—71)(s—q)>0.

Now we consider the positive singular braid monoid SBK L} with respect to genera-
tors a;s and b s for 1 < s <t < n. Its relations are except the one concerning the
invertibility of a:s. Two positive words A and B in the alphabet a:; and b; ; will be said
to be positively equivalent if they are equal as elements of this monoid. In this case we
shall write A = B.

The fundamental word § of Birman, Ko and Lee is given by the formula

0= an(n_l)a(n_l)(n_Q) ...a921 =0p—-10p—2...02071.

Its divisibility by any generator a;s, proved in [I4], is convenient for us to be expressed
in the following form.
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Fig. 5.2.

N

N

| N

Fig. 5.3.

ProOPOSITION 5.1. The fundamental word § is positively equivalent to a word that begins
or ends with any given generator a;s. The explicit expression for left divisibility is

0 = tsOn(n—1)0(n—1)(n—2) - - - At4+1)s@t(t—1) - - - Us4+2)(s+1)Ds(s—1) - - - A21-
PROPOSITION 5.2. For the fundamental word & the following formulae of commutation
are true

aisd = 0a(q1ys41) Jor 1 <s<t<n,
ansé = (5(1(5_,_1)1,
bisd = 0b(i11)(s+1) for 1 <s<t<n,
bpsd = 0b(sy1)1-
Geometrically this commutation is shown in Figures and
The analogues of the other results proved by Birman, Ko and Lee remain valid for
the singular braid monoid. They are proved in the work of V. V. Chaynikov [20].

6. The work of V. V. Chaynikov

6.1. Cancellation property. Let Wi, Wy € SBK L. By a common multiple of Wy, W
(if it exists) we mean a positive word V' = W1 V7 = WhVs.
Let
1)

where n > s > sp_1 > ... > s1 > 1. The word J, .. 5
(L.e.m.) of the generators a;;, where i, j € {5k, 5(x—1),--- 51}, see [I4], § = Sp(n-1)...1-

We denote the least common multiple of X, Y by X VY. Define (XVY)% and (XVY)3}
by the equations

Sk...81 = asks(k—l)as(k—l)s(k—2) ce sy

, is the least common multiple

XVY = X(XVY)y =Y(XVY)i.
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Similarly, we denote the greatest common divisor (g.c.d.) of X, Y by X AY. The semigroup
BKL is a lattice relative to Vv, A [14].

REMARK 6.1. We give the table of l.c.m. for some pairs of generators below. There does
not exist X VY for the remaining pairs of SBK L generators.

X Y XVY
Qps | Qrg s (Grq) = arg(ats) (t—r)t—g)(s—r)(s—q) >0
ats(asr) = agp(ats) = asr(as) t>s>r
Ats | Grq | QtsQirGsq = QrqQiq(Qrs) = Oirsq t>r>s8>q
ais | bis as(bis) = bes(ags) t>s>r
Ggr | bir ats(bsr) = by (ags) t>s>r
asr | bis asr(ber) = bis(asr) t>s>r
ats | bsr ats(asrbes) = bor(Otsr) t>s>r
agr | by asr(atrbsr) = ber(Otsr) t>s>r
A | bs At (arsbyr) = brs(0tsr) t>s>r
ags | brq s (Orgbrs) = bis(Sirsq) t>r>s>q
Qrq | bis Arq(GgQrsbrg) = bis(Otrsq) t>r>s>q

Here the symbol a;; € {a;;, b;;} means the same symbol in both parts of one equality.

We call the pairs of generator from the table above admissible and all other pairs
inadmissible. Observe that pairs {a;j, apm}, {@ij, bpm} are admissible and {b;;,bpm } is
admissible if and only if b;;bp, = by bi; is the defining relation of SB,,.

THEOREM 6.1 (Left cancellation).

i) Let {z,y} be an admissible pair and xX = yY . Then there exists a positive word Z
such that X = yY = (z Vy)Z, where X = (zVy);Z and Y = (z V y); Z.

it) If the pair {z,y} is inadmissible then the equality xX = yY is impossible (so there
does not exist a common multiple for {z,y}).

Similarly we can obtain the right cancellation property.

COROLLARY 6.1. If A =P, B=Q, AXB = PYQ, then the equality X =Y holds in
SBKL.

COROLLARY 6.2. Suppose that ¢ is the l.c.m. of the set of generators {a;,j,,...
and W is a positive word such that either

W = aillel = aizjzAg =...=

’ a’ipjp}

a/ipjp Ap7

or

W = Bia;,j, = Baa4,j, = ... = Bpa,,j,,
then W = 0Z for some positive word Z.
COROLLARY 6.3 (Embedding theorem).

SBKL} — SB,

The canonical homomorphism

s injective.
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6.2. Word and conjugacy problems in SB,,. The word problem in SB,, (in classical
generators) was solved by R. Corran [22], see also [85]. Let us fix an arbitrary linear order
on the set of generators of SBKL; and extend it to the deg-lex order on words of the
generators of SBK L;". With this order, we first order words by total degree (the length
of the word on given generators) and we break ties by the lex order. By the base of
the positive word W we mean the least (relative to the deg-lex order on the words on
the generators of SBKL;}) word which represents the same element as W in SBKL; .
Observe that this word is unique. If the positive word A is not divisible by ¢ we denote
its base by A.

THEOREM 6.2. Every word W in SB,, has a unique representation of shape ™A, where
m is an integer and A is not divisible by §.

This gives a normal form for SB, in Birman-Ko-Lee generators. The process of
computation of this normal form is the same as given by Garside [37]. First, suppose that
P is any positive word in the generators SBKL;". Among all positive words positively
equivalent to P choose a word in the form 6*A with ¢ maximal. Then A is prime to ¢ and
we have

P = A,
Now, let W be an arbitrary word in SB,. Then we may put
W = W1(01)71W2(02)71 . (Ck)71Wk+1,

where each W is a positive word of length > 0, and ¢; are generators a; 5, the only possible
invertible generators. For each ¢; there exists a positive word D; such that ¢;D; = 4, so
that (¢;)~! = D;6~ 1, and hence

W =WiD6 *WoDod b .. . WDy~ Wiis.
Moving the factors §~! to the left, we obtain W = §* P, where P is positive, so we can
express it in the form 6*A and finally we obtain the normal form
W = §mA.

Let us consider the conjugacy problem. We say that two elements u,v € SB,, are
conjugated if there exists g € B,, such that g 'ug = v. We denote this by u ~ v.

Let u be a positive word. Define the set of all positive elements conjugated with u as
follows: C*(u) = {v|v ~u,v € SBKL;}.

The following properties are obvious and very close to the ones proved in [29], [I4]:

i) The set of all positive words of limited length is finite.
ii) The set C*(u) is finite.
iii) The element 0™ generates the center of SB,.

Now fix two words u,v € SB,. We can assume that they are positive (otherwise we
multiply them by the element 6™*, where k is big enough to cancel all negative letters).

THEOREM 6.3. The elements u,v are conjugated if and only if the sets CT(u) and CT(v)
contain the same elements.



BRAID GROUPS AND THEIR GENERALIZATIONS 259

There exists the following algorithm for constructing C*(u). Define Cff (u) := {u}. If
the set C;F (u) is already constructed define

Cift 1 () == {v9| g divides §; v € C;'} N SBKL}.

The set C,:r (u) stabilizes on the finite step, so we put

CT(u) = U Ci¥ (u).

k>0

7. Inverse monoids. The notion of inverse semigroup was introduced by V. V. Wagner
in 1952 [87]. By definition it means that for any element a of a semigroup (monoid) M
there exists a unique element b (which is called inverse) with the following two conditions:

(7.1) a = aba
(7.2) b = bab.

Roots of this notion can be seen in the von Neumann regular rings [61] where only one
condition holds for non-necessary unique b, or in the Moore—Penrose pseudoinverse
for matrices [60], [64] where both conditions and hold (and certain supple-
mentary conditions also). See the books [65] and [53] as general references for inverse
semigroups.

The typical example of an inverse monoid is a monoid of partial (defined on a subset)
injections of a set. For a finite set this gives us the notion of a symmetric inverse monoid
I, which generalizes and includes the classical symmetric group ¥,. A presentation of
symmetric inverse monoid was obtained by L. M. Popova [67], see also formulae 7
below.

Recently the inverse braid monoid 1B, was constructed in [28] by D. Easdown and
T. G. Lavers. It arises from a very natural operation on braids: deleting one or several
strands. By the application of this procedure to braids in Br,, we get partial braids [28].
The multiplication of partial braids is shown in Figure[7.1} At the last stage it is necessary

Fig. 7.1.

to remove any arc that does not join the upper or lower planes. The set of all partial
braids with this operation forms an inverse braid monoid IB,,.

One of the motivations for studying I B,, is that it is a natural setting for the Brun-
nian (or Makanin) braids, which were also called smooth braids by G. S. Makanin, who
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first mentioned them in [49] (page 78, question 6.23), and D. L. Johnson [45]. By the
usual definition a braid is Brunnian if it becomes trivial after deleting any strand, see
formulae 7. According to the work of Fred Cohen, Jon Berrick, Wu Jie, Yang
Loi Wong [I10], Brunnian braids are connected with homotopy groups of spheres.

The following presentation for the inverse braid monoid was obtained in [28]. It has
the generators o;, 0[17 1=1,...,n—1, ¢, which satisfy the braid relations and the
following relations:

oio; b =0lo =1 for all 4,

€0; = 0;€ for i > 2,
(7.3)

€01€ = 01€01€ = €01€07,

e=¢€?=co? =0l

Geometrically the generator ¢ means that the first strand in the trivial braid is absent.
If we replace the first relation in (7.3|) by the following set of relations

(7.4) o? =1 for alli,
and delete the superfluous relations
€= eo? = o,

we get a presentation of the symmetric inverse monoid I,, [67]. We also can simply add
the relations (7.4) if we do not worry about redundant relations. We get a canonical
map [28]

(7.5) Tn t IB, — I,

which is a natural extension of the corresponding map for the braid and symmetric
groups.

More balanced relations for the inverse braid monoid were obtained in [40]. Let e;
denote the braid which is obtained from the trivial by deleting of the ith strand, formally:

€1 = €,
+1 +1
€41 = 0; €0; .

So, the generators are: oi,afl, i=1,....,n—1,¢,7=1,...,n, and relations are the
following:

0'1'0';1 = a;lai =1 for all 4,

€;0; = 04€j for j#14,i+1,

€i0; = 0i€i+1,
(7~6) €i+103 = 04€4,

€; = 622,

2 _ 2 _
€410, = 0;€,41 = €41,

€€410; = 04€;€;41 = €641,

plus the braid relations (1.1).
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7.1. Inverse reflection monoid of type B. It can be defined in the same way as the
corresponding Coxeter group (2.1)) as the monoid of partial signed permutations I(B,,):

I(B,,) = {0 is a partial bijection of SN : (—z)o = —(x)o for x € SN
and z € domo if and only if — z € dom o},

where dom o means domain of definition of the monomorphism o¢. This monoid was
studied in [31].

8. Properties of inverse braid monoid. In relations we have one generator for
the idempotent part and n — 1 generators for the group part. If we minimize the number
of generators of the group part and take the presentation for the braid group we
get a presentation of the inverse braid monoid with generators o1, o, €, and relations:

1

0101_1 =0, o1 =1,
oo l=0"lo=1,
eotoro” = c'oro % for1 <i<n-—2,

€01€ = 01€01€ = €01€07,

2 g2 2
€ =€ = €07 = O7E,

plus .

Let T' be a normal planar graph (see Introduction). Let us add new generators e,
which correspond to each vertex of the graph I'. Geometrically it means the absence
in the trivial braid of one strand corresponding to the vertex v. We orient the graph T"
arbitrarily and so we get a starting vy = vp(e) and a terminal v; = v;(e) vertex for each
edge e. Consider the following relations

oeo,t =0 lo, =1, for all edges of T,
€406 = Oe€y, if the vertex v and the edge e do not intersect,
€po0c = Oc€yy, where vg = vg(e), v1 = vi(e),
(81) €v,0e = Oe€yy,
€ = €2,
eviag = Ugevi = €y, 1=0,1,
€vp€vy Te = Te€pyg€y; = EygEu, -

THEOREM 8.1. We get a Sergiescu graph presentation of the inverse braid monoid IB,,
if we add to the graph presentation of the braid group Br, relations (8.1)).

Let E'F,, be a monoid of partial isomorphisms of a free group F,, defined as follows.
Let a be an element of the symmetric inverse monoid I,,, a € I, Jx = {j1,...,jx} is the
image of a, and elements i1, ...,i; belong to domain of the definition of a. The monoid
E'F,, consists of isomorphisms of free subgroups

(xila""xik> — <xj17"'>xjk>
such that
Ja x> wi_lxa(i)wiv
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if 4 is among 41, ...,%; and not defined otherwise and w; is a word on z; ,...,z;,. The
composition of f, and gy, a,b € I, is defined for z; belonging to the domain of a o b. We
put z;,, = 1 in a word w; if x;, does not belong to the domain of definition of g. We
define a map ¢, from IB,, to EF, expanding the canonical inclusion

Br, — Aut F,,
by the condition that ¢, (€) as a partial isomorphism of F}, is given by the formula

not defined, if7=1.

(8.2) Pn(e)(wi) = {

Using the presentation ([7.3) we see that ¢, is a correctly defined homomorphism of
monoids

¢n : IB, — EF,.
THEOREM 8.2. The homomorphism ¢, is a monomorphism.

Theorem [8:2] gives also a possibility to interpret the inverse braid monoid as a monoid
of isotopy classes of maps. As usual consider a disc D? with n fixed points. Denote the
set of these points by @Q,. The fundamental group of D? with these points deleted is
isomorphic to F},. Consider homeomorphisms of D? onto a copy of the same disc with
the condition that only k points of Q,, k < n (say i1, ...,4) are mapped bijectively onto
the k points (say ji,...,j%) of the second copy of D?. Consider the isotopy classes of
such homeomorphisms and denote such set by IM,,(D?). Evidently it is a monoid.

THEOREM 8.3. The monoids I1B,, and IM,,(D?) are isomorphic.

These considerations can be generalized to the following definition. Consider a surface
Sg.b,n of the genus g, b boundary components and with a chosen set (), of n fixed inte-
rior points. Let f be a homeomorphism of Sy, which maps k points, k¥ < n, from Q:

{i1,...,1x} to k points {j1,...,jx} also from @,. In the same way let h be a homeomor-
phism of Sy ; , which maps ! points, [ < n, from Q,,, say {s1,..., s} to! points {t1,..., %}
again from @Q,. Consider the intersection of the sets {ji,...,Jjx} and {s1,...,s;}, let it

be the set of cardinality m, it may be empty. Then the composition of f and h maps
m points of @, to m points (may be different) of @Q,. If m = 0 then the composition
does not take into account the set @,,. Denote the set of isotopy classes of such maps by
IMgpn. This standard composition of f and g as maps defines a structure of monoid
on IMgJ,m.

PRroPOSITION 8.1. The monoid ZM gy 1, is inverse.

We call the monoid ZMy ., the inverse mapping class monoid. If g = 0 and b =1
we get the inverse braid monoid. In the general case ZMy 3 5, the role of the empty braid
plays the mapping class group M, ; (without fixed points).

We remind that a monoid M is factorisableif M = EG where E is a set of idempotents
of M and G is a subgroup of M.
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PROPOSITION 8.2. The monoid ZMgy, ., can be written in the form
IMg,b,n = EMg,b,ny

where E is a set of idempotents of TMgyprn and Mgy, s the corresponding mapping
class group. So this monoid is factorisable.

Let A be the Garside’s fundamental word in the braid group Br, [37]. It can be
defined by the formula

A= J01...0p-101...0pn—2...0102071.
PROPOSITION 8.3. The generators €; commute with A in the following way:
GiA = Aen+1_i.

PROPOSITION 8.4. The center of I1B,, consists of the union of the center of the braid
group Br, (generated by A?) and the empty braid @ =¢€; ... €,.

Let £ be the monoid generated by one idempotent generator e.

PROPOSITION 8.5. The abelianization of IB,, is isomorphic to an abelian monoid AB
generated (as an abelian monoid) by elements ¢, o and —a, subject to the following

relations
a+ (—a)=0,
2e =€,
€+ a=c¢.

So, it is isomorphic to the quotient-monoid of € ® Z by the relation e + 1 = €. The
canonical map of abelianization
a:IB, - AB

{a(ei) =€,
a(o;) = a.

Let €141, denote the partial braid with the trivial first k£ strands and the absent rest
n — k strands. It can be expressed using the generator e or the generators ¢; as follows

is given by the formula

(8.3) €htln = €0p—1 .- .Okt1€0p_1 ... 0ft2€...E0n_107_2€0n_1€,

(8.4) €kt1n = €k+1€k42 - - €n,

It was proved in [28] that every partial braid has a representative of the form

(8.5) Oiy oo 0L Oy oo Ok€ltl n €t 1,00k - - - Oy - 01 - . Oy,

(86) ke{0,....,n}, x€Brp, 0<i1 <...<ix; <n—-1,0<j1 <...<jr<n-—1.
Note that in the formula (8.5) we can delete one of the €xy;,, but we shall use the
form (8.5]) because of convenience: two symbols €51, serve as markers to distinguish the

elements of Bry. We can put the element € Bry in the Markov normal form [58] and
get the corresponding Markov normal form for the inverse braid monoid IB,,.
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Among positive words on the alphabet {0} ...0,} let us introduce a lexicographical
ordering with the condition that o7 < g9 < ... < 0,. For a positive word V the base
of V is the smallest positive word which is positively equal to V. The base is uniquely
determined. If a positive word V is prime to A, then for the base of V the notation V'
will be used (compare with Section .

THEOREM 8.4. FEvery word W in IBr, can be uniquely written in the form

(8.7) Oiy oo 01 Oy oo Ok€ltl n L€t 1,00k - - - Oy - - 01 - . Oy,

(88) ke {0,....,n}, x€Bry, 0<i1 <...<ix <n—-1,0<j; <...<jpr<n-—1,
where x is written in the Garside normal form for Bry

A™V,
where m is an integer.

Theorem [8:4] is evidently true also for the presentation with €;, i = 1,...,n. In this
case the elements €41, are expressed by .

We call the form of a word W established in Theorem the Garside left normal
form for the inverse braid monoid IB,, and the index m—the power of W. In the same
way we can define the Garside right normal form for the inverse braid monoid and the
corresponding variant of Theorem is true.

THEOREM 8.5. The necessary and sufficient condition for two words in 1B, to be equal is
that their Garside normal forms are identical. The Garside normal form gives a solution
to the word problem in the braid group.

Garside normal form for the braid groups was detailed in the subsequent works of

S. I. Adyan [I], W. Thurston [30], E. El-Rifai and H. R. Morton [29]. Namely, there was
introduced the left-greedy form (in the terminology of W. Thurston [30])

AtAL .. Ay,

where A, are the successive possible longest fragments of the word A (in the terminology
of S. I. Adyan [I]) or positive permutation braids (in the terminology of E. El-Rifai and
H. R. Morton [29]). In the same way the right-greedy form is defined. These greedy forms
are defined for the inverse braid monoid in the same way.

Let us consider the elements m € IB,, satisfying the equation:

(8.9) €m = ;.

Geometrically this means that removing the strand (if it exists) that starts at the point
with the number ¢ we get a trivial braid on the remaining n — 1 strands. It is equivalent
to the condition

(8.10) MEr(m)(i) = €r(m)(i)>

where 7 is the canonical map to the symmetric monoid (7.5)). With the exception of ¢;
itself all such elements belong to Br,,. We call such braids as i- Brunnian and denote the
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subgroup of i-Brunnian braids by A;. The subgroups A4;, i =1,...,n, are conjugate
(811) Ai:O'i__ll...O'l_lAlo'l...O'i_l

free subgroups. The group A; is freely generated by the set {z1,...,z,_1} [45], where
(8.12) T 20;11...01_10501...01-_1.

The intersection of all subgroups of i-Brunnian braids is the group of Brunnian braids

(8.13) Brunn, = ) A

i=1

That is the same as m € Brunn,, if and only if the equation holds for all 4.

9. Monoids of partial generalized braids. Construction of partial braids can be
applied to various generalizations of braids, namely to those where geometric or dia-
grammatic construction of braids takes place. Let ¥, be a surface of genus g possibly
with boundary components and punctures. We consider partial braids lying in a layer
between two such surfaces: ¥, x I and take a set of isotopy classes of such braids. We
get a monoid of partial braid on a surface X, denote it by IB,(3,). An interesting case
is when the surface is a sphere S2. So our partial braids are lying in a layer between two
concentric spheres.

THEOREM 9.1. We get a presentation of the monoid I B,,(S?) if we add to the presentation
(7.3) or to the presentation (7.6) of 1B, the sphere relation (2.4)). It is a factorisable

inverse monotd.

The monoid IB(B,) of partial braids of the type B can be considered also as a
submonoid of IB,, 11 consisting of partial braids with the first strand fixed. An interpre-
tation as a monoid of isotopy classes of homeomorphisms is possible as well. Consider
a disc D? with given n + 1 points. Denote the set of these points by Q1. Consider
homeomorphisms of the disc D? onto a copy of the same disc with the condition that
the first point is always mapped into itself and among the other n points only k points,
k <n (say i1,...,1) are mapped bijectively onto the k points (say j1,...,Jr) of the set
Qn+1 (without the first point) of second copy of the disc D2. The isotopy classes of such
homeomorphisms form the monoid IB(B,,).

THEOREM 9.2. We get a presentation of the monoid I B(B,,) if we add to the presentation
(7.3) or the presentation (7.6) of I B, one generator T, the type B relation (2.2)) and the

following relations
-1 -1
T =17 T=1
(9.1) ’
€T = T€L — €7.
It is a factorisable inverse monoid.

REMARK 9.1. Theorem can be naturally generalized for partial braids in handle-
bodies [77].
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We define an action of the monoid IB(B,,) on the set SN (see Section by partial
isomorphisms as follows

(51‘U¢+1, lfj = i7

(9.2) 0i(0jvj) =  Giy1vs, ifj=i+1,

Svj,  ifjAd i+,
03) FB0) = {%f;jh ot
(9.4) dome = {0202, ...,0,Up},
(9.5) €(0;v5) = ;v , ifj=2,...,n,
(9.6) domei2{51111,...,@,...,5”1)”},
(9.7) €i(6,0;) = dju5,  ifj=1,...0,...,n.

Direct checking shows that the relations of the inverse braid monoid of type B are satisfied
by the corresponding compositions of partial isomorphisms defined by o;, 7 and ¢;.

THEOREM 9.3. The action given by the formulae (9.2)—(9.7) defines a homomorphism of
inverse monoids pg : IB(B,) — I(B,) such that the following diagram commutes

Br(B,) ——— W(B,)
(9.8) 1 1
IB(Bn) L I(Bn)

(where the wvertical arrows mean inclusion of the group of invertible elements into a
monoid).

THEOREM 9.4. The homomorphism pp : IB(By,) — I(By,) is an epimorphism. We get
a presentation of the monoid I(B,,) if in the presentation of IB(B,) we replace the first
relation in (7.3) by the following set of relations

o2 =1 foralli,
and delete the superfluous relations
€ = eor = o,
and we replace the first relation in by the relation
2 =1.
We remind that £ denotes the monoid generated by one idempotent generator e.

PROPOSITION 9.1. The abelianization Ab(IB(By,)) of the monoid IB(B,,) is isomorphic
to the monoid € ® 72, factorized by the relations

€+ T =k,
€+ 0 =gk,
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where T and o are generators of Z2. The canonical map of abelianization
a:IB(B,) — Ab(IB(By,))

is given by the formulae

a(e;) = e,
a(t) =,
a(o;) = o.

The canonical map from Ab(IB(B,)) to Ab(I(B,)) consists of factorizing Z* modulo 2.

Let BP, be the braid-permutation group (see Section . Consider the image of
monoid I,, in EF,, by the map defined by the formulae (2.5), (8.2). Take also the monoid
IB,, lying in E'F,, under the map ¢, of Theorem We define the braid-permutation
monoid as a submonoid of EF,, generated by both images of I B,, and I,, and denote it
by IBP,. It can be also defined by the diagrams of partial welded braids.

THEOREM 9.5. We get a presentation of the monoid I BP, if we add to the presentation
of BP,, the generator ¢, relations and the analogous relations between &; and €, or
generators €;, 1 < i < n, relations and the analogous relations between &; and €;.
It is a factorisable inverse monoid. Monoid IBP, is isomorphic to the monoid EF,, of
partial isomorphisms of braid-conjugation type.

The virtual braids [82] can be defined by the plane diagrams with real and virtual
crossings. The corresponding Reidemeister moves are the same as for the welded braids
of the braid-permutation group with one exception. The forbidden move corresponds to
the last mixed relation for the braid-permutation group . This allows to define the
partial virtual braids and the corresponding monoid IV B,,. So the mixed relation for
IV B,, have the form

&i&iv105 = 0541841

THEOREM 9.6. We get a presentation of the monoid IV B, if we delete the last mized
relation in the presentation of IBP,, that is, replace the relations (2.6) by . It is a
factorisable inverse monoid. The canonical epimorphism

1VB, — IBP,
is evidently defined.

The constructions of singular braid monoid SB,, (see Section [2.4]) are geometric, so
we can easily get the analogous monoid of partial singular braids PSB,,.

THEOREM 9.7. We get a presentation of the monoid PSB,, if we add to the presentation
of SB,, the generators €;, 1 < i < n, relations (7.6) and the analogous relations between
z; and €;.

REMARK 9.2. The monoid PSB,, is neither factorisable nor inverse.
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The construction of braid groups on graphs [39], [33] is geometrical so, in the same

way as for the classical braid groups we can define partial braids on a graph T" and the
monoid of partial braids on a graph I' which will be evidently inverse, so we call it as

inverse braid monoid on the graph I' and we denote it as I B, I.
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