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Abstract. Let T 1
n = (V,E1) and T 2

n = (V,E2) be the trees on n vertices with V =
{v0, v1, . . . , vn−1}, E1 = {v0v1, . . . , v0vn−3, vn−4vn−2, vn−3vn−1} and E2 = {v0v1, . . . ,
v0vn−3, vn−3vn−2, vn−3vn−1}. For p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T 1

n)
and ex(p;T 2

n), where ex(p;L) denotes the maximal number of edges in a graph of order p
not containing L as a subgraph. Let r(G1, G2) be the Ramsey number of the two graphs
G1 and G2. We also obtain some explicit formulas for r(Tm, T

i
n), where i ∈ {1, 2} and Tm

is a tree on m vertices with ∆(Tm) ≤ m− 3.

1. Introduction. In this paper, all graphs are simple graphs. For a
graph G = (V (G), E(G)) let e(G) = |E(G)| be the number of edges in G
and let ∆(G) be the maximal degree of G. For a forbidden graph L, let
ex(p;L) denote the maximal number of edges in a graph of order p not
containing any copies of L. The corresponding Turán problem is to evaluate
ex(p;L). For a graph G of order p, if G does not contain any copies of L and
e(G) = ex(p;L), we say that G is an extremal graph. In this paper we also
use Ex(p;L) to denote the set of extremal graphs of order p not containing
L as a subgraph.

Let N be the set of positive integers. Let p, n ∈ N with p ≥ n ≥ 2.
For a given tree Tn on n vertices, it is difficult to determine the value of
ex(p;Tn). The famous Erdős–Sós conjecture asserts that ex(p;Tn) ≤ (n−2)p

2 .
For the progress on the Erdős–Sós conjecture, see for example [8, 11]. Write
p = k(n− 1) + r, where k ∈ N and r ∈ {0, 1, . . . , n− 2}. Let Pn be the path
on n vertices. In [4] Faudree and Schelp showed that

(1.1) ex(p;Pn) = k

(
n− 1

2

)
+

(
r

2

)
=

(n− 2)p− r(n− 1− r)
2

.

Let K1,n−1 denote the unique tree on n vertices with ∆(K1,n−1) = n−1, and
let T ′n denote the unique tree on n vertices with ∆(T ′n) = n−2. For n ≥ 4 let
T ∗n = (V,E) be the tree on n vertices with V = {v0, v1, . . . , vn−1} and E =
{v0v1, . . . , v0vn−3, vn−3vn−2, vn−2vn−1}. In [10] we determine ex(p;K1,n−1),
ex(p;T ′n) and ex(p;T ∗n). For i = 1, 2 let T i

n = (V,Ei) be the tree on n vertices
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with

V = {v0, v1, . . . , vn−1},
E1 = {v0v1, . . . , v0vn−3, vn−4vn−2, vn−3vn−1},
E2 = {v0v1, . . . , v0vn−3, vn−3vn−2, vn−3vn−1}.

In this paper, for p ≥ n ≥ 5 we obtain explicit formulas for ex(p;T 1
n) and

ex(p;T 2
n) (see Theorems 2.1 and 3.1).

For a graph G, as usual G denotes the complement of G. Let G1 and
G2 be two graphs. The Ramsey number r(G1, G2) is the smallest positive
integer p such that, for every graph G with p vertices, either G contains a
copy of G1 or else G contains a copy of G2.

Let n ∈ N, n ≥ 6, and let Tn be a tree on n vertices. As mentioned
in [7], recently Zhao proved the following conjecture of Burr and Erdős [2]:
r(Tn, Tn) ≤ 2n− 2. Let m,n ∈ N. In 1973 Burr and Roberts [3] showed that
for m,n ≥ 3,

(1.2) r(K1,m−1,K1,n−1) =

{
m+ n− 3 if 2 - mn,
m+ n− 2 if 2 |mn.

In 1995, Guo and Volkmann [5] proved that for n > m ≥ 4,

(1.3) r(K1,m−1, T
′
n) =

{
m+ n− 3 if 2 |m(n− 1),
m+ n− 4 if 2 - m(n− 1).

Recently the first author evaluated the Ramsey number r(Tm, T ∗n) for Tm in
{Pm,K1,m−1, T

′
m, T

∗
m}. In particular, he proved that (see [9]) for n > m ≥ 7,

(1.4) r(K1,m−1, T
∗
n) =

{
m+ n− 3 if m− 1 |n− 3,
m+ n− 4 if m− 1 - n− 3.

Suppose m,n ∈ N and i, j ∈ {1, 2}. In this paper, using the formula for
ex(p;T i

n) and the method in [9] we evaluate r(Tm, T i
n) for Tm ∈ {K1,m−1, T

′
m,

T ∗m, T
j
m}. In particular, we have the following typical results:

r(T i
n, T

j
n) = 2n− 6− (1− (−1)n)/2, r(Pn, T

j
n) = 2n− 7 for n≥17,

r(T i
n, T

′
n) = r(T i

n, T
∗
n) = 2n− 5 for n ≥ 8,

r(K1,m−1, T
i
n) = m+ n− 4 for n > m ≥ 7, 2 |mn,

r(T i
m, T

j
n) = m+ n− 5 for m ≥ 7, n ≥ (m− 3)2 + 3, m− 1 - n− 4,

r(T ′m, T
i
n) =


m+ n− 4 if m− 1 |n− 4,
m+ n− 6 if n = m+ 1 ≡ 1 (mod 2),
m+ n− 5 otherwise

for n>m≥16.

In addition to the notation introduced above, throughout the paper we
also use the following symbols: [x] is the greatest integer not exceeding x,
d(v) is the degree of the vertex v in a graph, Γ (v) is the set of vertices
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adjacent to the vertex v, d(u, v) is the distance between the two vertices
u and v in a graph, Kn is the complete graph on n vertices, G[V0] is the
subgraph of G induced by vertices in the set V0 (we write G[v1, . . . , vm]
instead of G[{v1, . . . , vm}]), G−V0 is the subgraph of G obtained by deleting
the vertices in V0 and all edges incident to them, and finally e(V1V ′1) is the
number of edges with one endpoint in V1 and another endpoint in V ′1 .

2. Evaluation of ex(p;T 1
n)

Lemma 2.1. Let p, n ∈ N with p ≥ n − 1 ≥ 1. Then ex(p;K1,n−1) =
[(n− 2)p/2].

This is a known result. See for example [10, Theorem 2.1].

Lemma 2.2. Let p, n ∈ N, p ≥ n ≥ 7 and G ∈ Ex(p;T 1
n). Suppose that

G is connected. Then ∆(G) = n− 4 and e(G) = [(n− 4)p/2].

Proof. Since a graph not containing K1,n−3 as a subgraph implies that
the graph does not contain T 1

n as a subgraph, by Lemma 2.1 we have
(2.1) e(G) = ex(p;T 1

n) ≥ ex(p;K1,n−3) = [(n− 4)p/2].

If ∆(G) ≤ n−5, using Euler’s theorem we see that e(G) = 1
2

∑
v∈V (G) d(v) ≤

(n− 5)p/2, which together with (2.1) yields ((n− 4)p− 1)/2 ≤ [(n− 4)p/2]
≤ e(G) ≤ (n− 5)p/2, which is impossible. Hence ∆(G) ≥ n − 4. Now we
show that ∆(G) = n− 4.

Suppose q ≥ n and q = k(n−1)+ r with k ∈ N and r ∈ {0, 1, . . . , n−2}.
Then clearly kKn−1∪Kr does not contain any copies of T 1

n and so ex(q;T 1
n) ≥

e(kKn−1 ∪ Kr). For q = n we see that e(kKn−1 ∪ Kr) = e(Kn−1 ∪ K1) =
(n− 1)(n− 2)/2 > 2n−1. For q ≥ n+1 we have (n−6)q ≥ (n−6)(n+1) >(
n−1
2

)2 − 2 and so

e(kKn−1 ∪Kr) =
k(n− 1)(n− 2)

2
+
r(r − 1)

2
=

(n− 2)q − r(n− 1− r)
2

≥
(n− 2)q −

(
n−1
2

)2
2

> 2q − 1.

Hence
(2.2) ex(q;T 1

n) ≥ e(kKn−1 ∪Kr) > 2q − 1 for q ≥ n.
Suppose v0 ∈ V (G), d(v0) = ∆(G) = m and Γ (v0) = {v1, . . . , vm}. If

m = p − 1, then since G does not contain T 1
n as a subgraph, G[v1, . . . , vm]

does not contain 2K2 as a subgraph and hence e(G[v1, . . . , vm]) ≤ m − 1.
Therefore
(2.3) e(G) = d(v0) + e(G[v1, . . . , vm]) ≤ m+m− 1 = 2p− 3.

By (2.2), we have e(G) = ex(p;T 1
n) > 2p − 1 and we get a contradiction.

Hence m < p − 1. Suppose that u1, . . . , ut are all the vertices in G such
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that d(u1, v0) = · · · = d(ut, v0) = 2. Then t ≥ 1. Assume u1v1 ∈ E(G) with
no loss of generality. If m = p − 2, then V (G) = {v0, v1, . . . , vm, u1} and
vivj 6∈ E(G) for 2 ≤ i < j ≤ m. If v1vi ∈ E(G) for some i ∈ {2, . . . ,m},
then u1vj 6∈ E(G) for all j 6= 1, i. So ex(p;T 1

n) = e(G) ≤ max{2m,m+ 3} ≤
2m = 2p− 4, which contradicts (2.2).

By the above, m < p − 2. We first assume m ≥ n − 2. As G does not
contain any copies of T 1

n , we see that {v2, . . . , vm} is an independent set,
uivj 6∈ E(G) for any i ∈ {2, . . . , t} and j ∈ {2, . . . ,m}, and uiv1 ∈ E(G) for
any i = 1, . . . , t. Set V1 = {v0, v2, v3, . . . , vm}. Then e(G[V1]) = m− 1. If u1
is adjacent to at least two vertices in {v2, . . . , vm}, then v1vj /∈ E(G) for any
j = 2, . . . ,m. If v1 is adjacent to at least two vertices in {v2, . . . , vm}, then
u1vj /∈ E(G) for any j = 2, . . . ,m. Hence there are at most m edges with
one endpoint in V1 and the other in G− V1. Therefore,

(2.4) e(G) ≤ e(G[V1]) +m+ e(G− V1) = 2m− 1 + e(G− V1).

For m ∈ {n − 2, n − 1} let G1 = Km. Then clearly e(G1) = m(m− 1)/2 >
2m− 1. For m = k(n− 1) + r ≥ n with k ∈ N and 0 ≤ r ≤ n− 2 let G1 =
kKn−1∪Kr. Then G1 does not contain any copies of T 1

n and e(G1) > 2m−1
by (2.2). Thus, by (2.4) we have e(G) ≤ 2m−1+e(G−V1) < e(G1∪(G−V1))
for m ≥ n− 2. This contradicts the fact that G ∈ Ex(p;T 1

n).
Suppose that m = n − 3 and d(v1) = n − 3. Then v1vs 6∈ E(G) for

some s ∈ {2, . . . , n− 3}. We claim that V (G) = {v0, v1, . . . , vm, u1, . . . , ut}.
Otherwise, there exists w ∈ V (G) such that d(v0, w) = 3. As d(v1) = n− 3,
we see that the subgraph induced by {v1, vs, w}∪Γ (v1) contains a copy of T 1

n .
This contradicts the assumption G ∈ Ex(p;T 1

n). Hence the claim is true and
so |V (G)| = p = n − 2 + t. Since p ≥ n we have t ≥ 2. For i = 1, . . . , t and
j = 2, . . . , n − 3 we have uivj 6∈ E(G), uiv1 ∈ E(G) and so t + 1 ≤ d(v1)
= n− 3. Therefore 2 ≤ t ≤ n− 4 and hence

e(G) = e(G[v0, v2, v3, . . . , vn−3]) + d(v1) + e(G[u1, . . . , ut])

≤
(
n− 3

2

)
+ n− 3 +

(
t

2

)
=

(
n− 2

2

)
+

(
t

2

)
.

Clearly Kn−1 ∪Kt−1 does not contain T 1
n and

e(Kn−1 ∪Kt−1) =

(
n− 1

2

)
+

(
t− 1

2

)
=

(
n− 2

2

)
+

(
t

2

)
+ n− 1− t > e(G).

This contradicts the assumption G ∈ Ex(n− 2 + t;T 1
n).

Now suppose m = n − 3 and d(v1) ≤ n − 4. If t = 1, setting V2 =
{v0, v1, . . . , vn−3, u1} we see that
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e(G) = e(G[v0, v2, v3, . . . , vn−3]) + d(v1) + d(u1)− 1 + e(G− V2)

≤
(
n− 3

2

)
+ n− 4 + n− 4 + e(G− V2) =

n2 − 3n− 4

2
+ e(G− V2)

< e(Kn−1 ∪ (G− V2)).

This contradicts the assumption G ∈ Ex(p;T 1
n). Hence t ≥ 2. For i = 1, . . . , t

and j = 2, . . . , n − 3, we see that uivj 6∈ E(G) and uiv1 ∈ E(G). Let
V3 = {v0, v1, . . . , vn−3}. Then

e(G) = d(v1) + e(G[v0, v2, v3, . . . , vn−3]) + e(G− V3)

≤ n− 4 +

(
n− 3

2

)
+ e(G− V3) =

n2 − 5n+ 4

2
+ e(G− V3)

< e(Kn−2 ∪ (G− V3)).

Since G is an extremal graph, we get a contradiction.
Summarizing all the above we obtain ∆(G) = n − 4 and so e(G) =∑

v∈V (G) d(v) ≤ (n− 4)p/2. This together with (2.1) yields e(G) =

[(n− 4)p/2], which completes the proof.

Lemma 2.3. Let n, n1, n2 ∈ N with n1 < n− 1 and n2 < n− 1. Then(
n1
2

)
+

(
n2
2

)
< min

{(
n1 + n2

2

)
,

(
n− 1

2

)
+

(
n1 + n2 − n+ 1

2

)}
.

Proof. It is clear that(
n1
2

)
+

(
n2
2

)
=

(n1 + n2)(n1 + n2 − 1)− 2n1n2
2

<

(
n1 + n2

2

)
and(

n− 1

2

)
+

(
n1 + n2 − n+ 1

2

)
−
(
n1
2

)
−
(
n2
2

)
=

(n− 1)(n− 2) + (n1 + n2 − n+ 1)(n1 + n2 − n)
2

− (n1 + n2)(n1 + n2 − 1)− 2n1n2
2

= (n− 1− n1)(n− 1− n2) > 0.

Thus the lemma is proved.

Lemma 2.4. Suppose that p ∈ N, p ≥ 6, and G is a connected graph of
order p that does not contain any copies of T 1

6 . Then e(G) ≤ 2p− 3.

Proof. Clearly ∆(T 1
6 ) = 3. Suppose v0 ∈ V (G), d(v0) = ∆(G) = m and

Γ (v0) = {v1, . . . , vm}. If ∆(G) = m ≤ 3, using Euler’s theorem we see that
e(G) ≤ 3p/2 ≤ 2p− 3. From now on we assume ∆(G) = m ≥ 4. If d(v) ≤ 2
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for all v ∈ V (G)− {v0}, then

e(G) =
1

2

∑
v∈V (G)

d(v) ≤ 1

2
(m+ 2(p− 1)) ≤ 3(p− 1)

2
< 2p− 3.

So the result is true. Now we assume d(v) ≥ 3 for some v ∈ V (G) − {v0}.
We may choose a vertex u0 ∈ V (G) so that u0 6= v0, d(u0) ≥ 3 and d(u0, v0)
is as small as possible.

We first assume d(u0, v0) = 1 and u0 = v1 with no loss of generality.
That is, d(v1) ≥ 3. Suppose Γ (v1) ⊂ {v0, v1, . . . , vm}. Since d(v1) ≥ 3 and
G does not contain any copies of T 1

6 , we see that V (G) = {v0, v1, . . . , vm},
m = p− 1 ≥ 5 and G[v1, . . . , vm] does not contain any copies of 2K2. Thus
e(G) ≤ d(v0)+m−1 = 2m−1 ≤ 2(m+1)−3 = 2p−3. Now assume Γ (v1)−
{v0, v1, . . . , vm} = {w1, . . . , wt}. Since d(v0) = m ≥ 5, d(v1) ≥ 3 and G does
not contain any copies of T 1

6 , we see that V (G) = {v0, v1, . . . , vm, w1, . . . , wt}
and {v2, . . . , vm} is an independent set. For t ≥ 2, we have e(G[w1, . . . , wt])
≤ 1, and viwj /∈ E(G) for any i ∈ {2, . . . ,m} and j ∈ {1, . . . , t}. Therefore
e(G) ≤ d(v0) + d(v1) − 1 + 1 ≤ 2m < 2(m + 1 + t) − 3 = 2p − 3. Now
assume t = 1. Then v1vi ∈ E(G) for some i ∈ {2, . . . ,m} and vjw1 /∈ E(G)
for j ∈ {2, . . . ,m} − {i}. Hence e(G) ≤ d(v0) + d(v1) − 1 + 1 ≤ 2m <
2(m+ 2)− 3 = 2p− 3.

Next we assume d(u0, v0) = 2. Then {v1, . . . , vm} is an independent set.
If Γ (u0) ⊆ {v1, . . . , vm}, then V (G) = {v0, v1, . . . , vm, u0} and so e(G) =
d(v0) + d(u0) ≤ m+m < 2(m+ 2)− 3 = 2p− 3. If Γ (u0)− {v2, . . . , vm} =
{v1, w1, . . . , wt}, we see that V (G) = {v0, v1, . . . , vm, u0, w1, . . . , wt} and so
e(G) = d(v0)+d(u0)+e(G[w1, . . . , wt]) ≤ m+m+1 < 2(m+2+t)−3 = 2p−3.

Finally we assume d(u0, v0) ≥ 3. Suppose that v0v1u1u2 . . . uku0 is the
shortest path in G between v0 and u0, and Γ (u0) = {w1, . . . , wt, uk}. Since
G is connected and G does not contain any copies of T 1

6 , it is easily seen that
V (G) = {v0, v1, . . . , vm, u1, . . . , uk, u0, w1, . . . , wt}, d(v2) = · · · = d(vm) = 1,
d(v1) = d(u1) = · · · = d(uk) = 2 and e(G[w1, . . . , wt]) ≤ 1. Clearly, G is a
tree or a graph obtained by adding an edge to a tree. Hence e(G)≤p<2p−3.

Summarizing all the above proves the lemma.

Theorem 2.1. Suppose p, n ∈ N, p ≥ n − 1 ≥ 4 and p = k(n − 1) + r,
where k ∈ N and r ∈ {0, 1, . . . , n− 2}. Then

ex(p;T 1
n) = max

{[
(n−2)p

2

]
−(n−1+r), (n−2)p−r(n−1−r)

2

}

=


[
(n−2)p

2

]
−(n−1+r) if n ≥ 16 and 3 ≤ r ≤ n−6, or if

13 ≤ n ≤ 15 and 4 ≤ r ≤ n−7,
(n−2)p−r(n−1−r)

2
otherwise.



TURÁN’S PROBLEM AND RAMSEY NUMBERS 279

Proof. Clearly, ex(n − 1;T 1
n) = e(Kn−1) = (n− 2)(n− 1)/2. Thus the

result is true for p = n−1. From now on we assume p ≥ n. Since T 1
5
∼= P5, by

(1.1) we obtain the result in the case n = 5. Now we assume n ≥ 6. Suppose
G ∈ Ex(p;T 1

n) and G1, . . . , Gt are all components of G with |V (Gi)| = pi
and p1 ≤ · · · ≤ pt. Then clearly Gi ∈ Ex(pi;T

1
n) for i = 1, . . . , t.

We first consider the case n = 6. If pi ≤ 5, then clearly Gi
∼= Kpi and

e(Gi) =
(
pi
2

)
. If pi ≥ 6 and pi = 5ki + ri with ki ∈ N and 0 ≤ ri ≤ 4, from

Lemma 2.4 we have e(Gi) ≤ 2pi − 3 ≤ 2pi − ri(5− ri)/2 = e(kiK5 ∪Kri).
Since kiK5 ∪Kri does not contain any copies of T 1

6 , and Gi ∈ Ex(pi;T
1
6 ), we

see that e(Gi) ≥ e(kiK5∪Kri) and so e(Gi) = e(kiK5∪Kri). Therefore, there
is a graph G′ ∈ Ex(p;T 1

6 ) such that G′ = a1K1∪a2K2∪a3K3∪a4K4∪a5K5,
where a1, . . . , a5 are nonnegative integers. If a1 + a2 + a3 + a4 ≤ 1, then
ex(p;T 1

6 ) = e(G′) = e(a5K5 ∪ Kr) = k
(
5
2

)
+
(
r
2

)
. If a1 + a2 + a3 + a4 > 1,

then 2a1 + 3a2 + 3a3 + 2a4 > 3 ≥ r(5− r)/2 and so

e(a1K1 ∪ a2K2 ∪ a3K3 ∪ a4K4) = a2 + 3a3 + 6a4

< 2(a1 + 2a2 + 3a3 + 4a4)−
r(5− r)

2
= (k − a5)

(
5

2

)
+

(
r

2

)
.

Thus, ex(p;T 1
6 ) = e(G′) = e(a1K1 ∪ a2K2 ∪ a3K3 ∪ a4K4) + e(a5K5) <

k
(
5
2

)
+
(
r
2

)
. Since kK5 ∪ Kr does not contain any copies of T 1

6 , we get a
contradiction. Thus ex(p;T 1

6 ) = e(kK5∪Kr) = k
(
5
2

)
+
(
r
2

)
= 2p−r(5− r)/2.

This proves the result for n = 6.
From now on we assume n ≥ 7. If t = 1, then G is connected. Thus, by

Lemma 2.2 we have

(2.5) e(G) =

[
(n− 4)p

2

]
for t = 1.

Now we assume t ≥ 2. We claim that pi ≥ n − 1 for i ≥ 2. Otherwise,
p1 ≤ p2 < n− 1 and so G1 ∪G2

∼= Kp1 ∪Kp2 . If p1 + p2 < n, by Lemma 2.3
we have e(G1 ∪ G2) = e(Kp1 ∪ Kp2) =

(
p1
2

)
+
(
p2
2

)
<
(
p1+p2

2

)
= e(Kp1+p2).

Since Kp1+p2 does not contain T 1
n , and G1 ∪G2 ∈ Ex(p1 + p2;T

1
n), we get a

contradiction. Hence p1 + p2 ≥ n. Using Lemma 2.3 again we see that

e(G1 ∪G2) = e(Kp1 ∪Kp2) =

(
p1
2

)
+

(
p2
2

)
<

(
n− 1

2

)
+

(
p1 + p2 − n+ 1

2

)
= e(Kn−1 ∪Kp1+p2−n+1).

Since p1 ≤ p2 < n − 1, we have p1 + p2 − n + 1 < n − 1. Therefore
Kn−1 ∪Kp1+p2−n+1 does not contain T 1

n . As G1 ∪ G2 is an extremal graph
without T 1

n , we also get a contradiction. Thus, the claim is true.
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Next we claim that pi ≤ n − 1 for all i = 1, . . . , t − 1. If pt−1 ≥ n, by
Lemma 2.2 we have

e(Gt−1 ∪Gt) = e(Gt−1) + e(Gt)

=

[
(n− 4)pt−1

2

]
+

[
(n− 4)pt

2

]
≤
[
(n− 4)(pt−1 + pt)

2

]
.

Let H ∈ Ex(pt−1+pt−n+1;K1,n−3). As pt−1+pt−n+1 ≥ pt+1 ≥ n+1, we
have e(H) = [(n− 4)(pt−1 + pt − n+ 1)/2] by Lemma 2.1. ClearlyKn−1∪H
does not contain any copies of T 1

n , and

e(Kn−1 ∪H) = e(Kn−1) + e(H) =

(
n− 1

2

)
+

[
(n− 4)(pt−1 + pt − n+ 1)

2

]
=

[
(n− 4)(pt−1 + pt)

2

]
+ n− 1 > e(Gt−1 ∪Gt).

Since Gt−1 ∪ Gt ∈ Ex(pt−1 + pt;T
1
n), we get a contradiction. Hence p1 ≤

· · · ≤ pt−1 ≤ n − 1. Combining this with the previous assertion that pt ≥
· · · ≥ p2 ≥ n− 1 we obtain

(2.6) p1 ≤ n− 1, p2 = · · · = pt−1 = n− 1 and pt ≥ n− 1.

As G is an extremal graph, we must have

(2.7) G1
∼= Kp1 , G2

∼= Kn−1, . . . , Gt−1 ∼= Kn−1.

If pt = n − 1, then Gt
∼= Kn−1. By (2.7), G ∼= Kp1 ∪ (t − 1)Kn−1 ∼=

kKn−1 ∪Kr. Thus,

(2.8) e(G) = k

(
n− 1

2

)
+

(
r

2

)
=

(n− 2)p− r(n− 1− r)
2

for t ≥ 2 and pt = n− 1.

Now we assume that pt ≥ n. By Lemma 2.2, e(Gt) = [(n− 4)pt/2].
Since p1 ≤ n − 1, we have G1

∼= Kp1 and so e(G1) = e(Kp1) =
(
p1
2

)
. Let

H1 ∈ Ex(p1 + pt;K1,n−3). Then H1 does not contain T 1
n as a subgraph. By

Lemma 2.1, for p1 ≤ n− 4 we have

e(H1) =

[
(n− 4)(p1 + pt)

2

]
≥
[
(n− 4)pt

2

]
+

[
(n− 4)p1

2

]
≥
[
(n− 4)pt

2

]
+

(n− 4)(p1 − 1)

2
+ 1

>

[
(n− 4)pt

2

]
+
p1(p1 − 1)

2
= e(G1 ∪Gt).

This contradicts G1 ∪Gt ∈ Ex(p1 + pt;T
1
n). Hence n− 3 ≤ p1 ≤ n− 1.

For p1 ∈ {n − 3, n − 2} and pt ≥ n, we have p1(p1 − (n − 3)) ≤ 2n − 4
and so
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e(G1 ∪Gt) = e(G1) + e(Gt) =

(
p1
2

)
+

[
(n− 4)pt

2

]
≤ p1(p1 − 1) + (n− 4)pt

2
=
p1(p1 − (n− 3)) + (n− 4)(p1 + pt)

2

≤ 2n− 4 + (n− 4)(p1 + pt)

2
=

(
n− 1

2

)
+

(n− 4)(p1 + pt − n+ 1)− 2

2

<

(
n− 1

2

)
+

[
(n− 4)(p1 + pt − n+ 1)

2

]
.

Let H2 ∈ Ex(p1 + pt − n + 1;K1,n−3). Then Kn−1 ∪ H2 does not con-
tain any copies of T 1

n . Since p1 + pt − n + 1 ≥ p1 + 1 ≥ n − 2, applying
Lemma 2.1 we have e(H2) = [(n− 4)(p1 + pt − n+ 1)/2]. Thus, we have
e(Kn−1 ∪ H2) =

(
n−1
2

)
+ [(n− 4)(p1 + pt − n+ 1)/2] > e(G1 ∪ Gt). This

contradicts G1 ∪Gt ∈ Ex(p1 + pt;T
1
n).

By the above, for t ≥ 2 and pt ≥ n we have p1 = · · · = pt−1 = n − 1.
If pt ≥ 2n − 2, setting H3 ∈ Ex(pt − (n − 1);K1,n−3) and then applying
Lemmas 2.1 and 2.2 we find that

e(Gt) =

[
(n− 4)pt

2

]
<

(
n− 1

2

)
+

[
(n− 4)(pt − (n− 1))

2

]
= e(Kn−1∪H3).

This contradicts the fact that Gt ∈ Ex(pt;T
1
n). Hence n ≤ pt < 2n − 2 and

so r ≥ 1. Note that p = k(n − 1) + r = (k − 1)(n − 1) + n − 1 + r and
n ≤ n− 1 + r < 2n− 2. Hence t = k, pt = n− 1 + r and therefore

e(G) = e((k − 1)Kn−1) + e(Gt)(2.9)

= (k − 1)

(
n− 1

2

)
+

[
(n− 4)(n− 1 + r)

2

]
=

[
(n− 2)p

2

]
− (n− 1 + r) for t ≥ 2 and pt ≥ n.

Since G ∈ Ex(p;T 1
n), by comparing (2.5), (2.8) and (2.9) we get

e(G) = max

{[
(n−4)p

2

]
,
(n−2)p− r(n−1−r)

2
,

[
(n−2)p

2

]
− (n− 1 + r)

}
.

Observe that p = k(n − 1) + r ≥ n − 1 + r. We see that [(n− 4)p/2] =
[(n− 2)p/2]− p ≤ [(n− 2)p/2]− (n− 1 + r) and therefore

(2.10) ex(p;T 1
n)

= e(G) = max

{
(n− 2)p− r(n− 1− r)

2
,

[
(n− 2)p

2

]
− (n− 1 + r)

}
=

(n− 2)p− r(n− 1− r)
2

+ max

{
0,

[
r(n− 3− r)− 2(n− 1)

2

]}
.
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For 7 ≤ n ≤ 12 we have r(n−3− r)−2(n−1) ≤ (n− 3)2/4−2(n−1) =
((n− 7)2 − 32)/4 < 0. For r ∈ {0, 1, 2, n − 5, n − 4, n − 3, n − 2} we see
that r(n − 3 − r) − 2(n − 1) < 0. Suppose n ≥ 13 and 3 ≤ r ≤ n − 6. For
4 ≤ r ≤ n− 7 we have |r − (n− 3)/2| ≤ (n− 11)/2 and so

r(n− 3− r)− 2(n− 1) =
n2 − 14n+ 17

4
−
(
r − n− 3

2

)2

≥ n2 − 14n+ 17

4
−
(
n− 11

2

)2

= 2n− 26 ≥ 0.

For r ∈ {3, n−6} we have r(n−3−r)−2(n−1) = 3(n−6)−2(n−1) = n−16.
Now combining the above with (2.10) we deduce the result.

Corollary 2.1. Suppose p, n ∈ N, p ≥ n ≥ 5 and n− 1 - p. Then
(n− 2)p

2
− (n− 1)2

8
≤ ex(p;T 1

n) ≤
(n− 2)(p− 1)

2
.

Proof. Suppose p = k(n − 1) + r with k ∈ N and r ∈ {0, 1, . . . , n − 2}.
Then r ≥ 1. Clearly

(n− 1)2

4
≥ r(n− 1− r) =

(
n− 1

2

)2

−
(
n− 1

2
− r
)2

≥
(
n− 1

2

)2

−
(
n− 1

2
− 1

)2

= n− 2

and n− 1 + r > (n− 2)/2. Thus, from Theorem 2.1 we deduce that

ex(p;T 1
n) ≤

(n− 2)p− (n− 2)

2
and

ex(p;T 1
n) ≥

(n− 2)p− r(n− 1− r)
2

≥ (n− 2)p− (n− 1)2/4

2
.

This proves the corollary.

3. Evaluation of ex(p;T 2
n)

Lemma 3.1. Let p, n ∈ N, p ≥ n ≥ 7 and G ∈ Ex(p;T 2
n). Suppose that

G is connected. Then ∆(G) ≤ n − 3. Moreover, for p < 2n − 2 we have
∆(G) ≤ n− 4.

Proof. Since a graph not containing K1,n−3 implies that the graph does
not contain T 2

n , by Lemma 2.1 we have

(3.1) e(G) = ex(p;T 2
n) ≥ ex(p;K1,n−3) =

[
(n− 4)p

2

]
.

Suppose that v0 ∈ V (G), d(v0) = ∆(G) = m and Γ (v0) = {v1, . . . , vm}.
If V (G) = {v0, v1, . . . , vm}, then m = p − 1 ≥ n − 1. Since G does not
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contain T 2
n , we see that G[v1, . . . , vm] does not contain K1,2 and hence

e(G[v1, . . . , vm]) ≤ m/2. Therefore e(G) = d(v0) + e(G[v1, . . . , vm]) ≤ m +
m/2 = 3(p− 1)/2 ≤ ((n− 4)p− 3)/2 < [(n− 4)p/2]. This contradicts (3.1).
Thus p > m+1. Suppose that u1, . . . , ut are all vertices such that d(u1, v0) =
· · · = d(ut, v0) = 2. Then t ≥ 1. We may assume without loss of generality
that v1, . . . , vs are all vertices in Γ (v0) adjacent to some vertex in the set
{u1, . . . , ut}. Then 1 ≤ s ≤ m. Let V1 = {v0, v1, . . . , vm}, V ′1 = V (G) − V1
and let e(V1V ′1) be the number of edges with one endpoint in V1 and the other
in V ′1 . Since G does not contain T 2

n , for m ≥ n − 3 each vi (1 ≤ i ≤ s) has
one and only one adjacent vertex in the set {u1, . . . , ut}. Thus, for m ≥ n−3
we must have e(V1V ′1) = s ≥ t.

If m ≥ n − 1, since G does not contain T 2
n as a subgraph, we see that

d(vi) ≤ 2 for i = 1, . . . ,m and so e(G[V1]) = d(v0) + e(G[vs+1, . . . , vm]) ≤
m+ (m− s)/2. Hence

e(G) = e(G[V1]) + e(V1V
′
1) + e(G− V1)

≤ 3m− s
2

+ s+ e(G− V1) ≤ 2m+ e(G− V1).

Suppose m + 1 = k(n − 1) + r with k ∈ N and 0 ≤ r ≤ n − 2. Set G1 =
kKn−1 ∪Kr. Since m+1 ≥ n, by (2.2) we have e(G1) > 2(m+1)− 1 > 2m.
Thus, e(G1 ∪ (G− V1)) = e(G1) + e(G− V1) > 2m+ e(G− V1) ≥ e(G). As
G1 does not contain any copies of T 2

n and G is an extremal graph, we get a
contradiction. Hence ∆(G) = m ≤ n− 2.

Suppose m = n − 2. As G does not contain T 2
n as a subgraph, we see

that d(v1) = · · · = d(vs) = 2 and so e(G[V1]) ≤ n − 2 +
(
n−2−s

2

)
. Since

1 ≤ s ≤ m = n− 2 ≤ 2n− 8, we have

e(G) = e(G[V1]) + e(V1V
′
1) + e(G− V1)

≤
(
n− 2− s

2

)
+ n− 2 + s+ e(G− V1)

=
(n− 2)(n− 1)− s(2n− 7− s)

2
+ e(G− V1)

<

(
n− 1

2

)
+ e(G− V1) = e(Kn−1 ∪ (G− V1)).

This is impossible since G is an extremal graph.
By the above, ∆(G) ≤ n − 3. We first assume ∆(G) = n − 3. We claim

that d(vi) ≤ n − 4 for i = 1, . . . , s. If i ∈ {1, . . . , s} and d(vi) = n − 3,
let uj be the unique adjacent vertex of vi in {u1, . . . , ut} and let V2 =
{v0, v1, . . . , vn−3, uj}. Then there is at most one vertex adjacent to uj in
G − V2. Hence e(G − V1) ≤ 1 + e(G − V2). Since each vr (1 ≤ r ≤ s) is
adjacent to one and only one vertex in {u1, . . . , ut} and ∆(G[V1]) ≤ n − 3,
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we see that

e(G[V1]) =
1

2

n−3∑
r=0

dG[V1](vr)

≤ s(n− 4) + (n− 2− s)(n− 3)

2
=

(n− 2)(n− 3)− s
2

.

Note that s ≤ ∆(G) = n− 3. From the above we deduce that

e(G) = e(G[V1])+e(V1V
′
1)+e(G−V1) = e(G[V1])+s+e(G−V1)

≤ e(G[V1])+s+1+e(G−V2) ≤
(n−2)(n−3)−s

2
+s+1+e(G−V2)

=
(n−2)(n−3)+s+2

2
+e(G−V2) ≤

(n−2)(n−3)+n−1
2

+e(G−V2)

<
(n−1)(n−2)

2
+e(G−V2) = e(Kn−1∪(G−V2)).

Since Kn−1 ∪ (G− V2) does not contain T 2
n and G is an extremal graph, we

get a contradiction. Hence the claim is true. Thus, for ∆(G) = n−3 we have
dG[V1](vi) ≤ n− 5 for i = 1, . . . , s and so

e(G[V1]) =
1

2

n−3∑
i=0

dG[V1](vi)(3.2)

≤ s(n− 5) + (n− 2− s)(n− 3)

2
=

(n− 2)(n− 3)

2
− s.

Now assume p < 2n− 2 and p = n− 1 + r. Then 1 ≤ r < n− 1. By the
above,∆(G) ≤ n−3. Assume∆(G) = n−3. Then |V (G−V1)| = p−(n−2) =
r+1 < n,∆(G−V1) ≤ n−3 and so e(G−V1) ≤ min

{(
r+1
2

)
, (r + 1)(n− 3)/2

}
.

Since e(G[V1]) ≤ (n− 2)(n− 3)/2− s by (3.2), we deduce that

e(G) = e(G[V1]) + e(V1V
′
1) + e(G− V1)

≤ (n− 2)(n− 3)

2
− s+ s+min

{
r(r + 1)

2
,
(r + 1)(n− 3)

2

}

=


(n− 2)(n− 3)

2
+

(
r + 1

2

)
if r ≤ n− 3,

(n− 2)(n− 3)

2
+

(n− 3)(n− 1)

2
if r = n− 2

<

(
n− 1

2

)
+

(
r

2

)
= e(Kn−1 ∪Kr).

This is impossible since G is an extremal graph. Thus, ∆(G) ≤ n − 4 for
p < 2n− 2. Now the proof is complete.

Lemma 3.2. Let p, n ∈ N, p ≥ n ≥ 7 and G ∈ Ex(p;T 2
n). Suppose that

G is connected. Then p < 2n− 2.
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Proof. By Lemma 3.1, we have ∆(G) ≤ n − 3 and so e(G) ≤ (n−3)p
2 .

Assume that p = k(n − 1) + r with k ∈ N and r ∈ {0, 1, . . . , n − 2}. Let
G1 ∈ Ex(n − 1 + r;K1,n−3). Then e(G1) = [(n− 4)(n− 1 + r)/2] by Lem-
ma 2.1. Hence, if (k − 2)(n− 1)− r ≥ 2, then

e((k − 1)Kn−1 ∪G1) = (k − 1)

(
n− 1

2

)
+

[
(n− 4)(n− 1 + r)

2

]
=

(p− r − (n− 1))(n− 2)

2
+

[
(n− 4)(n− 1 + r)

2

]
=

[
(n− 3)p

2
+
p− 2r − 2(n− 1)

2

]
=

[
(n− 3)p

2
+

(k − 2)(n− 1)− r
2

]
>

[
(n− 3)p

2

]
≥ e(G).

This is impossible since (k−1)Kn−1∪G1 does not contain T 2
n as a subgraph

and G ∈ Ex(p;T 2
n). Thus (k − 2)(n − 1) − r ≤ 1. If k = 3, then r = n − 2

and p = 3(n− 1) + n− 2 = 4n− 5 and so

e(G) ≤
[
(n− 3)p

2

]
≤ (n− 3)(4n− 5)

2
=

4n2 − 17n+ 15

2

<
4n2 − 14n+ 12

2
= 3

(
n− 1

2

)
+

(
n− 2

2

)
= e(3Kn−1 ∪Kn−2).

Since 3Kn−1 ∪ Kn−2 does not contain T 2
n and G ∈ Ex(p;T 2

n), we get a
contradiction. Thus k ≤ 2.

For p = 2(n − 1) + r with r ∈ {0, 1, 2, n − 4, n − 3, n − 2} we see that
r(n− 2− r) < 2n− 2 and so

e(2Kn−1∪Kr) =
2(n− 1)(n− 2) + r(r − 1)

2
>

(n− 3)(2n− 2 + r)

2
≥ e(G).

This contradicts the assumption G ∈ Ex(p;T 2
n). Now suppose p = 2(n−1)+r

with 3 ≤ r ≤ n − 5. If ∆(G) ≤ n − 4, then e(G) ≤ (n− 4)p/2. From the
previous argument we have

e(Kn−1 ∪G1) =

(
n− 1

2

)
+

[
(n− 4)(n− 1 + r)

2

]
=

[
(n− 3)p− r

2

]
=

[
(n− 4)p

2

]
+ n− 1 >

(n− 4)p

2
≥ e(G).

Since Kn−1 ∪ G1 does not contain T 2
n as a subgraph and G ∈ Ex(p;T 2

n),
we get a contradiction. Hence ∆(G) = n − 3. Suppose v0 ∈ V (G), d(v0) =
n− 3, Γ (v0) = {v1, . . . , vn−3}, V1 = {v0, v1, . . . , vn−3} and V ′1 = V (G)− V1.
Suppose also there are exactly s vertices in Γ (v0) adjacent to some vertex
in V ′1 . Then 1 ≤ s ≤ n − 3. By (3.2), e(G[V1]) ≤ (n− 2)(n− 3)/2 − s.
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As G does not contain any copies of T 2
n , we find that e(V1V ′1) = s. Since

|V (G− V1)| = |V ′1 | = p− (n− 2) = n+ r and G− V1 does not contain any
copies of T 2

n , we see that e(G− V1) ≤ ex(n+ r;T 2
n).

We claim that

ex(n+ r;T 2
n) ≤ max

{
(n− 4)(n+ r)

2
,
(n− 1)(n− 2) + r(r + 1)

2

}
for 3 ≤ r ≤ n− 5.

Let G′ ∈ Ex(n+r;T 2
n). If G′ is connected, using Lemma 3.1 we have ∆(G′) ≤

n−4 and so e(G′) ≤ (n− 4)(n+ r)/2. Now suppose that G′ is not connected.
If n1, n2 ∈ {1, . . . , n−2}, from Lemma 2.3 we have e(Kn1∪Kn2) < e(Kn1+n2)
for n1+n2 < n, and e(Kn1∪Kn2) < e(Kn−1∪Kn1+n2−(n−1)) for n1+n2 ≥ n.
Thus, G′ = G′1∪G′2, where G′1 and G′2 are components of G′ with |V (G′1)| =
p′1 < n−1 and |V (G′2)| = p′2 ≥ n−1. For p′2 ≥ n we have p′1 ≤ r ≤ n−3 and so
e(G′1) = p′1(p

′
1 − 1)/2 ≤ (n− 4)p′1/2. For p′2 ≥ n we also have ∆(G′2) ≤ n−4

and so e(G′2) ≤ (n− 4)p′2/2 by Lemma 3.1. Hence for p′2 ≥ n we find that
e(G′) = e(G′1)+e(G

′
2) ≤ (n− 4)p′1/2+(n− 4)p′2/2 = (n− 4)(n+ r)/2. Now

assume p′2 = n− 1. Then p′1 = r + 1 and

e(G′) = e(Kn−1 ∪Kr+1) =
(n− 1)(n− 2) + r(r + 1)

2
.

Hence the claim is true and so
e(G− V1) ≤ ex(n+ r;T 2

n)

≤ max

{
(n− 4)(n+ r)

2
,
(n− 1)(n− 2) + r(r + 1)

2

}
.

Thus,

e(G) = e(G[V1])+e(V1V
′
1)+e(G−V1)

≤ (n−2)(n−3)
2

−s+s+max

{
(n−4)(n+r)

2
,
(n−1)(n−2)+r(r+1)

2

}
=

(
n−1
2

)
+max

{
(n−4)(n−1+r)−n

2
,
(n−1)(n−2)+r(r−1)

2
−(n−2−r)

}
<

(
n−1
2

)
+max

{[
(n−4)(n−1+r)

2

]
,
(n−1)(n−2)+r(r−1)

2

}
= max{e(Kn−1∪G1), e(2Kn−1∪Kr)}.

This is impossible since G is an extremal graph.
By the above we must have k = 1 and so p = k(n − 1) + r < 2n − 2 as

asserted.
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Lemma 3.3. Let p, n ∈ N, p ≥ n ≥ 7 and G ∈ Ex(p;T 2
n). Suppose that

G is connected. Then ∆(G) = n− 4 and e(G) = [(n− 4)p/2].

Proof. By (3.1), e(G) ≥ [(n− 4)p/2]. If∆(G) ≤ n−5, using Euler’s theo-
rem we see that e(G)= 1

2

∑
v∈V (G) d(v)≤(n− 5)p/2. Hence ((n− 4)p− 1)/2

≤ [(n− 4)p/2] ≤ e(G) ≤ (n− 5)p/2. This is impossible. Thus ∆(G) ≥ n−4.
By Lemmas 3.1 and 3.2, ∆(G) ≤ n − 4. Therefore ∆(G) = n − 4 and
so e(G) = 1

2

∑
v∈V (G) d(v) ≤ (n− 4)p/2. Recall that e(G) ≥ [(n− 4)p/2].

Then e(G) = [(n− 4)p/2] as asserted.

Lemma 3.4. Let p and k be nonnegative integers, p = 5k + r and r ∈
{0, 1, 2, 3, 4}. Suppose that G is a graph of order p without T 2

6 . Then e(G) ≤
2p− r(5− r)/2.

Proof. Clearly ∆(T 2
6 ) = 3. We prove the lemma by induction on p. For

p ≤ 5 we have e(G) ≤ p(p− 1)/2 = 2p−r(5− r)/2. Now suppose that p ≥ 6
and the lemma is true for all graphs of order p0 < p without T 2

6 . If ∆(G) ≤ 3,
then e(G) = 1

2

∑
v∈V (G) d(v) ≤ 3p/2 ≤ 2p− 3 ≤ 2p− r(5− r)/2.

Suppose ∆(G) = m ≥ 4, v0 ∈ V (G), d(v0) = m, Γ (v0) = {v1, . . . , vm},
V1 = {v0, v1, . . . , vm} and V ′1 = V (G) − V1. If G[V1] is a component of G,
then e(G[V1]) = e(K5) = 10 for m = 4, and e(G[V1]) ≤ m +m/2 = 3m/2
for m ≥ 5 since d(vi) ≤ 2 for i = 1, . . . ,m. By the inductive hypothesis,
e(G[V ′1 ]) ≤ 2(p−m− 1)− r1(5− r1)/2, where r1 ∈ {0, 1, 2, 3, 4} is given by
p−m− 1 ≡ r1 (mod 5). Thus, for m = 4 we have

e(G) = e(G[V1]) + e(G[V ′1 ]) ≤ 10 + 2(p− 5)− r(5− r)
2

= 2p− r(5− r)
2

,

and for m ≥ 5 we have

e(G) = e(G[V1]) + e(G[V ′1 ]) ≤
3m

2
+ 2(p−m− 1)− r1(5− r1)

2

≤ 2p− 2− m

2
≤ 2p− 3 ≤ 2p− r(5− r)

2
.

From now on we assume that G[V1] is not a component of G and m =
∆(G) ≥ 4. Hence there is a vertex u1 such that d(u1, v0) = 2 and u1v1 ∈
E(G) with no loss of generality. Then v1vi /∈ E(G) for i = 2, . . . ,m. For
m = 4 we see that e(G[V1]) + e(V1V

′
1) ≤ 4 + 4 = 8. For m ≥ 5 we find that

d(vi) ≤ 2 for i = 1, . . . ,m and so e(G[V1]) + e(V1V
′
1) ≤

∑m
i=1 d(vi) ≤ 2m.

Hence, for m ≥ 4 we have e(G) = e(G[V1]) + e(V1V
′
1) + e(G[V ′1 ]) ≤ 2m +

e(G[V ′1 ]). By the inductive hypothesis, e(G[V ′1 ]) ≤ 2(p−m−1)−r1(5− r1)/2,
where r1 ∈ {0, 1, 2, 3, 4} is given by p −m − 1 ≡ r1 (mod 5). Thus, e(G) ≤
2m + 2(p −m − 1) − r1(5− r1)/2 = 2p − 2 − r1(5− r1)/2. For r1 ≥ 1 we
have e(G) ≤ 2p− 2− 2 < 2p− r(5− r)/2. For r1 = 0 and r = 0, 1, 4 we have
e(G) ≤ 2p − 2 ≤ 2p − r(5− r)/2. Therefore, we only need to consider the
case p ≡ m+ 1 ≡ 2, 3 (mod 5).
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Now assume p ≡ m + 1 ≡ 2, 3 (mod 5) and Γ (u1) − {v1, . . . , vm} =
{w1, . . . , wt}. As m ≥ 4 we have m ≥ 6. Set V2 = {v0, v1, . . . , vm, u1} and
V ′2 = V (G)− V2. Since d(vi) ≤ 2 for i = 1, . . . ,m, we see that

e(G) = e(G[V2]) + e(V2V
′
2) + e(G[V ′2 ])

≤
m∑
i=1

d(vi) + t+ e(G[V ′2 ]) ≤ 2m+ t+ e(G[V ′2 ]).

Note that p−m−2 ≡ 4 (mod 5) and e(G[V ′2 ]) ≤ 2(p−m−2)−4(5− 4)/2 by
the inductive hypothesis. We then have e(G) ≤ 2m+ t+2(p−m− 2)− 2 =
2p + t − 6. For t ≤ 3 we get e(G) ≤ 2p + t − 6 ≤ 2p − 3 = 2p − r(5− r)/2.
For t ≥ 4 set V3 = {v0, v1, . . . , vm, u1, w1, . . . , wt} and V ′3 = V (G)−V3. Since
d(vi) ≤ 2 for i = 1, . . . ,m and d(wj) ≤ 2 for j = 1, . . . , t, using the inductive
hypothesis we see that

e(G) = e(G[V3]) + e(V3V
′
3) + e(G[V ′3 ])

≤
m∑
i=1

d(vi) +
t∑

j=1

d(wj) + e(G[V ′3 ])

≤ 2m+ 2t+ e(G[V ′3 ]) ≤ 2m+ 2t+ 2(p−m− 2− t) = 2p− 4

< 2p− r(5− r)
2

.

By the above, the lemma has been proved by induction.

Theorem 3.1. Let p, n ∈ N, p ≥ n− 1 ≥ 4 and p = k(n− 1) + r, where
k ∈ N and r ∈ {0, 1, . . . , n− 2}. Then

ex(p;T 2
n) = max

{[
(n− 2)p

2

]
− (n− 1 + r),

(n− 2)p− r(n− 1− r)
2

}

=


[
(n− 2)p

2

]
− (n− 1 + r) if n ≥ 16 and 3 ≤ r ≤ n− 6, or if

13 ≤ n ≤ 15 and 4 ≤ r ≤ n− 7,
(n− 2)p− r(n− 1− r)

2
otherwise.

Proof. Clearly ex(n − 1;T 2
n) = e(Kn−1) = (n− 2)(n− 1)/2. Thus the

result is true for p = n−1. Now we assume p ≥ n. Since T 2
5
∼= T ′5, taking n = 5

in [10, Theorem 3.1] we obtain the result in the case n = 5. For n = 6 we see
that ex(p;T 2

6 ) ≥ e(kK5 ∪ Kr) = 10k + r(r − 1)/2 = 2p − r(5− r)/2. This
together with Lemma 3.4 gives the result in this case. Applying Lemmas 3.3,
2.3 and replacing T 1

n with T 2
n in the proof of Theorem 2.1 we deduce the result

for n ≥ 7.
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Corollary 3.1. Suppose p, n ∈ N, p ≥ n ≥ 5 and n− 1 - p. Then

(n− 2)p

2
− (n− 1)2

8
≤ ex(p;T 2

n) ≤
(n− 2)(p− 1)

2
.

4. The Ramsey number r(T i
n, Tn)

Lemma 4.1 ([9, Lemma 2.1]). Let G1 and G2 be two graphs. Suppose
p ∈ N, p ≥ max{|V (G1)|, |V (G2)|} and ex(p;G1) + ex(p;G2) <

(
p
2

)
. Then

r(G1, G2) ≤ p.

Proof. Let G be a graph of order p. If e(G) ≤ ex(p;G1) and e(G) ≤
ex(p;G2), then ex(p;G1) + ex(p;G2) ≥ e(G) + e(G) =

(
p
2

)
. This contradicts

the assumption. Hence, either e(G) > ex(p;G1) or e(G) > ex(p;G2). There-
fore, G contains a copy of G1 or G contains a copy of G2. This shows that
r(G1, G2) ≤ |V (G)| = p. So the lemma is proved.

Lemma 4.2 ([9, Lemma 2.3]). Let G1 and G2 be two graphs with ∆(G1) =
d1 ≥ 2 and ∆(G2) = d2 ≥ 2. Then

(i) r(G1, G2) ≥ d1 + d2 − (1− (−1)(d1−1)(d2−1))/2.
(ii) Suppose that G1 is a connected graph of order m and d1 < d2 ≤ m.

Then r(G1, G2) ≥ 2d2 − 1 ≥ d1 + d2.

(iii) If G1 is a connected graph of order m, d1 6= m − 1 and d2 > m,
then r(G1, G2) ≥ d1 + d2.

Theorem 4.1. Let n ∈ N and i, j ∈ {1, 2}.

(i) If n is odd with n ≥ 17, then r(T i
n, T

j
n) = 2n− 7.

(ii) If n is even with n ≥ 12, then r(T i
n, T

j
n) = 2n− 6.

Proof. Suppose n ≥ 12. Since ∆(T i
n) = ∆(T j

n) = n− 3, from Lemma 4.2
we know that r(T i

n, T
j
n) ≥ 2n − 7 for n odd, and r(T i

n, T
j
n) ≥ 2n − 6 for n

even. If n is odd with n ≥ 17, using Theorems 2.1 and 3.1 (with k = 1 and
r = n− 6) we see that

ex(2n− 7;T i
n) =

(n− 2)(2n− 7)− 1

2
− (2n− 7)

<
(n− 4)(2n− 7)

2
=

1

2

(
2n− 7

2

)
and so ex(2n − 7;T i

n) + ex(2n − 7;T j
n) <

(
2n−7

2

)
. Thus, by Lemma 4.1 we

have r(T i
n, T

j
n) ≤ 2n− 7. Hence (i) is true. From Theorems 2.1 and 3.1 (with
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k = 1 and r = n− 5) we see that for n ≥ 12,

ex(2n− 6;T i
n) =

(n− 2)(2n− 6)− 4(n− 5)

2
= n2 − 7n+ 16

< n2 − 13

2
n+

21

2
=

1

2

(
2n− 6

2

)
and so ex(2n − 6;T i

n) + ex(2n − 6;T j
n) <

(
2n−6

2

)
. Thus, by Lemma 4.1 we

have r(T i
n, T

j
n) ≤ 2n− 6. Hence r(T i

n, T
j
n) = 2n− 6 for n even, proving (ii).

Lemma 4.3. Let n ∈ N, n ≥ 5 and i ∈ {1, 2}. Let Gn be a connected
graph of order n such that ex(2n − 5;Gn) < n2 − 5n + 4. Then r(T i

n, Gn)
≤ 2n− 5.

Proof. By Theorems 2.1 and 3.1,

ex(2n− 5;T i
n) =

(n− 2)(2n− 5)− 3(n− 4)

2
= n2 − 6n+ 11.

Thus,

ex(2n− 5;Gn) + ex(2n− 5;T i
n) < n2 − 5n+ 4 + n2 − 6n+ 11 =

(
2n− 5

2

)
.

Appealing to Lemma 4.1 we obtain r(T i
n, Gn) ≤ 2n− 5.

Lemma 4.4 ([10, Theorem 3.1]). Let p, n ∈ N with p ≥ n ≥ 5. Let
r ∈ {0, 1, . . . , n− 2} be given by p ≡ r (mod n− 1). Then

ex(p;T ′n) =


[
(n− 2)(p− 1)− r − 1

2

]
if n ≥ 7 and 2 ≤ r ≤ n− 4,

(n− 2)p− r(n− 1− r)
2

otherwise.

Theorem 4.2. Let n ∈ N, n ≥ 8 and i ∈ {1, 2}. Then r(T i
n, T

′
n) =

r(T i
n, T

∗
n) = 2n− 5.

Proof. Let Tn ∈ {T ′n, T ∗n). As 2Kn−3 does not contain any copies of T i
n,

and 2Kn−3 = Kn−3,n−3 does not contain any copies of Tn, we see that
r(T i

n, Tn) ≥ 1 + 2(n − 3) = 2n − 5. Taking p = 2n − 5 and r = n − 4 in
Lemma 4.4 we find that

ex(2n− 5;T ′n) =

[
(n− 2)(2n− 6)− (n− 4)− 1

2

]
≤ n2 − 11

2
n+

15

2

< n2 − 5n+ 4.

By [10, Theorem 4.1],

ex(2n− 5;T ∗n) =
(n− 2)(2n− 5)− 3(n− 4)

2
= n2 − 6n+ 11 < n2 − 5n+ 4.

Thus, applying Lemma 4.3 we obtain r(T i
n, Tn) ≤ 2n− 5. Hence r(T i

n, Tn) =
2n− 5 as asserted.
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Remark 4.1. Let n ∈ N, n ≥ 5 and i ∈ {1, 2}. From [5, Theorem 3.1(ii)]
we know that r(K1,n−1, T

i
n) = 2n− 3.

Theorem 4.3. Let n ∈ N and i ∈ {1, 2}. Then r(Pn, T
i
n) = 2n − 7 for

n ≥ 17, r(Pn−1, T
i
n) = 2n− 7 for n ≥ 13, r(Pn−2, T

i
n) = 2n− 7 for n ≥ 11,

and r(Pn−3, T
i
n) = 2n− 7 for n ≥ 8.

Proof. Suppose n ≥ 8 and s ∈ {0, 1, 2, 3}. From Lemma 4.2(ii) we have
r(Pn−s, T

i
n) ≥ 2(n− 3)− 1 = 2n− 7. By (1.1),

ex(2n− 7;Pn−s)

=



(n− 2)(2n− 7)− 5(n− 6)

2
=

(n− 4)(2n− 7) + 16− n
2

if s = 0,

(n− 3)(2n− 7)− 3(n− 5)

2
=

(n− 4)(2n− 7) + 8− n
2

if s = 1,

(n− 4)(2n− 7)− (n− 4)

2
if s = 2,

(n− 5)(2n− 7)− (n− 5)

2
=

(n− 4)(2n− 7) + 12− 3n

2
if s = 3.

By Theorems 2.1 and 3.1,

ex(2n− 7;T i
n)

=


[
(n− 4)(2n− 7)

2

]
if n ≥ 16,

(n− 2)(2n− 7)− 5(n− 6)

2
=

(n− 4)(2n− 7) + 16− n
2

if n < 16.

For n ≥ 17, 13, 11 or 8 according as s = 0, 1, 2 or 3, from the above we
find ex(2n− 7;Pn−s) + ex(2n− 7;T i

n) <
(
2n−7

2

)
and so r(Pn−s, T

i
n) ≤ 2n− 7

by Lemma 4.1. This completes the proof.

5. The Ramsey number r(T i
m, Tn) for m < n

Proposition 5.1 (Burr [1]). Let m,n ∈ N with m ≥ 3 and m−1 |n−2.
Let Tm be a tree on m vertices. Then r(Tm,K1,n−1) = m+ n− 2.

Proposition 5.2 (Guo and Volkmann [5, Theorem 3.1]). Let m,n ∈ N,
m ≥ 3 and n = k(m − 1) + b with k ∈ N and b ∈ {0, 1, . . . ,m − 2} \ {2}.
Let Tm 6= K1,m−1 be a tree on m vertices. Then r(Tm,K1,n−1) ≤ m+ n− 3.
Moreover, if k ≥ m− b, then r(Tm,K1,n−1) = m+ n− 3.

Lemma 5.1 ([6, Theorem 8.3, pp. 11–12]). Let a, b, n ∈ N. If a is coprime
to b and n ≥ (a− 1)(b− 1), then there are two nonnegative integers x and y
such that n = ax+ by.

Theorem 5.1. Let m,n ∈ N, n > m ≥ 5, m− 1 - n− 2 and i ∈ {1, 2}.
Then r(T i

m,K1,n−1) = m+n−3 or m+n−4. Moreover, if n ≥ (m−3)2+1
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or m+n− 4 = (m− 1)x+ (m− 2)y for some nonnegative integers x and y,
then r(Tm,K1,n−1) = m+ n− 3 for any tree Tm 6= K1,m−1 of order m.

Proof. Let Tm 6= K1,m−1 be a tree on m vertices. From Proposition 5.2
we know that r(Tm, K1,n−1) ≤ m+n−3. By Lemma 4.2(iii), r(T i

m,K1,n−1) ≥
m−3+n−1. Thus, r(T i

m,K1,n−1) = m+n−3 orm+n−4. If n ≥ (m−3)2+1,
thenm+n−4 ≥ (m−2)(m−3) and som+n−4 = (m−1)x+(m−2)y for some
nonnegative integers x and y by Lemma 5.1. Ifm+n−4 = (m−1)x+(m−2)y
for x, y ∈ {0, 1, 2, . . .}, setting G = xKm−1 ∪ yKm−2 we see that G does not
contain any copies of Tm, and G does not contain any copies of K1,n−1. Thus
r(Tm,K1,n−1) ≥ 1+ |V (G)| = m+n−3. Now putting all the above together
we obtain the theorem.

Theorem 5.2. Let m,n ∈ N, n > m ≥ 6, m − 1 |n − 3 and i ∈ {1, 2}.
Then r(T i

m, T
′
n) = m+ n− 3.

Proof. By Theorems 2.1 and 3.1,

ex(m+n− 3;T i
m) =

(m− 2)(m+ n− 3)− (m− 2)

2
<

(m− 2)(m+ n− 3)

2
.

Thus applying [9, Theorem 5.1] we obtain the conclusion.

Theorem 5.3. Suppose that i ∈ {1, 2}, m,n ∈ N, n > m ≥ 7 and
m − 1 - n − 3. Then m + n − 5 ≤ r(T i

m, T
′
n) ≤ m + n − 4 and m + n − 6 ≤

r(T i
m, T

∗
n) ≤ m + n − 4. Moreover, if n = k(m − 1) + b = q(m − 2) + a,

k, q ∈ N, a ∈ {0, 1, . . . ,m−3}, b ∈ {0, 1, . . . ,m−2}, and one of the following
conditions holds:

(1) b ∈ {1, 2, 4},
(2) b = 0 and k ≥ 3,
(3) n ≥ (m− 3)2 + 2,
(4) n ≥ m2 − 1− b(m− 2),
(5) a ≥ 3 and n ≥ (a− 4)(m− 1) + 4,

then r(T i
m, T

∗
n) = r(T i

m, T
′
n) = m+ n− 4.

Proof. By Lemma 4.2 we have r(T i
m, T

′
n) ≥ m−3+n−2 and r(T i

m, T
∗
n) ≥

m − 3 + n − 3. Since m − 1 - n − 3, we see that m − 1 - m + n − 4. From
Corollaries 2.1 and 3.1 we have ex(m+ n− 4;T i

m) ≤ (m− 2)(m+ n− 5)/2.
Hence, by [9, Lemma 5.2] we find r(T i

m, T
′
n) ≤ m+n− 4, and by [9, Lemma

4.2] we have r(T i
m, T

∗
n) ≤ m+n−4. Now applying [9, Theorems 4.4 and 5.4]

we deduce the remaining assertion.

6. The Ramsey number r(Gm, T
j
n) for m < n

Theorem 6.1. Let m,n ∈ N, m ≥ 5, n ≥ 8, n > m and j ∈ {1, 2}.
Then r(K1,m−1, T

j
n) = m + n − 4 or m + n − 5. Moreover, if 2 |mn, then

r(K1,m−1, T
j
n) = m+ n− 4.
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Proof. From Lemma 4.2 we deduce that r(K1,m−1, T
j
n) ≥ m−1+n−3−

(1− (−1)(m−2)(n−4))/2 = m+n−4− (1− (−1)mn)/2. So, it suffices to prove
that r(K1,m−1, T

j
n) ≤ m + n − 4. By Lemma 2.1, ex(m + n − 4;K1,m−1) =

[(m− 2)(m+ n− 4)/2]. By Theorems 2.1 and 3.1, we have

ex(m+ n− 4;T j
n)

=

[
(n− 4)(m+ n− 4)

2

]
or

(n− 2)(m+ n− 4)− (m− 3)(n−m+ 2)

2
.

Since[
(m− 2)(m+ n− 4)

2

]
+

[
(n− 4)(m+ n− 4)

2

]
≤ (m+ n− 6)(m+ n− 4)

2
<

(
m+ n− 4

2

)
and
(m− 2)(m+ n− 4)

2
+

(n− 2)(m+ n− 4)− (m− 3)(n−m+ 2)

2

=
(m+ n− 4)(m+ n− 5)− (m− 4)

(
n−m− 2

m−4
)

2
<

(
m+ n− 4

2

)
,

we see that ex(m + n − 4;K1,m−1) + ex(m + n − 4;T j
n) <

(
m+n−4

2

)
and so

r(K1,m−1, T
j
n) ≤ m+ n− 4 by Lemma 4.1. This completes the proof.

Theorem 6.2. Let m,n ∈ N, m ≥ 4, n ≥ 7, m−1 |n−4 and j ∈ {1, 2}.
(i) If Gm is a connected graph of order m with ex(m + n − 4;Gm) ≤

(m− 2)(m+ n− 5)/2, then r(Gm, T
j
n) = m+ n− 4.

(ii) r(T ′m, T
j
n) = r(T 1

m, T
j
n) = r(T 2

m, T
j
n) = m + n − 4 for m ≥ 5,

r(T ∗m, T
j
n) = m+ n− 4 for m ≥ 6, and r(Pm, T

j
n) = m+ n− 4.

Proof. Set t = (n − 4)/(m − 1). Suppose that Gm is a connected graph
of order m with ex(m + n − 4;Gm) ≤ (m− 2)(m+ n− 5)/2. Then clearly
∆((t+ 1)Km−1) = t(m − 1) = n − 4. Thus, (t + 1)Km−1 does not contain
any copies of Gm, and (t+ 1)Km−1 does not contain any copies of T j

n. Hence
r(Gm, T

j
n) ≥ 1 + (t+ 1)(m− 1) = m+ n− 4. By Theorems 2.1 and 3.1,

ex(m+ n− 4;T j
n)

=

[
(n− 4)(m+ n− 4)

2

]
or

(n− 2)(m+ n− 4)− (m− 3)(n−m+ 2)

2
.

If ex(m+ n− 4;T j
n) = [(n− 4)(m+ n− 4)/2], then

ex(m+ n− 4;Gm) + ex(m+ n− 4;T j
n)

≤ (m− 2)(m+ n− 5) + (n− 4)(m+ n− 4)

2
<

(
m+ n− 4

2

)
.
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If ex(m+ n− 4;T j
n) = ((n− 2)(m+ n− 4)− (m− 3)(n−m+ 2))/2, then

ex(m+ n− 4;Gm) + ex(m+ n− 4;T j
n)

≤ (m− 2)(m+ n− 5) + (n− 2)(m+ n− 4)− (m− 3)(n−m+ 2)

2

=

(
m+ n− 4

2

)
− (m− 4)(n−m+ 1)

2
<

(
m+ n− 4

2

)
.

Therefore, by Lemma 4.1 we always have r(Gm, T
j
n) ≤ m+ n− 4 and hence

r(Gm, T
j
n) = m+ n− 4. This proves (i).

Now consider (ii). Note that m + n − 4 ≡ 1 (mod m − 1). By (1.1),
we have ex(m + n − 4;Pm) = (m− 2)(m+ n− 5)/2. By Lemma 4.4,
ex(m+n−4;T ′m) = (m− 2)(m+ n− 5)/2 for m ≥ 5. By [10, Theorem 4.2],
ex(m + n − 4;T ∗m) = (m− 2)(m+ n− 5)/2 for m ≥ 6. By Theorems 2.1
and 3.1, ex(m+n−4;T i

m) = (m− 2)(m+ n− 5)/2 for i ∈ {1, 2} and m ≥ 5.
Thus from (i) and the above we deduce (ii). The proof is complete.

Lemma 6.1. Let j ∈ {1, 2}, m,n ∈ N, m ≥ 7 and m− 1 - n− 4. Assume
n = m+ 1 ≥ 12 or n ≥ max{m+ 2, 19−m}.

(i) If Gm is a connected graph of order m with ex(m + n − 5;Gm) ≤
(m− 2)(m+ n− 6)/2, then r(Gm, T

j
n) ≤ m+ n− 5.

(ii) For Tm ∈ {Pm, T
′
m, T

∗
m, T

1
m, T

2
m} we have r(Tm, T

j
n) ≤ m+ n− 5.

Proof. Since m + n − 5 = n − 1 +m − 4, by Theorems 2.1 and 3.1 we
have

ex(m+ n− 5;T j
n) =

[
(n− 4)(m+ n− 5)

2

]
or

(n− 2)(m+ n− 5)− (m− 4)(n− 1− (m− 4))

2
.

If n = m+ 1, then (m− 4)(n− 3− (m− 4)) = 2(n− 5). If n ≥ m+ 2, then
3 ≤ m−4 ≤ n−6 and so (m−4)(n−3−(m−4)) =

(
n−3
2

)2−(m−4− n−3
2

)2 ≥(
n−3
2

)2 − (n− 6− n−3
2

)2
= 3(n− 6). Thus,

(n−4)(m+n−5)+m−2
2

− (n−2)(m+n−5)−(m−4)(n−1−(m−4))
2

=
(m−4)(n−3−(m−4))−2n+m

2

≥


2(n−5)−2n+m

2
=
m−10

2
> 0 if n = m+1 ≥ 12,

3(n−6)−2n+m
2

=
n−10+m−8

2
> 0 if n ≥ max{m+2, 19−m}.
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Therefore, from the above we deduce that

(6.1) ex(m+ n− 5;T j
n) <

(n− 4)(m+ n− 5) +m− 2

2
.

Hence, if Gm is a connected graph of order m with ex(m + n − 5;Gm) ≤
(m− 2)(m+ n− 6)/2, then

ex(m+ n− 5;Gm) + ex(m+ n− 5;T j
n)

<
(m− 2)(m+ n− 6)

2
+

(n− 4)(m+ n− 5) +m− 2

2
=

(
m+ n− 5

2

)
.

Applying Lemma 4.1 we obtain (i).
Now we consider (ii). Since m − 1 - m + n − 5, by Corollaries 2.1

and 3.1 we have ex(m + n − 5;T i
m) ≤ (m− 2)(m+ n− 6)/2 for i ∈ {1, 2}.

By (1.1), ex(m + n − 5;Pm) ≤ (m− 2)(m+ n− 6)/2. By Lemma 4.4,
ex(m + n − 5;T ′m) ≤ (m− 2)(m+ n− 6)/2. By [10, Theorems 4.1–4.5],
ex(m + n − 5;T ∗m) ≤ (m− 2)(m+ n− 6)/2. Thus, from the above and (i)
we deduce (ii). This proves the lemma.

Theorem 6.3. Let m ∈ N and j ∈ {1, 2}.

(i) We have

r(T ′m, T
j
m+1) =

{
2m− 4 if 2 - m and m ≥ 9,
2m− 5 if 2 |m and m ≥ 16.

(ii) If n ∈ N, m ≥ 7, n ≥ max{m+ 2, 19−m} and m− 1 - n− 4, then
r(T ′m, T

j
n) = m+ n− 5.

Proof. We first assume 2 - m and m ≥ 9. By Lemma 4.2(i), we have
r(T ′m, T

j
m+1) ≥ m− 2 +m− 2 = 2m− 4. By Lemma 4.4,

ex(2m− 4;T ′m) =
(m− 2)(2m− 4)− 2(m− 3)

2
= m2 − 5m+ 7.

By Theorems 2.1 and 3.1,

ex(2m− 4;T j
m+1) =

(m− 1)(2m− 4)− 4(m− 4)

2
= m2 − 5m+ 10.

Thus,

ex(2m− 4;T ′m) + ex(2m− 4;T j
m+1) = m2 − 5m+ 7 +m2 − 5m+ 10

= 2m2 − 10m+ 17 < 2m2 − 9m+ 10 =

(
2m− 4

2

)
.

Hence, by Lemma 4.1 we obtain r(T ′m, T
j
m+1) ≤ 2m− 4 and so r(T ′m, T

j
m+1)

= 2m− 4.
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Now we assume 2 |m and m ≥ 16. By Lemma 4.2(i), r(T ′m, T
j
m+1) ≥

m− 2 +m− 2− 1 = 2m− 5. By Lemma 4.4,

ex(2m− 5;T ′m) =

[
(m− 2)(2m− 6)− (m− 3)

2

]
=

2m2 − 11m+ 14

2
.

By Theorems 2.1 and 3.1,

ex(2m− 5;T j
m+1) =

[
(m− 1)(2m− 5)

2

]
− (2m− 5) =

2m2 − 11m+ 14

2
.

Thus,

ex(2m− 5;T ′m) + ex(2m− 5;T j
m+1) = 2m2 − 11m+ 14

< 2m2 − 11m+ 15 =

(
2m− 5

2

)
.

Hence, by Lemma 4.1 we obtain r(T ′m, T
j
m+1) ≤ 2m−5 and so r(T ′m, T

j
m+1) =

2m− 5. This proves (i).
Now we consider (ii). Suppose n ∈ N,m ≥ 7 and n ≥ max{m+2, 19−m}.

By Lemma 6.1(ii), r(T ′m, T
j
n) ≤ m+n−5. By Lemma 4.2, we have r(T ′m, T

j
n)

≥ m− 2 + n− 3. Thus, r(T ′m, T
j
n) = m+ n− 5. This proves (ii). The proof

is complete.

Theorem 6.4. Let j ∈ {1, 2}, m,n ∈ N, m ≥ 7 and m − 1 - n − 4.
Suppose that n = m + 1 ≥ 12 or n ≥ max{m + 2, 19 − m}. Assume that
Gm ∈ {Pm, T

∗
m, T

1
m, T

2
m} or Gm is a connected graph of order m such that

ex(m+n−5;Gm) ≤ (m− 2)(m+ n− 6)/2. If n ≥ (m−3)2+3 or m+n−6 =

(m−1)x+(m−2)y for some nonnegative integers x and y, then r(Gm, T
j
n) =

m+ n− 5.

Proof. If n ≥ (m − 3)2 + 3, then m + n − 6 ≥ (m − 2)(m − 3) and so
m+n− 6 = (m− 1)x+(m− 2)y for some x, y ∈ {0, 1, 2, . . .} by Lemma 5.1.
Now suppose m + n − 6 = (m − 1)x + (m − 2)y, where x, y ∈ {0, 1, 2, . . .}.
Set G = xKm−1 ∪ yKm−2. Then ∆(G) ≤ n − 4. Thus, G does not con-
tain any copies of Gm, and G does not contain any copies of T j

n. Hence
r(Gm, T

j
n) ≥ 1 + |V (G)| = m+ n− 5. On the other hand, by Lemma 6.1 we

have r(Gm, T
j
n) ≤ m+ n− 5. Thus r(Gm, T

j
n) = m+ n− 5. This proves the

theorem.

Corollary 6.1. Let m,n ∈ N, m ≥ 7, m − 1 |n − b, b ∈ {2, 3, 5},
n ≥ max{m+2, 19−m} and j ∈ {1, 2}. Assume that Gm ∈ {Pm, T

∗
m, T

1
m, T

2
m}

or Gm is a connected graph of order m with

ex(m+ n− 5;Gm) ≤ (m− 2)(m+ n− 6)

2
.

Then r(Gm, T
j
n) = m+ n− 5.
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Proof. Set k = (n − b)/(m − 1). Then k ∈ N. For b = 2 we have k ≥ 2.
Since

m+ n− 6 =


(k − 2)(m− 1) + 3(m− 2) if b = 2,
(k − 1)(m− 1) + 2(m− 2) if b = 3,
(k + 1)(m− 1) if b = 5,

the result follows from Theorem 6.4.

Theorem 6.5. Let m ∈ N, m ≥ 12 and i, j ∈ {1, 2}. Then

r(T i
m, T

j
m+1) = r(T ∗m, T

j
m+1) = 2m− 5.

Proof. Let Tm ∈ {T i
m, T

∗
m}. By Theorems 2.1, 3.1 and [10, Theorem 4.1],

ex(2m− 5;Tm) =
(m− 2)(2m− 5)− 3(m− 4)

2
,

ex(2m− 5;T j
m+1) =

(m− 1)(2m− 5)− 5(m− 5)

2
or

[
(m−3)(2m−5)

2

]
.

Since
(m− 2)(2m− 5)− 3(m− 4)

2
+

(m− 3)(2m− 5)

2

=
(2m− 5)(2m− 6) + 7−m

2
<

(
2m− 5

2

)
and

(m− 2)(2m− 5)− 3(m− 4)

2
+

(m− 1)(2m− 5)− 5(m− 5)

2

= 2m2 − 12m+ 26 < 2m2 − 11m+ 15 =

(
2m− 5

2

)
,

we see that ex(2m − 5;Tm) + ex(2m − 5;T j
m+1) <

(
2m−5

2

)
. Hence, applying

Lemma 4.1 we deduce that r(Tm, T
j
m+1) ≤ 2m−5. Since ∆(Tm) = m−3 and

∆(T j
m+1) = m−2, by Lemma 4.2(i) we have r(Tm, T

j
m+1) ≥ m−3+m−2 =

2m− 5. Hence r(Tm, T
j
m+1) = 2m− 5. This proves the theorem.
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