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Abstract. We consider a quasilinear parabolic system which has the structure of Patlak-Keller-

Segel model of chemotaxis and contains a class of models with degenerate diffusion. A cell pop-

ulation is described in terms of volume fraction or density. In the latter case, it is assumed that

there is a threshold value which the density of cells cannot exceed. Existence and uniqueness of

solutions to the corresponding initial-boundary value problem and existence of space inhomoge-

neous stationary solutions are discussed. In the 1D case a classification of stationary solutions

for some model example is provided.

1. Introduction. We are dealing with a class of quasilinear systems of parabolic equa-

tions which are used to model the chemotactic motion of biological cells. Chemotaxis

is understood here as a chemosensitive oriented movement of biological cells which may

detect and response to some chemical (chemoattractant) secreted to their environment.

It is assumed that the total flux of cells consists of diffusive and chemotactic parts. The

classical model describing the aggregation phase of chemosensitive motion of cells was

introduced by Patlak [11] and Keller and Segel [6]. Most of works on Patlak/Keller-Segel

model were focused on the case when cell diffusion is Brownian and chemotactic sensitiv-

ity is a density-independent fixed constant. Recently new models which have nonlineari-

ties in both chemotactic and diffusive parts have been introduced by Hillen and Painter

[2, 10], and Byrne and Owen [3]. The latter is due to the multiphase modeling and the

former takes into account a volume filling effect. For brevity we shall refer to (MP) and

(VF) in the sequel. On the one hand, derivation and interpretation of both models are

based on different approaches, but on the other one they turn out to share some common
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mathematical features. Both diffusive and chemotactic part contain here similar density

dependent nonlinearities which lead in some cases to degenerate diffusion. Moreover, by

different reasons in (MP) and (VF) a variable describing cell concentration is a priori

bounded which precludes a blow-up of solution as a feature indicating the appearance of

cells aggregate. Instead of it, a pattern formation mechanism was investigated for (VF) in

[2, 10]. Existence of flat-hump-shaped stationary solutions such that cells density attain

the threshold value on some set with non-empty interior was recently proved in [8]. This

type of solutions naturally refer to the formation of cells aggregate. The purpose of this

work is just studying well-posedness and properties of stationary solutions to the class of

chemotaxis models defined below. The present work extends methods used in an earlier

related work [8]. In particular, the existence result proved here applies to (MP) model in

some simplified version (MPs) which will be defined later.

More precisely, both models (VF) and (MPs) can be viewed in the following abstract

form

∂tu = ∇ · (D(u)E(u, v) ∇u− uχ(u, v)∇v), (1)

∂tv = d∆v + g(u, v), (2)

in (0,∞) × Ω subjected to the no-flux boundary condition

〈D(u)E(u, v)∇u− uχ(u, v) ∇v|ν〉 = 〈∇v|ν〉 = 0 on (0,∞) × ∂Ω, (3)

and the initial condition

(u, v)(0) = (u0, v0) in Ω, (4)

where Ω is a bounded open subset of R
N with smooth boundary ∂Ω and ν is the outward

unit normal vector on the boundary. Here, u is interpreted in (VF) as the cell density

and as a volume fraction in [3] where a two-phase model describing motion of cells in

some fluid medium e.g water is introduced. Next, v is a chemoattractant density and

D(u)E(u, v) denotes the density-dependent diffusion coefficient and χ(u, v) is usually

named chemotactic sensitivity function. The function g describes the rates of production

and degradation of the chemoattractant v. Without loss of generality diffusion constant

in (12) is normalized to 1. We refer to a survey paper [5] for a detailed discussion and

bibliography related to mathematical modelling of chemotaxis phenomenon. In particular,

the classical Patlak-Keller-Segel-model of chemotaxis [11, 6] in the, so called, minimal

version corresponds to the case where D,E and χ are constants.

The volume filling model (VF) was formally derived in [10] from the level of a discrete

space, continuous time, reinforced random walk on an equi-distant lattice. Let u = u(x, t)

denote the cell density at a position x and time t then q(u(x, t)) is introduced in [10]

to determine the probability that a cell in a position x and time t finds space at its

neighbouring location. Then q = q(r) is a given non-negative and non-increasing function.

Because of the volume filling effect in the tight packing state normalized here as u ≡ 1

we have q(1) = 0. Consequently, it turns out that the chemotactic component of a total

flux attains zero and the chemotactic movement stops when u = 1. We then have

D(r) = q(r) − rq′(r), E ≡ 1 and χ(r, s) = q(r), r ∈ [0, 1] × [0,+∞). (5)
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If q is assumed to be such that D is bounded from below, e.g.

q(r) = 1 − r, (6)

then (1)-(4) is a non-degenerate parabolic system. On the other hand, if we assume

for example q(r) = (1 − r)2 then D(r) = (1 − r)(1 + r) which leads to a degenerate

parabolic system. Existence of a global in time and unique solution to to (VF) in the

non-degenerate case was studied in [2, 10, 13]. In [14] it was proved that in the ω-limit

set of any trajectory to the corresponding dynamical system there are only stationary

states provided g is linear and (6) holds. Among them there are non-constant ones which

never reach the threshold u = 1.

In the degenerate case of (VF), model both diffusive and chemotactic parts of cells

flux tend to 0 along with cells density tending to the threshold value. Existence and

uniqueness of solutions to (VF) model in the degenerate case follows from [8] where also

existence of stationary solutions which may reach the thereshold is shown in 1D case. We

mention also [4] in which convergence of kinetic model for chemotaxis to the (VF) model

is proved.

Recently Byrne and Owen have proposed a two-phase model describing cells moving

through a fluid containing a diffusible chemoattractant. Now variable u denotes a volume

fraction of cells in a two component mixture that consists of cells and fluid (e.g. water)

with volume fraction w = 1 − u. The derivation of the model is based on mass and mo-

mentum balance and some additional constitutive laws that describe interaction between

cells, fluid and chemoattractant. Then changes in cells volume fraction are governed by (1)

with the following substitution

D(r) =
r(1 − r)2

k(r)
, E = Λ(r, s) + r∂rΛ(r, s) and χ(r, s) =

r(1 − r)2

k(r)
∂sΛ(r, s) (7)

for (r, s) ∈ [0, 1] × [0,+∞) where k = k(r) is a drag function and Λ(r, s) is a potential

function which determines cells behavior. If one assumes diffusion to be a dominant factor

causing the movement of chemoattractant molecules and neglect advection then fluctua-

tion of chemoattractant in fluid may be described by an equation of the form (2). We call

system (1) with (7) and (2) a simplified version (MPs) of full (MP) model which origi-

nally takes also into account the advection term in chemoattractant equation. The latter

term leads, however, in general to inverse diffusion problem and even if one then restricts

to a degenerate parabolic case it turns out to be non-triangular with gradient depen-

dent reaction terms. This property leads to serious problems in proving well-posedness

of global-in-time solutions.

Finally, we mention a hydrodynamical approach to chemotaxis equations proposed in

[7]. Population of cells is treated there as a non-viscous fluid with density u and velocity

v which satisfies Euler equation

∂t + ∇ · (uv) = 0, (8)

u(∂tv + v · ∇v) = −∇p+ F (u, v,v) (9)

with the density-dependent pressure p = p(u) and the force

F = µ∇v − β(u)v
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composed from chemotactic part oriented towards gradient of chemoattractant v and

resistive force which is due to all factors moderating cell movement in particular kinematic

friction. We note that originally β is taken as a constant friction coefficient in [7]. Then,

assuming that inertial force is negligible for the description of cells movement we obtain

following [7]

µ∇v −∇p(u) − β(u)v = 0.

Hence, using (8) we arrive at

∂tu = ∇ ·

(

up′(u)

β(u)
∇u−

µu

β(u)
∇v

)

. (10)

It is then easy to check that, setting in the above equation q(r) = β(r)−1 and p(r) =

ln(rβ(r)), we obtain (5) in (VF) model. It shows that derivations of chemotaxis equations

based on entirely different approaches lead to similar structures which are linked at least

on a formal level.

We are now in a position to list the assumptions that we impose on the data. The

functions D ∈ C2(R), χ ∈ C2(R) satisfy

D(0) ≥ 0, D(1) ≥ 0 and D(r) > 0 for r ∈ (0, 1), (11)

χ(1, s) = 0, χ(r, s) > 0 for (r, s) ∈ (0, 1) × [0,+∞). (12)

Notice that we are mainly interested in the degenerate case when

D(0) = 0 and/or D(1) = 0. (13)

There is e0 > 0 such that

E(r, s) ≥ e0 for all (r, s) ∈ (0, 1) × [0,+∞), (14)

and that the reaction term g ∈ C2(R2) satisfies the (one-sided) growth condition

g(r, 0) ≥ 0 and ∂sg(r, s) ≤ κ for (r, s) ∈ [0, 1] × [0,∞), (15)

for some κ > 0.

As for the initial data, we assume that

(u0, v0) ∈ L∞(Ω; R2) with 0 ≤ u0 ≤ 1 and 0 ≤ v0 a.e. in Ω. (16)

At last, we note that assumptions (11), (12) and (14) comprise most of examples

studied in [10] and [3]. In particular, we may have k(r) = const, k(r) = (1 − r), k(r) =

r(1 − r) and Λ(r, s) = α+ γ exp{− θs
1−r} (cf. [3]).

As it was mentioned before, it is an interesting question whether variable u may

attain the threshold density since the set {x ∈ Ω : u(t, x) = 1} indicates the set of

points where cells are tightly packed or for the case of (MPs) model the set of points

where solely pure phase occurs. This problem was studied in [8] concerning stationary

solutions. It turns out that a stationary solution (u, v) to (1)-(2) under assumption (40)

and D(1) = 0, D(0) > 0, χ(r, s) = χ(r) satisfies for some λ ∈ R the following relation

j(u(x)) = v(x) + λ if u ∈ (0, 1), (17)

where j(r) :=
∫ r

1/2
D(s)
sχ(s) ds for r ∈ (0, 1) . Two cases have been distinguished in [8]: non-

degenerate case when D/sχ(s) 6∈ L1(1/2, 1) and degenerate one if D/sχ(s) ∈ L1(1/2, 1).



CHEMOTAXIS MODELS WITH A THRESHOLD DENSITY 557

It was shown that in the non-degenerate case we have 0 < u < 1 and the threshold

is never reached in this case. On the contrary, in the degenerate case the existence of

a broad class of stationary solutions in 1D which takes value 1 on some subinterval of

[0, l] was proved. Such a flat-hump-shaped solution exists provided the length l of the

interval is big enough. A degenerate case under simplifying assumption D(r) = rχ(r), j

is studied here. It is proved that j is an affine function with j(0) < +∞, j(1) < +∞ and

then non-homogeneous stationary solutions exist in arbitrary space dimension provided

the domain of definition has some specific properties related to eigenvalue problem for

the Laplace operator with the homogeneous Neumann boundary condition (Theorem 6).

In 1D case several types of stationary solutions including flat-hump shaped ones are

distinguished. In Theorem 8 a classification of stationary states for this case is provided.

The same concept of a weak solution to (1)-(4) as in [8] is used in this paper. First

we define

D(r) :=

∫ r

0

D(s) ds, r ∈ [0, 1].

Definition 1. Let (u0, v0) ∈ L∞(Ω; R2) be such that (16) holds true. A weak solution

to (1)-(4) is a couple (u, v) of functions such that, for each T > 0,

0 ≤ u(t, x) ≤ 1, 0 ≤ v(t, x) a.e. in (0, T ) × Ω, (18)

u ∈ L∞((0, T ) × Ω) ∩ Cw([0, T ];L2(Ω)), D(u) ∈ L2(0, T ;H1(Ω)), u(0) = u0, (19)

v ∈ L∞((0, T ) × Ω) ∩H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)), v(0) = v0, (20)

and (u, v) satisfy

∫ T

0

〈∂tu, ψ〉 dt +

∫ T

0

∫

Ω

(E(u, v)∇D(u)− uχ(u, v) ∇v)∇ψ(t, x) dx dt = 0, (21)

∂tv = ∆v + g(u, v) a.e. in (0, T ) × Ω, (22)

∂νv = 0 a.e. on (0, T ) × ∂Ω, (23)

for each t ∈ [0, T ] and ψ ∈ L2(0, T ;H1(Ω)). Here, 〈., .〉 denotes the duality pairing between

H1(Ω) and H1(Ω)′.

Here, Cw([0, T ];L2(Ω)) denotes the set of functions from [0, T ] in L2(Ω) which are

continuous for the weak topology of L2(Ω). It is worth to mention that well-posedness

to system (1)-(4) was studied in [8] under similar assumptions with the only difference

E ≡ const and D(0) > 0. Then, existence of weak solutions was proved in the afore-

mentioned paper (Theorem 2) and also uniqueness was shown by the duality method

provided D and χ satisfy some additional condition. It turns out that the method used

to prove existence of weak solution can be extended to our case. However, the unique-

ness problem requires, in general, a new method since that from [8] can be adopted

here if E(r, s) does not depend on s, and χ is factorized as χ(r, s) = χ1(r)χ2(s) (see

Proposition 3). This condition is usually satisfied in most models taking into account a

chemoattractant-dependent chemotactic sensitivity function χ.
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2. Existence and uniqueness. We shall prove

Theorem 2 (Existence). Consider (u0, v0) ∈ L∞(Ω; R2) such that (16) holds true. Under

the assumptions (11), (12), (14), (15) on D, χ and g, there exists a weak solution (u, v)

to (1)-(4) in the sense of Definition 1 such that
∫

Ω

u(t, x) dx =

∫

Ω

u0(x) dx for each t ≥ 0. (24)

Since the proof this theorem requires only slight modifications with respect to the

proof of [8, Theorem 2.], we shall give only a sketch indicating differences. We introduce

first a parameter which determines a sequence of solutions to non-degenerate regularized

problems for which the well-posedness is deduced from the abstract theory developed by

Amann [1] and then using compactness argument one can extract a subsequence which

is convergent in an appropriate sense to the weak solution.

Proof. In the non-degenerate case D(0) > 0, D(1) > 0 existence and uniqueness of

classical solutions follows from Amann’s theory of quasilinear parabolic equations applied

below to solve the regularized problem.

Step 1. Regularization. For ε = 1
m , m > 1 and r ∈ R, we put Dε(r) := D(r) + ε. To

aproximate the initial data we take (uε
0, v

ε
0) ∈W 1,N+1(Ω; R2) such that (16) and

‖vε
0‖L∞ ≤ 2‖v0‖L∞ and ‖uε

0 − u0‖L2 + ‖vε
0 − v0‖L2 ≤ ε . (25)

Next we consider the initial-boundary value problem (1)-(4) with Dε instead of D and

(uε
0, v

ε
0) instead of (u0, v0). The elliptic part of (1)-(4) is upper triangular in separated

divergence form. Therefore, the problem is normally elliptic by [1, Section 4]. We are then

in a position to apply [1, Theorems 14.4 & 14.6] to conclude that (1)-(4) has a unique

maximal classical solution

(uε, vε) ∈ C([0, T⋆) × Ω̄; R2) ∩ C1,2((0, T⋆) × Ω̄; R2),

where T⋆ ∈ (0,+∞]. Next (1) and the fact that g(·, 0) ≥ 0 and [1, Theorem 15.1] ensure

that uε(t, x) ≥ 0 and vε(t, x) ≥ 0 for (t, x) ∈ [0, T⋆) × Ω̄. We next observe that z̃ :=

(vε, 1− uε) is a solution to an initial-boundary value problem with a similar structure to

(1)-(2). Since χ(1) = 0, a further application of [1, Theorem 15.1] leads to the conclusion

that 1 − uε ≥ 0. Finally we obtain for t ∈ [0, T ]

0 ≤ uε(t, x) ≤ 1 and 0 ≤ vε(t, x) (26)

for (t, x) ∈ [0, T⋆)× Ω̄. Also, integrating (1) over (0, t)×Ω implies the mass conservation

(28). We finally infer from (2), (15) and (26) that

∂tv
ε − ∆vε ≤ g(uε, 0) + κvε ≤ C(1 + vε)

with C := ‖g(., 0)‖L∞(0,1) + κ, from which we conclude that

vε(t, x) ≤ (1 + ‖v0‖L∞)eCt, (t, x) ∈ [0, T⋆) × Ω̄ . (27)

Since the elliptic boundary value problem has a triangular structure, L∞-bound is suffi-

cient to conclude ([1, Theorem 15.5]) that the maximal solution is in fact global in time:
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T⋆ = +∞, and thanks to no-flux boundary condition we have
∫

Ω

uε(t, x) dx =

∫

Ω

uε
0(x) dx for each t ≥ 0 . (28)

In the following we denote by Ci, i ≥ 1, any positive constant which does not depend

on ε ∈ (0, 1). The dependence of the Ci’s upon additional parameters will be indicated

explicitly.

Consequently, the right-hand side of (2) is bounded on finite time intervals and clas-

sical parabolic estimates warrant that, for each T > 0 and p ∈ (1,∞), there is a positive

constant C2(p, T ) such that

‖vε‖Lp(0,T ;W 2,p(Ω)) + ‖∂tv
ε‖Lp((0,T )×Ω) ≤ C1(p, T ) . (29)

Step 2. Compactness. We next introduce the functions Dε and D̃ε defined by

d2D̃ε

dr2
=
dDε

dr
= Dε and D̃ε(0) = Dε(0) = 0 .

We multiply (1) by Dε(uε) , integrate over Ω and using (14) we obtain

d

dt

∫

Ω

D̃ε(uε) dx = −

∫

Ω

(E(uε, vε)|∇Dε(uε)|2 − uεχ(uε, vε)∇vε∇Dε(uε)) dx

≤ −e0‖∇Dε(uε)‖2
L2 + ‖χ(uε, vε)‖L∞(Ω)‖∇Dε(uε)‖L2‖∇vε‖L2

≤ −
e0
2
‖∇Dε(uε)‖2

L2 +
‖χ(uε, vε)‖2

L∞(Ω)

2
‖∇vε‖2

L2 ,

whence in view of (29 it follows that
∫ T

0

∫

Ω

|∇Dε(uε)|2 dx dt ≤ C2(T ) (30)

and also
∫ T

0

∫

Ω

|∇D(uε)|2 dx dt ≤ C2(T ) (31)

since dDε/dr ≥ D ≥ 0. Next from (1), (29) and (30) we deduce that
∫ T

0

‖∂tu
ε‖2

H1(Ω)′ dt ≤ C4(T ). (32)

Since the L2 estimate on ∇uε is not available here, the compactness argument is applied

to an auxiliary sequence P (uε) where P ∈ C2(R) and P (0) = 0 with dP/dr := D2. Then,

proceeding in the same way as in [8], one can show using (1), (14), (29), (32), (31) that

(P (uε)) is bounded in {w ∈ L2(0, T ;H1(Ω)) : ∂tw ∈ L1(0, T ;W 1,N+1(Ω)′)} (33)

for each T > 0. Then applying a compactness result [12, Corollary 4] we conclude that

(P (uε)) is relatively compact in L2((0, T )×Ω) for each T > 0. It follows from (1) that P is

an increasing function and therefore for a subsequence (uε) is almost everywhere conver-

gent. This property combined with the bound (26) yields the relative compactness of (uε)

in Lp((0, T )×Ω) for each p ∈ [1,∞) and T > 0. Also, (26), (32) and a classical compact-

ness result [9, Théorème 1.12.1] ensure that (uε) is relatively compact in C([0, T ];H1(Ω)′)
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for each T > 0. It follows that there are functions (u, v) ∈ L∞((0, T )×Ω; R2) and a sub-

sequence of (uε, vε) (not relabeled) such that

(uε, vε) → (u, v) in Lp((0, T ) × Ω; R2), (34)

and

(uε, vε) → (u, v) in C([0, T ];H1(Ω)′) × C([0, T ];Lp(Ω)), (35)

for each p ∈ [1,∞) and T > 0. Furthermore, (31) ensures that D(u) ∈ L2(0, T ;H1(Ω))

for each T > 0. Since Dε(uε) is weakly convergent in L2(0, T ;H1(Ω)) for each T > 0 and

by (14), (26),(27), (35)we have for p ∈ [0,+∞)

E(uε, vε) → E(u, v) in Lp((0, T ) × Ω; R2),

It follows, using standard arguments, that for any ψ ∈ L2(0, T ;H1(Ω))
∫ T

0

∫

Ω

E(uε, vε)∇Dε(uε)∇ψ(t, x) dx dt→

∫ T

0

∫

Ω

E(u, v)∇D(u)∇ψ(t, x) dx dt,

Similarly, using (29) one can pass to the limit in the chemotactic part and thanks to (35)

we infer that (21) is satisfied. Then, making use of (29) and (34) we pass to the limit in

the weak formulation to (22), and then using the classical regularity theory of parabolic

equations we infer that (22) is satisfied in the strong sense. Hence, in view of (35), (u, v)

is a solution to (1)-(4) in the sense of Definition 1.

Uniqueness of weak solution can be proved using duality method following lines of

proof of [8, Theorem 2] provided

E ≡ const and χ(r, s) = χ1(r)χ2(s), (36)

where χ1, χ2 ∈ C2 and χ satisfies (12). We next assume that there are C0 > 0, C1 > 0

and functions g1 ∈ C2(R) and g2 ∈ C2(R) such that g1(0) ≥ 0, g2(0) ≥ 0 and

g(r, s) = g1(s) + r g2(s) and max {g′1(s), g
′
2(s)} ≤ C1, (37)

for (r, s) ∈ [0, 1] × [0,∞).

Proposition 3 (Uniqueness). If (36)-(37) are satisfied and additionally

(rχ1(r) − sχ1(s))
2 ≤ C0(r − s)(D(r)−D(s)), (38)

then the weak solution is unique.

3. Stationary states. In this section, we shall study stationary solutions to (1)-(3) in

a particular case when (11)-(12) hold and

D(r) = rh(r), and χ(r) = χ0h(r), (39)

where h is a sufficiently regular function satisfying (11)-(12) and χ0 is a positive constant

that determines the strength of the chemotactic force. Moreover, we assume

E ≡ 1, g(r, s) := γr − βs (40)
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for some β > 0 and γ > 0. The case of linear g was studied in most of works on chemotaxis

equation. The following system is an example:

∇ · (u(1 − u)∇u− χ0u(1 − u)∇v) = 0,

∆u+ γu− βv = 0.

The same concept of stationary solution as in [8] is used here.

Definition 4. A stationary solution to (1)-(3) is a couple (u, v) of functions in L∞(Ω; R2)

such that D(u) ∈ H1(Ω), v ∈ H2(Ω),

(u(x), v(x)) ∈ [0, 1] × [0,+∞) a.e. in Ω, (41)

∇D(u) − uχ(u) ∇v = 0 a.e. in Ω, (42)

−∆v + βv = γu a.e. in Ω, (43)

∂νv = 0 a.e. on ∂Ω. (44)

If M ∈ [0, |Ω|] then a stationary solution to (1)-(3) with mass (M,γM/β) satisfies
∫

Ω

u(x) dx =
β

γ

∫

Ω

v(x) dx = M . (45)

Of course, there is a one-parameter family of space-homogeneous solutions

C̺ =

{

(ũ, ṽ) : ũ ≡
γ

β
̺, ṽ ≡ ̺

}

, {̺ ∈ [0, γ/β]},

and there arises a question whether non-homogeneous stationary solutions exist. Follow-

ing [8] we introduce the auxiliary function

j(r) :=

∫ r

1/2

D(s)

h(s)
ds for r ∈ (0, 1) .

It was shown in [8] that in the case when

D(0) > 1, D(1) = 0 and χ(1) = 0, (46)

j is an increasing function from (0, 1) onto (−∞, j1), where

j1 :=

∫ 1

1/2

D(s)

h(s)
ds ∈ (0,+∞],

and for any stationary solution (u, v) with mass (M,γM/β), M ∈ (0, |Ω|), the set

Ωu := {x ∈ Ω, u(x) ∈ [0, 1)}

is a non-empty open subset of Ω. Moreover, j(u) − v is constant on each connected

component of Ωu and u ∈ C(Ω̄) ∩ C1(Ωu). In addition, u(x) > 0 for x ∈ Ω̄ and by

comparison principle

v(x) ∈

[

0,
γ

β

]

, x ∈ Ω̄. (47)

If we assume (39)-(40) j is an affine function

j(r) =
1

χ0

(

r −
1

2

)

, (48)
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and in contrast to the previously studied case j satisfies both j(0) = − 1
2χ0

and j(1) = 1
2χ0

,

so this is a doubly degenerate case in the terminology of [8]. We recall that in the case

(46) flat-hump-shaped solutions (u = 1 on some set with non-empty interior) may appear

only in the degenerate case i.e. j(1) < +∞.

Similar arguments as in [8, Proposition 5] lead to

Proposition 5. Under assumptions (39)-(41) for a stationary solution (u, v) with mass

(M,γM/β), M ∈ (0, |Ω|), the set Ω′
u := {x ∈ Ω, u(x) ∈ (0, 1)} is a non-empty open

subset of Ω. Moreover, in view of (48) on each connected component of Ω′
u we have for

some λ ∈ R

u = χ0(v − λ) +
1

2
(49)

and u ∈ C(Ω̄) ∩ C1(Ω′
u). Thus

Ω \ Ω′
u = Ω1 ∪ Ω0,

where

Ω0 = {x ∈ Ω : u(x) = 0} and Ω1 = {x ∈ Ω : u(x) = 1}.

Moreover, the set of stationary solutions has the following symmetry: if a couple (u, v)

is a stationary solution then (w, z) is also a stationary solution with w = 1 − u and

z = γ
β − v .

The last statement can be checked by a direct computation.

Requirements 0 < u(x) < 1 for x ∈ Ω̄ lead to the following restrictions on v and λ

λ−
1

2χ0
:= v0 < v(x) < v1 := λ+

1

2χ0
, (50)

and (47) holds. Combining (47) and (50) we obtain

λ ∈ Λ :=

[

1

2χ0
,
γ

β
−

1

2χ0

]

.

It follows that Λ 6= ∅ if

β ≤ γχ0. (51)

Using (49) and (50) we may introduce

u(x) = Fλ(v(x)) for x ∈ Ω̄, (52)

where

Fλ(y) =







χ0(y − λ) + 1
2 for v0 < y < v1

1 for y > v1
0 for 0 < y < v0.

(53)

Next, (43) and (52) yield that

−∆v = γFλ(v) − βv in Ω (54)

with the no-flux boundary condition on ∂Ω. Observe that the continuity of v and (54)

imply that for i = 0, 1, we have

−∆v = γi− βv in Ωi, (55)

v = vi on ∂Ωi . (56)
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Denote the mean value of f by f̄ = 1
|Ω|

∫

Ω
f(x) dx and

ω2 := γχ0 − β .

Let S = S(Ω) denote the set of eigenvalues corresponding to the following eigenvalue

problem

∆w = −µ2w in Ω, (57)

∂νw = 0 on ∂Ω. (58)

Theorem 6. If

ω2 ∈ S(Ω) \ {0} (59)

then for any ̺ ∈ (0, γ
β ) there exists a space non-homogeneous stationary solution (u, v)

such that v̄ = ̺, ū = β
γ ̺ and 0 < u(x) < 1, 0 < v(x) for x ∈ Ω and

v = Awω + v̄, u = χ0(v − λ) + 1/2, (60)

where wω is an arbitrary but fixed eigenfunction corresponding to (57)-(58) with µ = ω

and

λ =
ω2v̄

γχ0
+

1

2χ0
,

and A > 0 satisfies

0 < A < min

{

βv̄

γχ0|minx∈Ω{wω}|
,

γ − βv̄

γχ0 maxx∈Ω{wω}

}

. (61)

Proof. We fix ̺ ∈ (0, γ
β ). In view of (49) we consider the following boundary value problem

∆v = −γ(χ0v − χ0λ+ 1/2) + βv = −ω2v + γ(χ0λ− 1/2) a.e. in Ω, (62)

∂νv = 0 a.e. on ∂Ω, (63)

which has a solution

v = Awω +
γ(χ0λ− 1/2)

ω2
,

where wω is a fixed eigenfunction related to (57)-(58). Since
∫

Ω
wω(x)dx = 0, we easily

check that ̺ = v̄, and then by (50)

v0 =
w2

γχ0
v̄, v1 =

1

χ0
−

w2

γχ0
v̄. (64)

Since we used (49) in (62), the requirement v0 < v(x) < v1 for x ∈ Ω yields bounds (61)

on A. This completes the proof.

Corollary 7. 1. Non-homogeneous stationary solutions (u, v) satisfying condition 0 <

u < 1 may exist only on special domains Ω for which the eigenvalue problem for the

Laplace operator with the Neumann homogeneous boundary condition satisfies (59).

2. There is a continuum of nonhomogeneous stationary solutions corresponding to a

given mass.

From now on, we restrict ourselves to the one-dimensional case, Ω = I = (0, l), and

in view of (54) we seek a solution (u, v) : I → [0, 1]×R+ to the following boundary-value
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problem

v′′ = Φλ(v) in (0, l), v′(0) = v′(l) = 0, (65)

Φλ(v) = −γ Fλ(v) + β v, (66)

where Fλ satisfies (53) and u is given by (52). We denote

I0 = {x ∈ I : u(x) = 0}, I1 = {x ∈ I : u(x) = 1}.

We define the following sets K,Ki,K
′
i, L

′, L of vector-valued functions (w, z) : I →

[0, l] × R+ with the following symmetry property (w(x), z(x)) = (w(l − x), z(l − x)) for

x ∈ l and

(w, z) ∈ K iff I0 = I1 = ∅, l = 2π/ω, i = 0, 1,

(w, z) ∈ Ki iff Ii 6= ∅ is an interval, Ii+1(mod2) = ∅, l > 2π/ω, i = 0, 1,

(w, z) ∈ K ′
i iff card {Ii} = 1 and Ii+1(mod2) = ∅, l = 2π/ω,

(w, z) ∈ L′ iff card {I0} = card {I1} = 2, l = 2π/ω,

(w, z) ∈ L iff card {I0} > 1, card {I1} > 1, l > 2π/ω .

Theorem 8. If γχ0 − β > 0 then there are space non-homogeneous stationary solutions

(u, v) to (1)-(3) in the one-dimensional case.

1. If λ = γ
2β then K ∪ L ∪ L′ 6= ∅.

2. If λ < γ
2β then K ∪K0 ∪K

′
0 6= ∅, if u 6= 0 then u 6= 1 .

3. If λ > γ
2β then K ∪K1 ∪K

′
1 6= ∅, if u 6= 1 then u 6= 0 .

If γ 6= 2β and ū < 1/2 then any solution to (65) belongs to K ∪K0 ∪K ′
0. If (u, v) is a

stationary solution, then

v ∈ C2([0, l]), u ∈ C([0, l]), and D(u) ∈ C1([0, l]).

Proof. Since γχ0 − β > 0 for λ ∈ Λ there are 3 points P0 = (0, 0), P1 = (ve,
β
γ ve), P2 =

( γ
β , 1) at which the graph of function z = Fλ(y) meets the line z = β

γ y ; 0 < v0 < ve <

v1 <
γ
β . Then Fλ(v0) = 0 and

Fλ(y) <
β

γ
y, y ∈ (0, ve),

Fλ(y) >
β

γ
y, y ∈

(

ve,
γ

β

)

.

Next we use the phase plane analysis for the following o.d.e. system which is equivalent

to the previous second-order ordinary differential equation (65)

v′ = w, w′ = Φ(v), (67)

with the “energy” E and the “potential” U given by

E(v, w) =
1

2
w2 + U(v), U(v) = −

∫ v

ve

Φλ(y)dy . (68)

We denote by x 7→ ϕ(x; ṽ0, w̃0) = (ϕ1(x; ṽ0, w̃0), ϕ
2(x; ṽ0, w̃0)) the solution to (67) start-

ing from (ṽ0, w̃0) at x = 0 and by T (ṽ0, w̃0) the corresponding trajectory. We restrict

the analysis of the phase portrait of (67) to the strip P = {(v, w) : v ∈ [0, γ
β ]} which
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contains three equilibria Qi, i ∈ {0, 1, 2}. Since Φ(v) > 0 for v ∈ (0, ve) and Φ(v) < 0

for v ∈ (ve, ,
γ
β ), we realize that U has a local minimum at v = ve and U(ve) = 0.

It is easy to see that all the solutions are periodic. Trajectories contained in the strip

Pω = {(v, w) : v ∈ (v0, v1)} have period 2π
ω .

Suppose now that ṽ0 ∈ (0, ve) then we set

v(x) := ϕ1(x; ṽ0, 0) for x ∈ I, (69)

u(x) := fλ(v(x)) for x ∈ I, (70)

where the domain I will be specified later in each case. Notice that w̃0 = 0 ensures that

the boundary condition (65) is satisfied.

Properties of solutions defined by (69)-(70) depend on the values of λ and on the

number of intersection points of trajectory T (ṽ0, 0) with lines l1 = {(v, w) : v = v0} and

l1 = {(v, w) : v = v0}.

If λ = γ
2β then U(0) = U( γ

β ), and there is a heteroclinic trajectory that links equilibria

Q0 and Q2. Applying Theorem 5 we find a family of stationary solutions (u, v) that belong

to K

v = A cosωx+ v̄, x ∈ [0, 2π/ω]. (71)

Then by (61) we obtain A ≤ min{A0, A1} where

A0 =
βv̄

γχ0
, and A1 =

γ − βv̄

γχ0
,

and A0 (A1) corresponds to v0 (resp. v1). Suppose now that A0 6= A1 i.e γ 6= 2β. Then,

it follows that u never reaches 1 if ū < 1/2 since then equivalently v̄ < γ
2β and A0 < A1,

which proves the last statement of the theorem. On the contrary, if ū > 1/2 then A0 > A1

and u(x) = 1 for x such that | cosωx| = 1. Since U(v0) = U(v1) in this case taking ṽ0 = v0
or ṽ0 = v1 we obtain a solution to (65) which belongs to L′. If ṽ0 ∈ (0, v0) then there is

a solution in L.

If λ < γ
2β then U(0) < U( γ

β ) and there is a homoclinic trajectory emerging from Q0

which surrounds point Q1. In this case we have also U(v0) < U(v1) < U( γ
β ) . Therefore,

given ṽ0 ∈ (0, v0) the solution x 7→ ϕ(x; ṽ0, 0) is determined and it defines the solution

to (65) by means of (69)-(70). Such a solution belongs to the class K0. Notice that in

this case [0, 2π
ω ] ⊂ I. If ṽ0 = v0 then the corresponding solution (65) belongs to K ′

0 and

in the case ṽ0 ∈ (v0, ve) the solution belongs to K and then [0, 2π
ω ] = I. The level set

corresponding to U(v0) does not intersect line l1 and therefore u 6= 1 provided u 6= 0.

If λ > γ
2β then U(0) > U( γ

β ), and there is a homoclinic orbit emerging from Q2

which surrounds point Q1. Moreover U(v0) > U(v1) > U( γ
β ), and the third statement

of the theorem follows by similar arguments to that in the previous case. It is then

straightforward to check that the couple (u, v) thus constructed is a stationary solution

to (1)-(3) in the sense of Definition 4 and that v ∈ C2([0, l]) and u ∈ C([0, l]). These two

facts actually imply that D(u) ∈ C1([0, l]). This completes the proof.

Remark 9. A full characterization of the set of stationary states would be rather com-

plicated since any function defined on [0, l] which is a solution indicated in Theorem 8

restricted to [0, l/2] is also a stationary solution. Moreover, due to symmetry one can
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continue a solution defined on [0, l] to a function defined on [0, 2kl], where k is a posi-

tive integer which is also a solution. Moreover merging of functions which preserves the

regularity also produces new solutions on sufficiently large intervals.
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Birkhäuser, 2005, 273–290.
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