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Abstract. We prove F. Riesz’ inequality assuming the boundedness of the norm of the first
arithmetic mean of the functions |¢,|” with p > 2 instead of boundedness of the functions ¢,

of an orthonormal system.

1. Inequality of F. Riesz. Let () be an orthonormal system in [a, b], that is,
b
/ ert)pn(t)dt =0 (k,n=1,2,3,...),

b
/ lor)Pdt =1 (k=1,2,3,...),

where @}, € Lfa’b] (k=1,2,3,...), and let

b
a(f) = / ferhdt  (E=1,2,3,..)

be the sequence of Fourier coefficients of a function f € L[za ] with respect to the system
(¢n)- The well known result of F. Riesz states

THEOREM 1 (F. Riesz [4]). Let
lok(t)| < M for almost all t € [a,b] and k=1,2,3,...
with M independent of k, and let p € (1,2] and p’ be such that 1/p+1/p’ = 1.
°If fe Lfa’b] then

(Slatnr )" <ars ([ s a)
2 a

1/p
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2° If (ay) € IP then there exists f € Lﬁ; p Such that aj, = ax(f) and

([ If(t)p'dt>l/p/ < sz”(g )"

A generalization of this result was obtained by J. Marcinkiewicz and A. Zygmund [2],
where a condition on the L'[Ja’b] (2 < ¢ < o0) norm of the functions ¢, was used, and the
constant M was replaced by a sequence of constants M}, (see also [3] p. 166).

In the present note we consider another slightly more general condition on the system

(pr). We suppose the boundedness of the first arithmetic mean of the L'[Ja’b] (2<¢< )

norms of the functions ¢, instead of their boundedness.

THEOREM 2. Let
n b »'/q , )
Z (/ |<Pk(t)|th> < MPn(b—a)’/?  when q< oo
k=1 a

and

Z |<Pk(t)|pl < MP'n  for almost dll t € [a,b] when q= o0
k=1

with M independent of n, q > p' , o) € L?a b for every k = 1,2,3,... withp’ > 2 and
let p € (1,2] such that 1/p+1/p’ = 1.

then

(gzm“nﬂ>wd§”ﬁ¥<lbﬂwpﬁym.

2° If (ax) € IP then there exists f € Lf{; b such that ap = ap(f) and

([ 1 a) " (Saor)”

k=1

o p
riIffetl,,

2. Proof of Theorem 2. We will use the same notation as in the book [1]. The main
part of the proof is the same as in [1, Theorem 6.3.1], therefore we will give only the
part which is essentially different. The modification is based on an estimation of the
coefficients @ which also leads to the inequality (14) from the proof of Theorem 6.3.1
of [1].

So, since

b
Q. :/ F(t)pr(t)dt

then, by the Holder inequality,

s b P ) w( / lor ) ) "
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and consequently, by our assumption

p'/p
Z|ak|”<§j lor ) dt(/ ol at)

<o-03 (75 [ ora)” ([ ora)”

Hence

A(p) = (b a)r TP
which is the above mentioned inequality (14).
This modification completes the proof of 1°.
The proof of 2° is based on the proof of 1°, so it is exactly the same as that in [1].

3. Remark. This version of the assumption in the theorem of F. Riesz is sometimes
more useful in applications, e.g. in investigation of strong summability of orthogonal
expansions.
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