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REGULARITY AND DECAY OF 3D INCOMPRESSIBLE
MHD EQUATIONS WITH NONLINEAR DAMPING TERMS

BY
ZHUAN YE (Beijing)
Abstract. We prove the existence and uniqueness of global strong solutions to the

Cauchy problem for 3D incompressible MHD equations with nonlinear damping terms.
Moreover, the preliminary L? decay for weak solutions is also established.

1. Introduction. This paper focuses on the following Cauchy problem
of 3D incompressible MHD equations with nonlinear damping terms:

o+ (u-Vu— Au+ vjul* tu+Vr=(b-V)b, t>0,zcR3,

1) b+ (u-V)b— Ab+ b’ o= (b- V)u, t>0,2 € R,
' V-u=0 V-b=0, t>0,z € R3,
U(JT,O) = Uo(ﬂf), b(ZL‘,O) = bO(fL‘)a x e R3a

where v, > 0; a, 3 > 1 are real exponents; and u = u(z,t) € R?, 7 =
m(x,t) € R and b = b(z,t) € R? denote the velocity vector, scalar pressure
and the magnetic field of the fluid, respectively. This model comes from
porous media flow, friction effects, or some dissipative mechanisms, mainly
as a limiting system from compressible flows. In the case when v =n =0
the system reduces to the standard 3D MHD system. For the standard
MHD, one has global existence and uniqueness of weak solutions in 2D and
local existence of weak solutions in 3D. These results go back to Duvaut &
Lions [DI] and Sermange & Temam [ST]. When b = 0, the system
reduces to the Navier—Stokes equation with damping

o+ (u-Viu— Au+ vju|/*tu+Vr=0, t>0,z¢cR3
(1.2) V-u=0, t>0,x€R3,
u(z,0) = up(z), z € R3.
The system was studied first by Cai and Jiu [CJ] where the physical

background is given. They proved that (1.2]) has global weak solutions for
any « > 1, and global strong solutions for any « > 7/2. Furthermore, the
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strong solution is unique for any 7/2 < « < 5. This result was improved
significantly by Zhou [Z2] and Zhang-Wu-Lu [ZWL]. We emphasize that
Zhou [Z2] proved that the strong solution exists globally for o > 3. Fun-
damental mathematical issues such as the asymptotic behavior of solutions
to three-dimensional Navier—Stokes equations with nonlinear damping
and related models have generated extensive research and many interesting
results have been obtained (see, e.g., [AT, [JZDl lJl [G1], [G2| [JZ]). As far as
the authors know, the question of global existence or finite time blow-up
of smooth solutions for the 3D MHD equations is still one of the most out-
standing open problems in applied analysis, even though it has attracted sig-
nificant attention. By taking advantage of some nonlinear damping terms,
we are able to show that the system admits a unique global strong
solution for some « and £.

2. Preliminaries and the main theorem. Firstly, we state the defi-
nition of a weak solution to (|1.1J).

DEFINITION 2.1. The triplet (u, b, w) is called a weak solution of the
MHD equations (1.1) if:
o ue L>(0,T; L*(R*) N L*(0,T; H'(R?)) N L*TH(0, T; LT (R?)),
b e L>(0,T; L*(R%)) N L2(0, T; H' (R?)) N LPH(0, T; LAY (R?));
e for any 1 € C°([0,T) x R3) with V-4 =0,

T T
—\ Vwopdrdt + \ \ diu 0, du dt

0 R3 0 R3

T
+ S S (u - Vu + |[u]* tu) de dt = S uoth(z,0) dx,

and OR? R?

T T
—\ \ vowpdudt + | | 0:b;0.; dw dt

0 R3 0 R3

T
+ | { & Vo+ pP o) dedt = | borp(x, 0) da;
0 R3 R3
o V- u(x,t) =V b(z,t) =0 for a.e. (v,t) € R3 x (0,7T).

As is well-known, it is usually difficult to obtain the uniqueness of weak
solutions. A weak solution becomes a strong solution provided that

(u,b) € L=(0,T; HY(R®)) N L*(0, T; H*(R?))
x L>=(0,T; H'(R3)) N L*(0, T; H*(R?)),
u e L®(0,T; L“TY(R?)), b € L0, T; L*T1(R?)),
for any T' > 0.
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For the clarity of presentation, we denote
xl é{(aw@) ‘ 0424, /624}7

7 3o+ 5
<
2 {(a’ﬁ) A L al}
A 7 Sa+ 7 3a+5
= — 4 <p <
(2.1) X3 {(O"m 3 St T _ﬁ_a—l}’
17 5a+7
x4é{<a,ﬁ) 1<a< i, 2o pe }
37 2a
17 Ba+ 7 5
X {( B) | = <a<7 22T s&sjfg}

REMARK 2.2. It is not difficult to check that all the sets X;,i =1,2,...,5
are nonempty and satisfy X; N1 X, =0 for any j # k, 1 < j, k <5.

Without loss of generality, v and n are normalized to 1 in the rest of
the paper. Our main result on the global existence and uniqueness of strong
solutions to the system (1.1]) is as follows.

THEOREM 2.3. Suppose that (o, 8) € |U>_, X defined by and (ug, bo)
€ HY(R?) x HY(R3) with V -ug = 0,V - by = 0. Then there ezists a
unique global strong solution pair (u(x,t), b(x,t), m(x,t)) for the system
(1.1). Moreover,

(u,b) € L>(0,T; H'(R*)) N L*(0, T; H*(R?))
x L°°(0,T; H'(R3)) N L*(0, T; H*(R?)),
we L%®(0,T; L“TYRY)), b € L>®(0,T; LPT1(R?)),
(O, Oyb), (Jul @2y, |p|B=D/2vp), (V]u|(@+D/2) v|p|(F+1)/2)
€ L2(0,T; L*(R?)) x L*(0,T; L*(R3)),
for any T > 0.

The following theorems concern the preliminary L? decay for weak solu-
tions.

THEOREM 2.4. Assume that o, 8 > L. Let (ug,bo) € (L*(R3) N L?(R3))?
with V - ug = 0 and V - by = 0. Then there exists a weak solution (u(x,t),

b(x,t)) to the system (L.1)) such that
lu®122 + [b@)]22 < C(1+1)~ ™" 36D

THEOREM 2.5. Suppose that o, B > 1. Let (ug,by) € L*(R3) x L*(R3)
with V - ug = 0 and V - by = 0. Then there exists a weak solution (u(x,t),
b(x,t)) for the system (1.1|) which satisfies

IVa(t) 2 + IVB(#)] 2 < O+ )2,

a—7_ 3B8-7
)’2(/3 1)}
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THEOREM 2.6. Assume that a, B > 10/3. Let (ug,bo) € L?(R3) x L?(R3)
with V -ug =0 and V - bg = 0. Suppose that

e ugl| 2 + ||e 2ol 2 < CA+t)™"  for some p > 0.

Then there exists a weak solution (u(x,t), b(x,t)) to the system (1.1)) which
satisfies .
lu(®)l72 + 1b()][72 < C(1 4 #)minlr3/4,

3. The proof of Theorem To prove the main result, we first
introduce the following conventions and notation. Throughout, C stands for
real positive constants which may be different at each occurrence. We shall
sometimes write A < B for A < CB.

We first establish the global existence of strong solutions to the system
(L.1). The existence of global weak solutions can be obtained as in [CJ] by
utilizing Galerkin approximation.

Before embarking on the proof of Theorem we can easily derive the
following energy estimate: take the inner product of 1 with u and the
inner product of 2 with b, add and integrate to obtain

LEMMA 3.1. For any solution (u,b) of (1.1)), there exists a constant C
such that for any T > 0,

T
(D) (O)172 + §{I1(Vu, VO)72 + lull 3 + [BI7EL 3 (2) de < Cuo, bo, T)
0

for any t € [0,T1].
Proof of Theorem[2.3. The proof of the global existence of strong solu-
tions to (|1.1) is split into two parts.

PART 1: (a, ) € X;. Multiplying (1.1); and (1.1)2 with Au and Ab,
respectively, noting the incompressibility condition, adding them up and
integrating over the space variable, we obtain

(31) 5 (0, W) 2+ (A, 26)(1)]3
+ H(!u! (@012, F-D/27b)(1)][2, + ‘(“ >§ [V (D72 2,
+ LRI 2,
= S (u-Vu) - Audz + S (u-Vb)- Abdx — S (b-Vb) - Audx
R3 R3 R3
~ | (0-Vu)- Abdx
R?)

< H(Au, Ab) ()72 + C(J1 + J2 + J3 + Ju),
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where

Ji=\|lu-Vade, Jy=||b-Vufde, J5=|b- V0P de,
R3 R3 R3
Ji= | |u- Vb dx.
R3
Taking the inner product of (1.1)); and (1.1))2 with d;u and 0;b, respectively,

making use of the fact that V-u =V -b = 0, after a suitable integration by
parts, one gets

(32) N, T2 + (@ atb><t>||%z

d (0%
+ et + e}
= | (b Vb)-Qudr+ | (b-Vu)-Obdx
R3 R3
- S (u-Vu) - dudr — S (u-Vb) - Adbdx
R3 R3
< 111w, 0b) (t)][72 + C(J1 + Jo + J3 + Ja).

In what follows, we will deal with the terms Ji, Jo, J3, Jy separately. First
of all,

(3.3) T <\ PVl dz < [JullFa [Vl s
R3 [ a—1
2(a—2)
< HUHLQHHVUHLaH HAuHa+1
2(a41)

IIAUHLz +Cllull 277 [IVulle,

where the Young inequality and Gagliardo—Nirenberg inequality are used.

Using the same method we obtain

(3.4) < | b VbP? da < anLBHHVbH%mH)
R3

S ||bHLB+1HVbHLB+1 HAbHB+1
2(8+1)

HAbHLz +Clbll, 557 Vb7

To bound J2, again by the Young inequality and Gagliardo—Nirenberg in-
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equality, we have

(3.5) To < VPVl do < [[b] 7541 [Vl 2500
R3 L p-t
2(8— 1 -
S ||bHL6+1HVU||Lﬁ+ | Au Hﬁ+
2(B+1)
< sl Al + Clol 522 [ 9uli
In the same manner as the bound for Js, we obtain
2(at1)
(3.6) To < Sl BB + Cllull 53 Vbl
Without loss of generality, we assume that |ul|pa+1,[|b]s11 > 1. As
a,B > 4, it is easy to show that % < a+1 and 2(/57_21) < B+ 1.

Therefore,

2(at1) . 2(5+1) 841
)
Jull ozf Sllullgil, ol o SIbI s

Adding up (3.1) and (3.2)), combining the estimates for Ji, Jo, Js, Js and
absorbing the dissipative term, we finally obtain

d d N
1) GITu OO+ G Il + bt |

100, AB) W) + 11 (Au, AD))7,
+ (jul(=/2v, oDV )]
+ LRIV,

4(8-1) ) )/

2(at1) 2(5+1)

< C(lull 253 + 10l 52 M (Vu, Vo)()|[22
< C(JlullsEh + Bl 1(Va, Vb) ()]

Applying the Gronwall-type inequality to (3.7) and using Lemma we
can immediately show that the system ((1.1)) admits global strong solutions.
Thus, this completes the proof for this case.

PART 2: (a, 8) € X2UX3UX4UX5. We have to estimate each term J;—Jy
on the right-hand side of (3.1) and (3.2). By taking advantage of the Young
inequality and Gagliardo—Nirenberg inequality, it follows that
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3.8) i < | |[uf’|Vul® da

R3
= § (ful @2 ul) = (uf* 3|Vl 5T ) de (3 < a<5)
R3
< H\uya V2|3, + C | Jul@ V2| Vu? da
SC s
a— a—1)/2
< Sl D29, + CIVull? s 1l
< 8CHIuI V2|7, + Clull ot | Aul 2 Jul| 5
< el @ 29u}, + ol Aul3 + Clluli

Note that when o > 5, the term J; can be bounded as Jy in (3.5) above.
Thus, repeating the arguments in (3.8)), we have

(3.9) Js < | bV da

R3
= | (blO=D7298) S P 5 e (3 < 6 <5)
R3

< S IBIED2Tb2, + I AbE, + ClblEL

Now, let us bound J; and J4 which should be treated differently. For J,, the
Young inequality yields

(3.10) Jo < | pPIVul? dz < [[Blf o | Vel? 2
BT

R3
0
< Hbuwuuuw ] @ <1)
< sl Auls + Ol 1152,
2t (2(a+1)

2(a+1 O

< sl dul+uiet e (R <o)
a+1) 1)

< sl dulds + Ol + Cp2E.

Note that we have used the following Gagliardo—Nirenberg inequality:

20 +4)(B+1) =3(a+1)(B-1)
(a+T7)(B+1) ’

which holds true provided that # > 1/2. Collecting all the restrictions on 6,

”VUH 2(ﬁ+1) <C||UHLa+1||A ”LQ’ 0=
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we can deduce the following inequalities:
1_2a+9)B+1)-3@+)(B-1) _ af-1
2~ (a+T7)(B+1) ~a(f+1)
Direct calculations show that
(3.11) 504—1-7S _3oc+5
2c a—1

In the same way, we estimate
(312)  Ja < | [uPIVO dz < [lulFos |V pgu
R3 L a—1
2(1-X
S HUII%a+1|!bIIL(a+1 ' ab|% (A <1)

< S 1AV + OB sl 22,
2(8+1) 2(B+1)
1 =
< gl + R+ B (F05) <2ran)

(B+1) +1)
< oAb, + IS+ Ol 250,
Similarly, we have used the following Gagliardo—Nirenberg inequality:
IVB 2sn) < Clbll a2 1120122,

2(a+ DB +4) —3a-1)B+1)

1
A= CEDEY =%

Thus, we have

1 _20@+1)(B+4)-3(a-1B+1) _ af-1

il < .
2 (a+1)(B+7) ~(a+1)B
Simple computations give rise to
7 a+5
3.13 < B < )
( ) 200 — 5 s a—3

It follows from (3.12)) and (3.13)) that

max 5a+7’ 7 < 8 < min 04—0—5’304—0—5 .
20 200 — 5 a—3 a-—1

Observing the simple facts

7 7 5o+ 7 7
< — >
3<AS5 2 50T T a5 0%
G cacs o OFD_ Bat5
a—3 a—1
3<a§7:>5a+7>3’ 5a+7<a+5

2av 20 ~a—3
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we can divide the range of pairs («, ) into X3, X3, X4 and X5 as defined

in (2.1).
Substituting all the above estimates into (3.1)) and (3.2)), and adding

them up, we conclude that

i d 1 at1 B+1
310 GITu IO + 5 { gt + o
11, 0) ()3 + 1A, A6)(O) 3 + [l /2, D2 1)

Aa—1 461
TR Ol et O

+1 +1
< C(lull @t + 10125 + D (full$EL + (o2 5.

A Gronwall argument and using Lemma again show the desired conclu-
sion. Thus, we have completed the proof of Part 2.

+

The next goal in this part is to prove the uniqueness of the strong so-
lution. Let (u,b,7) and (,b,7) be two solutions to with the initial
datum u(x,0) = u(z,0), b(z,0) = b(z,0). Taking the difference, and then
taking the inner product, we can easily obtain

1d _ B _
(3.15) 5 (llu— a7z + (b = 0ll72) + [V(u = @) |72 + V(b = b)|72
+ | (u* e — @ a) (u —a) do + | (p1P1b — [6]71B) (b — b) dar
R3 R3
< V1o=0lju—al VBl dz + | |b— D |VB|do + | |b— b |Va| da
R3 R3 R3
+ | Ju—af|Valdo £ Ky + Ky + K3 + K.
R3

Then we estimate each K;, ¢ = 1,2,3,4. For K7, from the Young inequality
and the Gagliardo—Nirenberg inequality it follows that

(3.16) K1 < |lu—1l|pa]|b—b]| 14| VB 2
1/4 . 13/4 1/4 — 2 —
< Jlu = a3V (w =) [36410 = B LMV (b = B) || 2,1 VB| 2
< (V=) |22+ V(b= b)[|22)+Clu—al 12 ]|b—bl| 12| VB .-

In the same way, we get

(317)  Ka < [[b—bl24[IVb]l 2 < IIb— Bl IV (b — B35 (VD 2
< &IV =D)13 + ClIVB|1allb — B35

(3.18) K3 < [|b—bl2a[Vallze S 16— Bl5 IV (b — B) 125Vl 2
< EIV0-0)32 + ClIVal 1. — b3
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(3.19) Ky < llu =l VAo < [lu—all 2V (u - )32Vl 2
< IV = @)|72 + ClIVal s lu —ul 7.
Finally, we will show that the integrals {ps (|u|*tu — [u|* 'u)(u — u) dx
and (g5 (|61 — [b]°1b)(b — b) dx on the left hand side of (3.15) are both
nonnegative.
Indeed, several applications of the Hélder inequality imply
(3200 | (Jul* tu— [l* ") (u - W) da
RS

= S lu|* L da — S 7| Yau do — S lu|*~ uw da + S @t da
R3 R3 R3 R3
lull 32ty = 1l Eas llull orr = 1l Fass Tl Lotr + [Tl dts

= ([[ullforr = @l Far)(lull Lot = [l La+a) = 0.
By the same argument, we conclude that
(3.21) | (1617~ — [5°~"B) (b — b) d: > 0.

R3

Y

Inserting (3.16[)—(3.21)) into (3.15)), neglecting the two nonnegative terms and
absorbing the dissipative terms, we have

1d
2 dt
A standard Gronwall-type argument shows that
lu =72 + b= blI72 < ([u(z,0) —a(z,0)[|72 + [|b(z,0) — b(z, 0)]72)
T

X exp{C’ S H(t) dt},
0

—(lu =72+ [1b=bl7>) < CIVallz> + [ VBIL) (lu—llZ> + 1o — b 72)-

where H(t) = |[|[Vu(-, t)||72 + [[Vb(-,t)|| 2. Thus, we get v =, b =b in the
L? sense due to u(z,0) = u(x,0), b(x,0) = b(x,0). This completes the proof
of the uniqueness part, and so the proof of the whole Theorem "

4. The proof of Theorems Here we mainly take advantage
of the Fourier-splitting method which was introduced to study the decay of
solutions to parabolic conservation laws in [S1], and refined in [S2, [SW].

Proof of Theorem [2.4) First, from Lemma [3.I we get the global bound
(41)  [I(u,b)(®)]I72

T
+ § {II(7u, V0) (9)I172 + llu(s) 135 + Ib(s) 1 5L } ds < €.
0
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It is easy to check that one can rewrite 1 and .2 as

(4.2) Ou — Au = —P(ju|*tu) + PV - {(b®b) — (u®@u)},

(4.3) b —Ab=—b" 0+ V- {(b@u) - (uxb)},

where P is the Leray projection operator defined by Pf = f+V(-A)~'V.-f.

By taking the Fourier transform, we can easily deduce that

(4.4) a(é,t) = e P lag(e) + e PG (g, 5) ds,

(4.5) b(&,t) = e 1y (&) + (e P H (¢, 5) ds,

Ot Ot

where

G@,s):( W){e EOB)Es) — & @RW(E. ) — (o Tu) (E.5) ),

—

H(Es) =€ (b u)(Es) — & (W@ b)(E,s) — (b]P-TD)(E, 5).

It follows from the Holder inequality and the definition of the Fourier trans-
form that

(4.6) |G(&8)] < 1€ 1B@B)(E 5)| + |&] (@D u) (&, 5)] + |(Jul*Tu)(E, 9)]
SIENb@ bl + [€] [Ju @ ull 1+ |[[ul* )|,
S 1ENIbNZ2 + (€] lfull2s + [lu] e
(a— 2)<a+1>
< 1€l IbolZ2 + €] lluolZe + [l lull puis

(a—2)(a+1)

< ClE + Cllull o™
and

@7)  |H(E 9)] < 1€l 1E@u)(E )| + €] @D D)(E, )] + |(BFTB)(E, 5)|
Sl b @l + || 16170 .
< L N1bll 2 Nl 22 + N85 5
2 (B— 2)(5+1)

S I8l bollalluollce + 1Bl 2" 1B 647

(3-2)(341)
< ClE[+ Cllbll i
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Substituting (4.6)) and ( into (| and (| ., respectively, and applying
the Holder mequahty we obtam

t (a—2)(at1)
(4.8) la(E, )| < e P ag(e)] + [ eI (1g] + flus) | o ) ds
0
t

1
S e uollgy +1¢l 7+ (e VIR ds)

0
t a—2
o a—1
<(Jlu(e)l5s ds)
0
< C+0lE ™ + ClefTa
and
b ~lePe [ et o =
(4.9)  [b(&, 1) S e bo(&)] + e el + o) ds
0
K _1
= e—lf\thboHLl + \§|_1 + (Se—(ﬁ—l)\a?(t—s) ds) A-1
0

nN

/8_

t =
< (Vles)I750, ds) ™
0
< C+Cle™ + ol

Next with the estimates (4.8) and (4.9) at our disposal, we use the well-
known Fourier-splitting argument to obtain the desired result. Let

ﬂﬂé{ﬁeR*Mfg %;:w}

Taking the inner product of (1.1); with v and the inner product of (|1.1))s
with b, adding them up and ignoring the positive terms on the left-hand
side, we get

(4.10) %  (ul? + 181 do < =2 | (|Vul® + [Vb]?) da
R3 R3
=2 | (I€af® + |€*1b]?) dé
R3
=2 | (gP1al + PPy dg —2 § (€P[a® + ¢ [b]) ¢

S(t) Se(t)



MHD EQUATIONS 197

V (af + [b) de

- 21412 2172 .
2 | (¢P1al® + 117181%) dé g
S( Se(t)

3
< -

R 3 R
< - VaP P g+ b (AP + (bl d

) tH1 g

Applying the Plancherel identity and multiplying by (¢ + 1)3, we obtain

@) S0P § a4 ) de] <36+ | (al+ bR de
RS S(t)

Making use of (4.8) and (4.9)), one has

V' (laf® + [bf?) dg
S(t)
<C | (L4[€72+ 1] 7T +1¢771) de

5(t)
3a—T7 38—7

SO((t+1) 2+ (t+1) V2 4 (b4 1) 50 4 (b4 1) 20D),

where we have used the fact that o, f > 7/3. Thus, we get

Sl 1§ a2+ o) ae]

RB

_BE3
< C((t+ 132 4 (t+1)°F3/200=D | (¢ 4 1)26-D),
Integrating the above differential type inequality in time yields

(412) | (o + 1b%) de
RS
<C@t+1)7 | (laof* + |bol) dé
R3
(D)2 (1) e 4 (t 4 1))

— 38=7

§C(1+t) mln{2’2(a 1) 2(6— 1>}

which together with the Plancherel identity yields the desired result. m
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Proof of Theorem . From (3.1), by using the Gagliardo—Nirenberg
inequality and the Holder inequality we get

(113) 5 (T, YOOI + (Au, 26)(1)[3

o 4(a—1 o
+ H(\UI( D2, 6D B)3 + T VD) 2,

(a+1)2
4(6 ) 1)/2 2
+WHVW G203,
= | (- Vu)- Audz + | (u-Vb)- Abdx — | (b- VD) - Audz
R3 R3 R3
— | (b-Vu) - Abda
R3

< llull oo [ Vel 2| Al g2 + [ual| oo | VBl 21| 4B 2 + 1Bl] o [ VD] 2 | Aui | 2
+ 1Bl oo [Vl 2] A0 2
< (1 AulZaflull 571l }57 + | Aull35 1 AbY56 ull 5 1615 V0 2
1| Al 2| 4B 2 IB]1471VBI57 + | Al 11 A6Y 76"l 1t 1016 V)
< O(]| Aul|22 + [|AbI22) (luoll 5 + [1boll 22 (IVull 5 + I VBI15).-

Above, the following fact has been used several times (see. e.g. |[Z1]):

| (f-Vg)- Ahda <||fllze=||Vgll 2] AR 2
R3

1/4 3/4 1/2 1/4 1/4
< CIIFIIL AL I IV gl N glh6H 1 Agl Lt | ARl L.
Thus, it is easy to deduce from (4.13)) that

d
(414)  Z(IVu®llF2 + [Vb(0)]72)
< ([1Aull22 + | A0 2){C (luo |15 + b0l 12 (Il 16 + [ Vb][47) — 1}

Due to the energy estimate {7 (|[Vu(s)||32 + [|[Vb(s)[|72) ds < 2(J|lugll7> +
|bol|32), we can choose a T such that

1
C(lluoll 1 + Ilboll}2)

1/2 1 2
IVl 25 + V]34 <

By the continuity argument for ordinary differential equations,

d
SIVu®l3 + IVb@I22) <0 for any 2 T..
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As a consequence,
t

(4.15) (¢ = T)(IVu@)llF: + IVbD)72) < | (IVuls)lIZ2 + [Vb(s)|[72) ds
T

<V (IVu(s)lIZz + 1V0(s)II72) ds < 2([luol 72 + [Ibol 7).
0

Therefore, it is easy to check that
IVu(t)| 2 + V()2 < C(1+1) "> for any ¢ > 0.
Hence, this completes the proof of Theorem .

Proof of Theorem The strategy is quite similar as that in proving
Theorem [2.4] . Moreover, the proof is more or less motivated by [JZD].

From and (| ., we have
G(& 8)| S El(lluliZz + 11Bl172) + [l e,
[H(& o) S 1€llul72 + 11b]172) + 1Bl 7

It follows from Lemma the Gagliardo—Nirenberg inequality and the
Hoélder inequality that

T T 1-0)x
(4.16)  § [[ulle ds < | [l §%0s |l ds

0 0

10/3 a0/10 (1-)a
( 902 as)" ([ it ds) T <c
0
where
1 30 1-96 10

o 10 et T3
Similarly, applying the same argument one can immediately obtain

Vll?,ds <o, g >10/3.
0
Therefore, it is easy to check
t
~ —1€)%t 4 —1€?(t—s «
417) et S e M ao@©) + § e (1€ (lull7a + bl 72) + ullfe ) ds
0
t

t
€124 @
< e P ag()] + €] | (lul2 + [b]2) ds + | [[ull3x ds
0 0

t
<1+ e ag(e)] + €] | (lul22 + [Ib]122) ds
0
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and
t

(4.18) B(&, O] S 1+ e bo(€)] + 1¢] § (lullZ2 + [1blI72) ds.
0

Let us denote

B(t):{£€R3:|£|§ 5+ 2 }

2(1+1)

Similarly, we can show

d ~
(4.19) | (al? + 181 do < =2 | (|Vul® + [Vb]?) da

R3 R3
= —2 | (J&]af* + [¢*[b]?) dg
R3
=—2 | (I€Plal® + 1Py dg —2 | (€llal® + €216]%) dé
B(t) Be(t)
. - 3+2 R .
=—2 | (lgPal* + |¢*[b%) dg — Hl“ | (af?+(81%) de
B(t) Be(t)
3+2 . A 3+2
< 2T (af + (o) e + 2 7F

| (al* + o) de.
(t)

t+1 RS t+1 Bt

The last term on the right-hand side of (4.19]) can be estimated as follows:

(4.20) | (af? + 1b1%) de
B(t)
< | L+ e 2P ag(6)2 + e 2P by ()2} de
B(t)

+ | {\5!2(§(Hulli2+Hb|!%2)ds)2}d£

B(t) 0
S (t+ 1) 4 [l Pugl 72 + [l ol 72

t
2
+ el ag (Tl + 10132) ds)
B(t) 0
t
SE+D)2 4 @+ 1)+ (t+ )72 (ull 2 + bl 72) ds

0
t

SE+D2H i+ 1)+ E+ 172 (w3 + (1)172) ds,
0
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where in the last inequality, we have also used the fact that ||u|/z2 + ||b]|z2 <
luoll 22 + HboHL2

Combining (4.19)) and - 4.20)) yields

3+2u S12 172
b|*)d
P )

(4.21) digﬂ 2 + [b|?) dz +
R3

t

S+ + 1)+ )P (fullFe + [bl72) ds
0

Multiplying (4.21)) by (¢t + 1)3+t2#, we have

(4.22) %[(t—i— 132 | (jaf? + 52) de
R3

t
< (E+ DY (4 12 4+ DY ()22 + [B]]22) ds
0

Integrating the above differential type inequality in time and dividing it by
(t 4 1)3*2# Jeads to

(4.23) | (Juf* + |b*) dz
R3

<(t+
t
S
0

D732 4 (1) 4 (1)
x §{(s+ DYV (lul2z + |6]22) dr | ds
0

SE+DPP 4+ D)7 4 ¢+ D2 (Juls) 172 + 16(9)]172) ds.
0

We denote v = min{2u,3/2}. The above inequality reduces to

lullZ2 + 10l Z2
S+ + ¢+ D2 (Jule)7 + [16(s)]172) ds
0
SE+DT DT+ )2 (uls)]72 + [1b(s)]72) ds
0
S+ + )7V s+ 1) (s + D) (uls) |72+ [10(5)[172) ds
0
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Consequently, the above inequality is equivalent to

t

(t+ 1) (JullF2+[1b172) < C+C (s +1)7%2(s + 1) (lu(s) |72 + [1b(s) 72) ds.

0

The standard Gronwall inequality gives rise to

(t+1)7(lullZ + [1BlIZ2) < C.

Hence, we can obtain

lullzz + ||bllf2 < C(t + 1)~ mindw3/4} g
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