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TREES OF MANIFOLDS WITH BOUNDARY

BY

PAWEŁ ZAWIŚLAK (Kraków)

Abstract. We introduce two new classes of compacta, called trees of manifolds with
boundary and boundary trees of manifolds with boundary. We establish their basic prop-
erties.

1. Introduction. In this paper we describe two classes of metric com-
pacta. Each space in each of the two classes is uniquely determined by a
fixed, countable (finite or infinite) family M of compact topological mani-
folds with boundary, all having the same dimension n. The spaces in the first
class, denoted by X (M), are called regular trees of manifolds with bound-
ary, while those in the second class, denoted by Xbd(M), are called regular
boundary trees of manifolds with boundary. The spaces in each class are typ-
ically “wild”, e.g. they are not ANRs and, as we show in this paper, their
topological dimension is equal to n − 1. To show that the corresponding
spaces are uniquely determined byM and to calculate their dimension, we
derive a few not very well known properties of topological manifolds with
boundary.

Trees of manifolds with boundary are analogues of spaces which are called
trees of closed manifolds. In the orientable case they were examined by
W. Jakobsche [J1], [J2], who described them in terms of inverse limits of
certain inverse systems of closed oriented manifolds. Every regular tree of
closed manifolds depends on a closed oriented n-manifold L and a familyM
of closed oriented n-manifolds, and we denote it, following W. Jakobsche, by
X(L,M). Similar constructions were considered earlier in different contexts
by L. S. Pontryagin [P], R. F. Williams [W] and F. D. Ancel and L. C. Sieben-
mann [AS]. Jakobsche’s construction was extended to the nonorientable case
by P. R. Stallings [St].

Trees of closed manifolds occur as boundaries of nonpositively curved
groups. H. Fisher [F] claimed that the boundary of a right-angled Coxeter
group, whose nerve is a flag PL-triangulation of a closed oriented manifoldN ,
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is homeomorphic to X(N, {N}). J. Świątkowski [S] corrected a minor mis-
take in Fisher’s argument and showed that this boundary is actually hom-
eomorphic to X(N, {N, N̄}), where N̄ denotes the oppositely oriented copy
of N . P. Przytycki and J. Świątkowski [PS] showed that for any closed 3-
manifold N there is a flag-no-square PL-triangulation of N , and thus trees of
3-manifolds occur as boundaries of hyperbolic right-angled Coxeter groups.
The present author [Z] showed that Pontryagin spheres, both orientable and
nonorientable, which are trees of tori and projective planes respectively, oc-
cur as boundaries of some systolic groups.

In view of the foregoing a natural question arises if (boundary) trees of
manifolds with boundary occur as boundaries of nonpositively curved groups.
The author expects that, after an appropriate extension, the ideas of [F] can
be used to show that boundaries of some right-angled Coxeter groups, whose
nerves are PL-triangulations of manifolds with boundary, are homeomorphic
to appropriate boundary trees of manifolds with boundary. This conjecture,
suggested to the author by J. Świątkowski, is explained and formulated more
precisely in Section 6.

The paper is organized as follows. In Section 2 we recall a construction
introduced by J. Świątkowski, called the limit of a tree system of compact
metric spaces. We also recall some properties of spaces resulting from this
construction. Trees of closed manifolds and (boundary) trees of manifolds
with boundary are special cases of this construction. In Section 3 we exam-
ine some properties of topological manifolds which may be well known but
whose proofs seem to be missing in the literature. The main results of this
section are Facts 3.1 and 3.3, which we use later in Section 5. Section 4 con-
tains the proofs of isotopic versions of Toruńczyk’s Lemma (Lemmas 4.4 and
4.5), which, together with Fact 3.1, are crucial to the proofs of uniqueness
of the spaces X (M) and Xbd(M). In Section 5 we describe the construction
of (boundary) trees of manifolds with boundary and we show that for any
familyM of compact n-manifolds with boundary there is exactly one (up to
homeomorphism) regular (boundary) tree of manifolds fromM. We also cal-
culate the topological dimension of these spaces. Section 6 contains a precise
formulation of the conjecture mentioned above, concerning the appearance
of boundary trees of manifolds with boundary as ideal boundaries of certain
groups.

2. Trees of metric compacta. In this section we recall the notion
and basic properties of trees of metric compacta—spaces resulting from the
construction introduced by J. Świątkowski. The proofs of all results in this
section can be found in [S].

We start by recalling some terminology and notation concerning trees.
Let T denote a tree (usually countable and locally infinite). We denote by VT
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and OT the sets of vertices and oriented edges of T respectively. For an edge
e ∈ OT let α(e) and ω(e) denote its initial and terminal vertex respectively,
and ē the opposite edge.

For a subtree S ⊂ T set NS = {e ∈ OT : α(e) ∈ VS and ω(e) /∈ VS},
i.e. NS is the set of oriented edges of T starting at some vertex of S and
terminating outside S. For simplicity we write Nt instead of N{t}.

An (embedded) combinatorial path is a sequence of consecutive vertices
(denoted by [v0, v1, . . . , vn] or briefly [s, t], where s and t are the initial
and final vertices respectively) or a sequence of consecutive oriented edges
(denoted by [e1, . . . , em]). A ray ρ is an infinite combinatorial path, and e1(ρ)
denotes the first edge of ρ. We denote by RT the set of (properly embedded)
rays in T , and by ET the set of ends of T (i.e. equivalence classes of rays,
two rays being equivalent if the corresponding vertices remain a bounded
distance apart). For a ray ρ we denote by [ρ] its end.

Suppose now that for every t ∈ VT we are given a compact metric
space Kt. For every e ∈ OT let Σe ⊂ Kα(e) be a compact subset and let
φe : Σe → Σē be a homeomorphism such that φē = φ−1

e . Suppose addition-
ally that {Σe : e ∈ Nt} is a null family of pairwise disjoint subsets of Kt

for every t ∈ VT (a family A of subsets of a metric space is null if for every
ε > 0 only finitely many A ∈ A satisfy diam(A) ≥ ε).

Definition 2.1. A tree system of metric compacta is a tuple

Θ = (T, {Kt : t ∈ VT }, {Σe : e ∈ OT }, {φe : e ∈ OT })
satisfying the conditions stated above.

To every tree system Θ of metric compacta we associate a topological
space limΘ, called the limit of Θ, in the following way. As a set,

limΘ = #Θ ∪ ET
where #Θ = (

⋃
t∈VT Kt)/∼ is the set of equivalence classes of the relation ∼

induced by x ∼ φe(x) for all e ∈ OT and x ∈ Σe.
We will need some terminology and notation to describe the topology of

limΘ.
For a family A of subsets of X and a subset U ⊂ X we say that U is

A-saturated if for every A ∈ A we have either A ⊂ U or A ∩ U = ∅.
For a finite subtree F ⊂ T let

ΘF = (F, {Kt : t ∈ VF }, {Σe : e ∈ OF }, {φe : e ∈ OF })
denote the restriction of Θ to F and let KF = #ΘF (equipped with the
quotient topology). Set AF = {Σe : e ∈ NF } and note that AF is a null
family of pairwise disjoint compact subsets of KF .

For any AF -saturated subset U ⊂ KF let NU = {e ∈ NF : Σe ⊂ U} and
DU = {t ∈ VT : [t, ω(e)] ∩ VF = ∅ for some e ∈ NU}. Denote by RF the set
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of rays in T with initial vertex in VF and all other vertices outside VF ; set
also RU = {ρ ∈ RF : e1(ρ) ∈ NU} and EU = {[ρ] : ρ ∈ RU}. Finally, set

G(U) =
(
U ∪

⋃
t∈DU

Kt

)
/∼ ∪ EU .

The topology on limΘ is described in the following:

Fact 2.2.

(i) ([S, Section 1.C]) The family

{G(U) : U ⊂ KF open and AF -saturated, F ⊂ T a finite subtree}
is a basis for a topology on lim θ.

(ii) ([S, Proposition 1.C.1]) For any tree system Θ of metric compacta,
limΘ equipped with the above topology is a compact metrizable space.

We now recall the definition of isomorphism of tree systems of metric
compacta and the main property of limits of isomorphic tree systems. We
will use this property in Section 5.

Let Θ = (T, {Kt : t ∈ VT }, {Σe : e ∈ OT }, {φe : e ∈ OT }) and Θ′ =
(T ′, {K ′t′ : t′ ∈ VT ′}, {Σe′ : e′ ∈ OT ′}, {φe′ : e′ ∈ OT ′}) be two tree systems
of metric compacta. An isomorphism of tree systems, F : Θ → Θ′, is a tuple
F = (λ, {ft : t ∈ VT }) such that:

• λ : T → T ′ is an isomorphism of trees,
• for each t ∈ VT the map ft : Kt → K ′λ(t) is a homeomorphism,
• for each e ∈ Nt we have f [Σe] = Σ′λ(e),
• for each e ∈ Nt we have φ′λ(e) ◦ (fα(e)dΣα(e)

) = fω(e) ◦ φe.

The property of limits of isomorphic tree systems mentioned before the
above definition is described in the following:

Fact 2.3 ([S, Lemma 1.E.1]). If Θ and Θ′ are isomorphic tree systems
of metric compacta, then their limits limΘ and limΘ′ are homeomorphic.

We now recall some procedure of changing one tree system into another
without affecting its limit (called consolidation), which roughly speaking
consists in gluing constituent spaces together into bigger ones. We will use
this procedure in Section 5.

Let Θ = (T, {Kt : t ∈ VT }, {Σe : e ∈ OT }, {φe : e ∈ OT }) be a tree
system of metric compacta and let Π be a partition of T into subtrees (i.e.
elements of Π are disjoint subtrees of T such that VT =

⋃
{VS : S ∈ Π}).

We allow some of the subtrees S ∈ Π to be trivial, i.e. to consist of a single
vertex.

Let TΠ be a tree such that VTΠ = Π and OTΠ = {e ∈ OT : e /∈⋃
S∈Π OS}. For every e ∈ OTΠ there is exactly one S ∈ Π such that
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α(e) ∈ VS and we set αΠ(e) = S. Similarly, for every e ∈ OTΠ there is
exactly one S ∈ Π such that ω(e) ∈ VS , and we set ωΠ(e) = S.

For every S ∈ Π set KS = limΘS and note that, up to canonical inclu-
sions, {Σe : e ∈ NS} is a null family of pairwise disjoint compact subsets of
KS = KαΠ(e). Thus the tuple

ΘΠ = (TΠ , {KS : S ∈ Π}, {Σe : e ∈ OTΠ}, {φe : e ∈ OTΠ})
is a tree system of metric compacta. We call it the consolidation of Θ with
respect to Π.

Fact 2.4 ([S, Theorem 3.A.1]). Let Θ be a tree system of metric com-
pacta and let Π be a partition of its underlying tree. Then limΘ and limΘΠ
are canonically homeomorphic.

We now focus on the topological dimension of trees of metric compacta.
Recall from [J2] that the dimension of a tree of closed n-manifolds is equal
to n. Using Fact 2.5 below we will show in Section 5 that the dimension of
a regular (boundary) tree of n-manifolds with boundary is equal to n− 1.

Before formulating Fact 2.5 we recall some terminology and notation. Let
Θ = (T, {Kt}, {Σe}, {φe}) be a tree system of metric compacta. For every
e ∈ OT set K̂e = Kω(e) and suppose that we are given a map δe : K̂e → Σe

such that δedΣē= φē. The reason for introducing this new symbol K̂e is to
be consistent with [S].

A tuple E = ({K̂e : e ∈ OT }, {δe : e ∈ OT }) is called a trivial associated
family of extended spaces and maps for Θ (see [S] for more details concerning
families of extended spaces).

Let now γ = (e1, . . . , em) be any finite combinatorial path in T of length
m ≥ 2. Consider the maps

Σem ⊂ K̂em−1

δem−1−−−−→ Σem−1 ⊂ · · ·
δe2−−→ Σe2 ⊂ K̂e1

δe1−−→ Σe1

and let δγ : Σem → Σe1 be the composition δγ = δe1 ◦ δe2 ◦ · · · ◦ (δem−1dΣem ).
We say that the asociated family E of extended spaces and maps is fine

if for each e ∈ OT the family of images δγ [Σem ] (where em is the terminal
edge of γ) for all combinatorial paths in T of length ≥ 2 starting with e1 = e
is a null family of subsets of Σe.

Fact 2.5 ([S, Proposition 2.D.2]). Let Θ = (T, {Kt}, {Σe}, {φe}) be a
tree system of metric compacta such that sup{dim(Kt) : t ∈ VT } = k < ∞.
Suppose additionally that Θ admits a trivial associated family E of extended
spaces and maps which is fine. Then dim(limΘ) = k.

3. A few properties of topological manifolds. In this section we
study some basic properties of topological manifolds. In particular we show
that (modulo orientation) there is exactly one (up to isotopy) flat embedding
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of an n-cell into a connected n-manifold (Fact 3.1) and that a manifold
with disconnected boundary can be retracted onto its spherical boundary
component (Fact 3.3). These two statements will be used in Section 5.

Although the results from this section seem to be well known, the author
could not find their proofs in the literature and hence decided to prove them.

First, we state some terminology and notation. We denote by Dn the
standard n-dimensional disc and by Sn the standard n-dimensional sphere,
which is the boundary of Dn+1. A space homeomorphic to Dn is called an
n-cell. For a subset A of a topological space X we denote by cl(A) and bd(A)
its closure and boundary respectively. For a manifold M we denote by ∂M
its boundary and by int(M) its interior.

Recall that an embedding f : A→ X is bicollared if there is an embedding
F : A × [−1, 1] → X such that F (a, 0) = f(a). We say that A ⊂ X is
bicollared (in X) if the inclusion map is bicollared. An n-cell D (resp. (n−1)-
sphere S) embedded in an n-manifold M is called flat (in M) if there is an
open neighbourhood U ⊂M of D (resp. S) homeomorphic to Rn such that
the pair (U,D) (resp. (U, S)) is homeomorphic to (Rn,Dn) (resp. (Rn, Sn−1)).
An n-cell D embedded in an n-manifold M with boundary is called flat in
(M,∂M) if there is an open neighbourhood U ⊂ M of D homeomorphic to
Rn+ such that (U,D) is homeomorphic to (Rn+,Rn+ ∩ Dn).

Note that a flat (n− 1)-sphere bounds a flat n-cell, and the boundary of
a flat n-cell is a flat (n− 1)-sphere. By [B] every (n− 1)-sphere bicollared in
Rn is flat. It is obvious that an (n− 1)-sphere flat in Rn is bicollared.

We are now ready to sketch the proof of the first main result of this
section.

Fact 3.1. Let D and D′ be two flat n-cells embedded in a connected
n-manifold M . Let f : D → D′ be a homeomorphism. If M is orientable,
suppose additionally that f preserves orientation. Then there is a homeo-
morphism f̄ : M →M isotopic to the identity such that f̄dD= f .

Proof. Choose a sequence D = D0, D1, . . . , Dm = D′ of flat n-cells in
M such that int(Di) ∩ int(Di+1) 6= ∅ for i = 0, 1, . . . ,m − 1 and let Ei ⊂
int(Di)∩ int(Di+1) be a flat n-cell for i = 0, 1, . . . ,m−1. We want to choose
orientations on Di’s and Ei’s so that:

(1) the inclusions Ei ⊂ Di and Ei ⊂ Di+1 are orientation preserving,
(2) f : D → D′ is orientation preserving.

If M is orientable, we can choose an orientation on it and take the in-
duced orientations on Di’s and Ei’s. If M is non-orientable, an arbitrary
choice of orientation on D1 will induce orientations on the remaining Di’s
and Ei’s so that (1) holds. However, (2) may not hold: f : D → D′ may
be orientation reversing. In this case, since M is nonorientable, it con-
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tains orientation reversing loops and therefore we can reroute the sequence
D = D0, D1, . . . , Dm = D′ along such a loop. This will result in reversing
the orientation of D′, making f : D → D′ orientation preserving. Thus, in
either case, we can assume the Di’s and Ei’s are oriented so that properties
(1) and (2) hold.

The Annulus Theorem ([R], [Mo], [K], [Q], [E]) implies that the spaces
Di \ int(Ei) and Di+1 \ int(Ei) are homeomorphic to Sn−1 × [0, 1]. Use the
product structures (together with exterior collars on the ∂Di’s and interior
collars on the ∂Ei’s) to produce a sequence h1, . . . , h2m−2 of isotopies of M ,
each starting at the identity, so that at time 1: h1 moves D1 to E1, h2

moves E1 to D2, h3 moves D2 to E2, . . . , h2m−3 moves Dm−1 to Em−1 and
h2m−2 moves Em−1 to Dm. Each of these time 1 maps is clearly orientation
preserving. Stack these isotopies to obtain an isotopy of M such that H0 is
the identity and H1[D] = D′. Thus H1dD: D → D′ preserves orientation.
Therefore, f ◦ H−1

1 dD′ : D′ → D′ and f ◦ H−1
1 d∂D′ : ∂D′ → ∂D′ preserve

orientation.
The Annulus Theorem implies that all orientation preserving homeo-

morphisms of Rn−1 are stable, and hence isotopic to the identity (see [BG,
Theorem 9.4]). It follows that all orientation preserving homeomorphisms
of Sn−1 are isotopic to the identity. Indeed, a given orientation preserving
homeomorphism of Sn−1 can be isotoped to make it fix a point of Sn−1. Then
apply the preceding statement in the complement of that point to isotope
the homeomorphism of Sn−1 to the identity.

Hence, f ◦ H−1
1 d∂D′ : ∂D′ → ∂D′ is isotopic to the identity. Using a

bicollar on ∂D′, we can run this isotopy tapering it off near the ends of
the bicollar to obtain an isotopy Gt of M such that G0 is the identity,
G1[D′] = D′ and G1d∂D′= f ◦ H−1

1 d∂D′ . Thus, Gt ◦ Ht is an isotopy of M
such that G0 ◦H0 is the identity, G1 ◦H1[D] = D′ and G1 ◦H1d∂D= fd∂D.
Let k = f ◦ (G1 ◦ H1)−1 : D′ → D′. Then k is a homeomorphism of
D′ such that kd∂D′ is the identity. Identify D′ with Dn and define the
Alexander isotopy At of D′ by At(x) = x for t ≤ ‖x‖ ≤ 1 and At(x) =
tk(x/t) for 0 ≤ ‖x‖ ≤ t. Then A0 is the identity, Atd∂D′ is the identity
and A1 = k. We can extend At to an isotopy of M by declaring At to be
the identity on M \ D′. Now At ◦ Gt ◦ Ht is an isotopy of M such that
A0 ◦G0 ◦H0 is the identity and A1 ◦G1 ◦H1dD= f . To finish the proof, let
f̄ = A1 ◦G1 ◦H1.

In the proof of Fact 3.3 below, which is the second main result of this
section, to be used in Section 5.3, we will need the following technical lemma.
The idea of its proof is due to Krzysztof Omiljanowski.

Lemma 3.2. Let M be a connected n-manifold with nonempty boundary
and x1, x2 ∈ ∂M be different. Then there is an embedding f :Dn−1×[0, 1]→M
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such that:

(i) f(0̄, 0) = x1 and f(0̄, 1) = x2,
(ii) f−1[∂M ] = Dn−1 × {0, 1}.
Proof. Let U1, U2 ⊂M be open neigbourhoods of x1 and x2 respectively

homeomorphic to Rn+ such that cl(U1) and cl(U2) are disjoint n-cells. For
i = 1, 2 choose x′i ∈ Ui∩int(M) and letD ⊂ int(M) be a flat n-cell containing
x′1 and x′2 in its interior.

For i = 1, 2 let αi : [0, 1] → Ui be an arc connecting xi to x′i and let
[xi, x

′
i] denote its image. We can assume that [xi, x

′
i] ∩ ∂(cl(Ui)) = {xi}.

Since ∂D disconnects M , it follows that there is a minimal ti ∈ [0, 1] such
that αi(ti) ∈ ∂D. Set x′′i = αi(ti) and note that αid[0,ti] is an arc such that
[xi, x

′′
i ] ∩D = {x′′i }.

Let D′′i ⊂ ∂D ∩ Ui be a flat (n − 1)-cell containing x′′i in its interior.
Since D′′i is flat in ∂D and ∂D is bicollared in M , there is an embedding
gi : Dn−1 × [0, 1]→ Ui disjoint from ∂M such that gi[Dn−1 × [0, 1]] ∩ ∂D =
gi[Dn−1×{1/2}] = D′′i and gi[Dn−1× [0, 1]]∩D = gi[Dn−1× [1/2, 1]]. Denote
the last intersection by Di and note that Di is an n-cell contained in D such
that ∂Di ∩ ∂D = D′′i . Decreasing D′′i if necessary we can assume that Di

is flat in int(cl(Ui)). Therefore, by the Annulus Theorem, cl(Ui) \ int(Di) '
Sn−1 × [0, 1]. Denote this annulus by Ai.

To finish the proof note that D \ (int(Di)∪ int(D′′i )) is compact and thus
Fi = Ai∩ (D \ (int(Di)∪ int(D′′i ))) is closed in Ai. Since [xi, x

′′
i ] ⊂ Ai \Fi, we

can choose a chain V i
1 , . . . , V

i
ni of base open subsets of Ai, disjoint from Fi,

such that V i = V i
1 ∪· · ·∪V i

ni covers [xi, x
′′
i ]. Using the smooth structure on Ai

we can choose a smooth arc βi : [0, 1]→ V i connecting xi to x′′i . Thus there
is a smooth embedding (a tubular neighbourhood) fi : Dn−1 × [0, 1] → V i

such that fi[Dn−1 × [0, 1]] ∩ ∂Ai = fi[Dn−1 × {0, 1}], fi((0̄, 0)) = xi and
fi((0̄, 1)) = x′′i . Using f1, f2 and a homeomorphism g : Dn−1 × [0, 1] → D
such that g[Dn−1 × {0}] = D′′1 and g[Dn−1 × {1}] = D′′2 , we get the required
embedding.

Fact 3.3.

(i) Let M be an n-manifold with nonempty boundary and let D ⊂ ∂M
be an (n− 1)-cell. Then there is a retraction rD : M → D.

(ii) LetM be a connected n-manifold with nonempty disconnected bound-
ary such that there is a connected component S ⊂ ∂M homeomorphic
to Sn−1. Then there is a retraction rS : M → S.

Proof. (i) follows from the fact that discs are ARs.
To prove (ii) let N be a connected component of ∂M different from S

and choose x ∈ S and y ∈ N . Let f : Dn−1 × [0, 1] → M be an embedding
given by Lemma 3.2. We can assume that f(0̄, 0) = x and f(0̄, 1) = y.
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Set T = f [Dn−1 × [0, 1]], Ṫ = f [int(Dn−1)× [0, 1]] and Ṁ = M \ Ṫ . Set
also Di = f [Dn−1 × {i}] and Ḋi = f [int(Dn−1)× {i}] for i = 1, 2.

Now Ṁ is an n-manifold with boundary consisting of connected compo-
nents of ∂M different from S and N , and one additional connected compo-
nent N ′ (homeomorphic to N). Note that D′ = (S \ Ḋ0)∪ f [Sn−1 × [0, 1]] is
an (n− 1)-cell contained in N ′. Thus there is a retraction ṙD′ : Ṁ → D′.

To finish the proof consider the retraction r′S : D′ ∪ T → S given by
r′S(f(x̄, t)) = f(x̄, 0) for all f(x̄, t) ∈ T and note that the map rS : M → S

given by rS(x) = r′S(x) for x ∈ T and rS(x) = r′S ◦ ṙD′(x) for x ∈ Ṁ is a
well defined retraction.

4. Extensions of Toruńczyk’s Lemma. In this section we prove two
extensions of Toruńczyk’s Lemma. This lemma was proved in [J1, Lemma 4]
in dimension 3 and later in [J2, Lemma (3.1)] in the general case. The original
statement says that there is only one, up to homeomorphism, dense and null
family of mutually disjoint flat n-cells embedded in the interior of a compact
n-manifold. In Section 5 we need stronger variants. Namely, such a family is
unique up to a homeomorphism isotopic to any prescribed homeomorphism
of the underlying manifold (Lemma 4.4), and the same holds for two such
families, one for the boundary and the other for the interior of the underlying
manifold (Lemma 4.5).

We start by recalling some definitions.

Definition 4.1. Let M be an n-manifold, let C ⊂M be closed and let
D be a family of n-cells contained in int(M) \ C. We say that D is good for
the pair (M,C) if

• elements of D are flat and mutually disjoint,
• D is a null family,
• S(D) =

⋃
{int(D) : D ∈ D} is dense in M \ C.

For C = ∅ we say that D is good for M . We will often just say “a good
family” if M and C are fixed and no misunderstanding is possible.

Definition 4.2. Let D be a good family of n-cells for a pair (M,C). We
say that a partition D =

⋃
i∈I Di is a good stratication of D if

• the set I is countable (finite or not) and each subfamily Di is countable
infinite,
• S(Di) is dense in (M \ C) \ S(

⋃
j 6=iDj) for every i ∈ I.

Definition 4.3. Let M and N be topological spaces, and let Y and Z
be families of pairwise disjoint subsets of M and N respectively. Suppose
that partitions Y =

⋃
i∈I Yi and Z =

⋃
i∈I Zi are given. We say that a

homeomorphism f : M → N respects the stratifications if f [Y ] ∈ Zi for
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every i ∈ I and every Y ∈ Yi and moreover the map fi : Yi → Zi given by
fi[Y ] = f [Y ] is bijective for every i ∈ I.

The following lemma is our first extension of Toruńczyk’s Lemma. We
will use it in the proofs of Lemma 4.5 and Theorem 5.2.

Lemma 4.4. Let M and N be compact n-manifolds with (possibly empty)
boundary, let CM ⊂ M and CN ⊂ N be closed subsets and let Y =

⋃
i∈I Yi

and Z =
⋃
i∈I Zi be good stratified families of n-cells for (M,CM ) and

(N,CN ) respectively, consisting of the same number, finite or not, of sub-
families. Let h : (M,CM ) → (N,CN ) be a homeomorphism. Then there
exists a homeomorphism h′ : (M,CM ) → (N,CN ) isotopic to h, coinciding
with h on ∂M ∪ CM and respecting the stratifications.

Proof. The proof is adapted from [J1]. More precisely, first note that
without loss of generality we can assume that M = N , CM = CN , h = idM
and diam(M) < 1. Let H(M,CM ∪ ∂M) denote the group of homeomor-
phisms of M which are the identity on ∂M ∪CM and let H0(M,CM ∪ ∂M)
denote its subgroup consisting of homeomorphisms isotopic to the iden-
tity.

Choose ε > 0 such that if dist(h, id) < ε, then h is isotopic to the identity.
Such an ε exists, since the homeomorphism group of M is locally arcwise
connected (see [EK]).

For i ∈ I and n = 1, 2, . . . let Yni = {Y ∈ Yi : diam(Y ) ≥ ε2−n} and
Zni = {Z ∈ Zi : diam(Z) ≥ ε2−n}. Set Yn =

⋃
i∈I Yni and Zn =

⋃
i∈I Zni .

For a homeomorphism f : M → M and a family T of subsets of M let
f(T ) = {f [T ] : T ∈ T }.

We inductively construct homeomorphisms fn, gn ∈ H0(M,CM ∪ ∂M)
satisfying the following conditions:

(an) for every Y ∈ Yni there is ZY ∈ Zi such that fn[Y ] = gn[ZY ],
(bn) for every Z ∈ Zni there is YZ ∈ Yi such that fn[YZ ] = gn[Z],
(cn) diam(fn[Y ]) < ε2−n for every Y ∈ Y \ (Yn ∪ f−1

n ◦ gn(Zn)),
(dn) diam(gn[Z]) < ε2−n for every Z ∈ Z \ (Zn ∪ g−1

n ◦ fn(Yn)),
(en) fndY = fn−1dY for Y ∈ Yn−1 ∪ f−1

n−1 ◦ gn−1(Zn−1),
(fn) gndZ= gn−1dZ for Z ∈ Zn−1 ∪ g−1

n−1 ◦ fn−1(Yn−1),
(gn) dist(fn, fn−1) ≤ ε2−n+2 and dist(f−1

n , f−1
n−1) ≤ ε2−n+2,

(hn) dist(gn, gn−1) ≤ ε2−n+3 and dist(g−1
n , g−1

n−1) ≤ ε2−n+3.

The construction is almost the same as in [J1, proof of Lemma 4]. There are
only few differences. Namely, elements ZY and YZ from the above mentioned
proof can be chosen from the families Zi and Yi, the Annulus Theorem holds
in every dimension and all the homeomorphisms considered there can be
chosen from H0(M,CM ∪ ∂M). We omit further details.



TREES OF MANIFOLDS WITH BOUNDARY 11

Let f = lim fn and g = lim gn. These two maps are in H(M,CM ∪
∂M) due to conditions (gn) and (hn) (see [BP, Propositions 1.1 and 1.2]);
moreover, they are both in H0(M,CM ∪ ∂M), since they are both within ε
of the identity. The composition h′ = g−1 ◦ f has the required properties.

The following is another extension of Toruńczyk’s Lemma. We will use
it in the proof of Theorem 5.5.

Lemma 4.5. Let M and N be compact n-manifolds with boundary. Let
CM ⊂ ∂M and CN ⊂ ∂N be closed subsets. Let Y1 =

⋃
i∈I Y1

i and Z1 =⋃
i∈I Z1

i be good stratified families of (n − 1)-cells for the pairs (∂M,CM )
and (∂N,CN ) respectively, consisting of the same number, finite or not, of
subfamilies. Similarly, let Y0 =

⋃
j∈J Y0

j and Z0 =
⋃
j∈J Z0

j be good strat-
ified families of n-cells for M and N respectively, consisting of the same
number, finite or not, of subfamilies. Let h : (M,CM )→ (N,CN ) be a hom-
eomorphism. Then there exists a homeomorphism h′ : (M,CM ) → (N,CN )
isotopic to h, coinciding with h on CM and respecting the stratifications.

Proof. First we apply Lemma 4.4 to the pairs (∂M,CM ) and (∂N,CN ),
to the homeomorphism hd∂M : ∂M → ∂N and to the good stratified families
Y1 =

⋃
i∈I Y1

i and Z1 =
⋃
i∈I Z1

i to get a homeomorphism h′′ : ∂M → ∂N
isotopic to hd∂M such that h′′dCM= hdCM and h′′ respects the stratifications.
Since h′′ is isotopic to the restriction of h : M → N , and since ∂M and ∂N
are collared in M and N respectively (see [D, p. 40]), there is an extension
h̃′′ : M → N of h′′ isotopic to h. Applying again Lemma 4.4 to h̃′′ : M → N ,
to CM = CN = ∅ and to the good stratified families Y0 =

⋃
j∈J Y0

j and
Z0 =

⋃
j∈J Z0

j we get a homeomorphism h′ : M → N isotopic to h̃′′ such
that h′d∂M= h̃′′d∂M and which respects the stratifications.

5. Trees of manifolds with boundary. In this section we give a pre-
cise description of spaces which we call trees of manifolds with boundary
and boundary trees of manifolds with boundary. We also study their basic
properties.

The constructions are described in Sections 5.1 and 5.2, where we also
show that, for any countable (finite or not) familyM of compact n-manifolds
with boundary, there is exactly one (up to homeomorphism) regular (bound-
ary) tree of manifolds fromM.

In Section 5.3 we prove that the topological dimension of a saturated
(boundary) tree of n-manifolds with boundary is equal to n− 1. Thus these
spaces differ from trees of closed n-manifolds, which have dimension n (see
[J2] and [St]).

It is an open question whether a (boundary) tree of n-manifolds with
boundary can be homeomorphic to a tree of closed (n−1)-manifolds, but the
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author expects that some cohomological properties can be used to distinguish
these classes.

5.1. Trees of manifolds with boundary: description and unique-
ness. Let T be a countable (finite or not) tree. LetM be a countable (finite
or not) family of compact, connected n-manifolds and suppose that ∂M0 6= ∅
for some M0 ∈M.

For t ∈ VT let Mt be a manifold homeomorphic to some M ∈ M, let
Dt = {De : e ∈ Nt} be a null family of pairwise disjoint flat n-cells in
int(Mt) and let Kt = Mt \ S(Dt).

For e ∈ OT set Σe = bd(De) ⊆ Kα(e) and let φe : Σe → Σē be a
homeomorphism such that φē = φ−1

e .
Let c : VT → M be a function such that Mt is homeomorphic to c(t).

Such a map is called a colouring and T is called a coloured tree. For t ∈ VT
and M ∈M set Dt,M = {De ∈ Dt : c(ω(e)) = M}.

Definition 5.1. A tree system of manifolds from M is a tree system
Θ = (T, {Kt}, {Σe}, {φe}) as described above. The system is called dense if
additionally Dt is a good family for Mt for every t ∈ VT , and saturated if
it is dense and {t ∈ VT : ∂Mt 6= ∅} spans all of T (i.e. the minimal subtree
containing this subset of vertices is T ). We say that Θ is regular if it is dense
and:

• Dt =
⋃
M∈MDt,M is a good stratification for every t ∈ VT (in par-

ticular Dt,M is infinite for all t and M),
• if elements ofM are orientable, then each Mt is oriented so that the

corresponding homeomorphism Mt → c(t) preserves orientation and
the homeomorphisms φe reverse the induced orientations.

The limit limΘ is called a (resp. dense, saturated, regular) tree of manifolds
fromM.

Observe that if Θ is regular, then for each vertex t of T , c maps the set
of vertices of T that are adjacent to t ∞-to-1 ontoM.

The main result of this section is the following:

Theorem 5.2. Let Θ = (T, {Kt}, {Σe}, {φe}) and Θ′ = (T ′, {K ′t′},
{Σ′e′}, {φ′e′}) be any two regular tree systems of manifolds from M. Then
these tree systems are isomorphic and hence their limits are homeomorphic.

We denote by X (M) any regular tree of manifolds from M. In view of
Theorem 5.2, this space is unique up to homeomorphism and depends only
on the familyM.

Before we start the proof of Theorem 5.2, we prove the following:

Lemma 5.3. Let Θ1 be a regular tree system of manifolds from M =
{Mi : i ∈ I} and let i0 ∈ I. Then there is a regular tree system Θ2 of
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manifolds from {Mi # Mi0 : i ∈ I \ {i0}} such that limΘ1 and limΘ2 are
homeomorphic. More precisely, Θ2 can be obtained from Θ1 by consolidation
as described before Fact 2.4.

Proof. Let Θ1 = (T, {Kt}, {Σe}, {φe}). We will construct a partition Π
of T into subtrees such that every S ∈ Π has exactly two vertices, one with
colour Mi0 and the other with colour Mi for some i 6= i0. The consolidation
ΘΠ of Θ1 with respect to Π satisfies the desired conditions.

To construct Π let {t1, t2, . . .} be an enumeration of all vertices t of T
with c(t) = Mi0 , and let {t′1, t′2, . . .} be an enumeration of all other vertices
of T . Note that since Θ is regular, for every i the set {j : t′j ∈ Nti} is infinite,
and similarly for every j the set {i : ti ∈ Nt′j

} is infinite.
We inductively construct sequences i0, i1, . . . and j0, j2, . . . and sequence

S0, S1, . . . such that:
(i) Sk = (tik , t

′
jk

) is a subtree of T consisting of two vertices, which is
disjoint from S0, S1, . . . , Sk−1,

(ii) c(tik) = Mi0 and c(t′jk) 6= Mi0 ,
(iii) {tik : k = 0, 1, . . .} ∪ {t′jk : k = 0, 1, . . .} = VT .
Let i0 = 0, j0 = min {j : t′j ∈ Nti0

} and let S0 = (ti0 , t
′
j0

). Now sup-
pose that we have constructed S0 = (ti0 , t

′
j0

), S1 = (ti1 , t
′
j1

), . . . , Sn−1 =
(tin−1 , t

′
jn−1

) satisfying (i) and (ii). We will construct in, jn and Sn such that
(i) and (ii) are satisfied.

Suppose first that n = 2k+1. Let jn = min {j : t′j /∈ S0 ∪ S1 ∪ · · · ∪ Sn−1}
and let in = min {i : ti ∈ Nt′jn

, ti /∈ S0 ∪ S1 ∪ · · · ∪ Sn−1}. Set Sn = (tin , t
′
jn

).
The construction for n = 2k is similar.

To finish the proof note that (iii) is satisfied, and so Π = {S0, S1, . . .} is
the required partition.

Proof of Theorem 5.2. By Lemma 5.3 we can assume that all manifolds
from M have nonempty boundary and, by a similar argument, that either
all manifolds fromM are oriented, or all are nonorientable.

For a tree T , a vertex t ∈ VT and a natural number k let Tk(t) denote the
subtree of T spanned by all vertices at distance less than or equal to k from t.

Select t0 ∈ VT . Inductively we construct the following data:
(i) isomorphisms λk : Tk(t0) → T ′k(λ0(t0)) of coloured trees such that

λk+1dTk(t)= λk,
(ii) homeomorphisms ft : Mt →M ′λk(t) for t ∈ VTk(t0)\VTk−1(t0) (orienta-

tion preserving if all manifolds fromM are oriented) respecting the
stratifications such that ft[Σe] = Σ′λk(e) and φ′λk(e) ◦ (fα(e)dΣα(e)

) =

fω(e) ◦ φe for the unique edge e ∈ Nt ∩OTk(t0).
Let t′ ∈ VT ′ be a vertex such that c(t0) = c′(t′) and let h : Mt0 → M ′t′

be an (orientation preserving) homeomorphism. We apply Lemma 4.4 to
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h : (Mt0 , ∂Mt0)→ (M ′t′ , ∂M
′
t′) and to the good stratified families Dt0,M and

D′t′,M to get a homeomorphism ft0 : Mt0 → M ′t′ isotopic to h (and thus
orientation preserving if necessary) which respects the stratifications. Set
λ0(t0) = t′.

Suppose now that for k = 0, 1 . . . ,m we have constructed isomorphisms
λk and homeomorphisms ft satisfying the required conditions.

For t ∈ VTm+1(t0)\VTm(t0) let e be the unique edge such that α(e) = t and
ω(e) ∈ VTm(t0). Consider the cellDē ⊂Mω(e). There is a uniqueM ∈M such
thatDē ∈ Dω(e),M . Let e′ ∈ OT ′ be the unique edge such that fω(e)[Dē] = D′

ē′

and let t′ = α′(e′). Set λm+1(t) = t′, λm+1(e) = e′ and λm+1(ē) = ē′.
Note that D′

ē′
∈ D′λm(ω(e)),M since fω(e) respects the stratifications. Con-

sider now the homeomorphism (φ′e′)
−1 ◦ fω(e) ◦ φe : Σe → Σ′e′ and note

that we can extend it to an (orientation preserving) homeomorphism fe :
De → D′e′ . Since De and D′e′ are flat in Mt and M ′t′ respectively and
since c(t) = c′(t′), by Fact 3.1 there is an (orientation preserving) hom-
eomorphism ht : Mt → M ′t′ extending fe. We now apply Lemma 4.4 to
ht : (Mt, De ∪ ∂Mt)→ (M ′t′ , D

′
e′ ∪ ∂M ′t′) and to the good stratified families

Dt,M \ {De} and D′t′,M \ {D′e′} to get an (orientation preserving) homeo-
morphism ft : Mt →M ′t′ extending fe and preserving the stratifications.

Finally, set λm+1(t) = λm(t) for t ∈ VTm(t0), λm+1(e) = λm(e) for e ∈
OTm(t0) and note that conditions (i)–(ii) are satisfied with m replaced by
m+ 1.

To finish the proof set λ =
⋃
m λm and note that F = (λ, {ftdKt}) is an

isomorphism of the tree systems Θ and Θ′.

5.2. Boundary trees of manifolds with boundary: description
and uniqueness. Let T be a countable tree (finite or not). Let M be a
a countable (finite or not) family of compact, connected n-manifolds and
suppose that ∂M0 6= ∅ for some M0 ∈M.

For t ∈ VT let Mt be a manifold homeomorphic to some M ∈ M. Let
OT = Oint

T ∪ Obd
T be a partition such that if e ∈ Obd

T then ē ∈ Obd
T and

∂Mα(e) 6= ∅.
Set N int

t = Nt ∩Oint
T and Nbd

t = Nt ∩Obd
T . Let D0

t = {De : e ∈ N int
t } be

a null family of pairwise disjoint flat n-cells in Mt, let D1
t = {De : e ∈ Nbd

t }
be a null family of pairwise disjoint flat (n − 1)-cells in ∂Mt and set Kt =
Mt \ S(D0

t ).
For e ∈ Oint

T set Σe = ∂De ⊂ Kα(e), for e ∈ Obd
T set Σe = De ⊂ Kα(e)

and for every e ∈ OT let φe : Σe → Σē be a homeomorphism such that
φē = φ−1

e .
For M ∈ M let ∂M = N+

M,1 t · · · t N
+
M,kM

t N−M,1 t · · · t N
−
M,lM

be a
decomposition of ∂M into connected components, where the N+

M,j are ori-
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entable and the N−M,j are nonorientable (it may happen that all components
are orientable and then lM = 0, or all are nonorientable, and then kM = 0;
it may also happen that ∂M = ∅ and then kM = lM = 0, but recall that
∂M0 6= ∅ for some M0 ∈M).

Let c : VT → M be a colouring such that Mt is homeomorphic to
c(t). Thus, for t ∈ VT with c(t) = M we have a decomposition ∂Mt =
N+
t,M,1 t N

+
t,M,2 t · · · t N

+
t,M,kM

t N−t,M,1 t N
−
t,M,2 t · · · t N

−
t,M,lM

where
N+
t,M,j (resp. N−t,M,j) is a connected component of ∂Mt corresponding to

N+
M,j (resp. N

−
M,j).

For M ∈ M let D0
t,M = {De ∈ D0

t : c(ω(e)) = M}. For M ∈ M and
j ∈ {1, . . . , kM} let D1+

t,M,j = {De ∈ D1
t : c(ω(e)) = M and Dē ⊂ N+

ω(e),M,j}.
Similarly, for M ∈ M and j ∈ {1, . . . , lM} let D1−

t,M,j = {De ∈ D1
t : c(ω(e))

= M and Dē ⊂ N−ω(e),M,j}. Set D
1+
t =

⋃
M∈M, j∈{1,...,kM}D

1+
t,M,j and D

1−
t =⋃

M∈M, j∈{1,...,lM}D
1−
t,M,j .

Definition 5.4. A boundary tree system of manifolds fromM is a tree
system Θ = (T, {Kt}, {Σe}, {φe}) as described above. It is called dense if
additionally D0

t is a good family for Mt and D1
t is a good family for ∂Mt for

every t ∈ VT , and saturated if it is dense and the set {t ∈ VT : ∂Mt 6= ∅}
spans all of T . We say that Θ is regular if it is dense and

• D0
t =

⋃
M∈MD0

t,M is a good stratification for Mt for every t ∈ VT ,
• D1+

t =
⋃
M∈M, j∈{1,...,kM}D

1+
t,M,j is a good stratification for the ori-

entable part of ∂Mt for every t ∈ VT ,
• D1−

t =
⋃
M∈M, j∈{1,...,lM}D

1−
t,M,j is a good stratification for the nonori-

entable part of ∂Mt for every t ∈ VT ,
• if elements ofM are all orientable, they are oriented and the homeo-

morphisms φe reverse orientation (the orientation of the boundary is
consistent with the orientation of the manifold); otherwise, we assume
that all orientable components of the boundaries are oriented and φe
reverses orientation for e ∈ Obd

T such that Σe is contained in some
oriented component of ∂Mα(e).

The limit limΘ is called a (resp. dense, saturated, regular) boundary tree of
manifolds fromM.

The main result of this section is the following:

Theorem 5.5. Let Θ = (T, {Kt}, {Σe}, {φe}) and Θ′ = (T ′, {K ′t′},
{Σ′e′}, {φ′e′}) be any two regular boundary tree systems of manifolds fromM.
Then these systems are homeomorphic and hence their limits are homeo-
morphic.
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We denote by Xbd(M) any regular boundary tree of manifolds fromM.
Again, this space is unique up to homeomorphism and depends only onM.

An argument very similar to that from the proof of Lemma 5.3 can be
used to show the following lemma. We omit the details.

Lemma 5.6. Let Θ1 be a regular boundary trees system of manifolds from
M = {Mi : i ∈ I} and let i0 ∈ I. Then there is a regular boundary tree system
Θ2 of manifolds from {Mi #Mi0 : i ∈ I \ {i0}} such that limΘ1 and limΘ2

are homeomorphic.

Proof of Theorem 5.5. By Lemma 5.6 we can assume that all manifolds
fromM have nonempty boundary. We can also assume that either they are
all oriented, or all are nonorientable.

Fix t0 ∈ T . As in the proof of Theorem 5.2, we inductively construct the
following data:

(i) isomorphisms λk : Tk(t0) → T ′k(λ0(t0)) of coloured trees such that
λk+1dTk(t)= λk,

(ii) homeomorphisms ft : Mt → M ′λk(t) for t ∈ VTk(t0) \ VTk−1(t0) re-
specting the stratifications such that ft[Σe] = Σ′λk(e) and φ′λk(e) ◦
(fα(e)dΣα(e)

) = fω(e) ◦φe for e ∈ Nt∩OTk(t0) (if all manifolds fromM
are oriented, we demand that every ft preserves orientation, in the
oposite case every ft should preserve the orientation of the oriented
parts of the boundary).

Let t′ ∈ T ′ with c′(t′) = c(t0) and let h : Mt0 → M ′t′ be an (orientation
preserving or boundary orientation preserving if necessary) homeomorphism.
We apply Lemma 4.5 to h : Mt0 → M ′t′ and to the good stratified families
D0
t0,M

, (D′)0
t′,M , D1+

t0,M,j , (D′)1+
t′,M,j and D1−

t0,M,j , (D′)1−
t′,M,j , to get a homeo-

morphism ft0 : Mt0 →Mt′ isotopic to h (and thus orientation preserving or
boundary orientation preserving if necessary) which respects the stratifica-
tions. Set λ0(t0) = t′.

Suppose now that for k = 0, 1, . . . ,m we have constructed isomorphisms
λk and homeomorphisms ft satisfying the required conditions.

For t ∈ VTm+1(t0) \ VTm(t0) let e be the unique edge such that α(e) = t
and ω(e) ∈ VTm(t0).

Suppose first that e ∈ Oint
T . Then there is a unique M ∈ M such that

Dē ∈ D0
ω(e),M . Let e′ ∈ Oint

T ′ be the unique edge such that fω(e)[Dē] = D′
ē′

and let t′ = α′(e′). Set λm+1(t) = t′, λm+1(e) = e′ and λm+1(ē) = ē′.
Note that D′

ē′
∈ (D′)0

λm(ω(e)),M since fω(e) respects the stratifications.
Consider now the homeomorphism (φ′)−1

e′ ◦ fω(e) ◦ φe : Σe → Σ′e′ and
note that we can extend it to an (orientation preserving) homeomorphism
fe : De → D′e′ . Since De and D′e′ are flat in Mt and M ′t′ respectively and
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since c(t) = c′(t′), by Fact 3.1 there is an (orientation preserving or bound-
ary orientation preserving if necessary) homeomorphism ht : Mt → M ′t′
extending fe.

We now apply Lemma 4.5 to htdMt\int(De): (Mt \ int(De), Σe) → (M ′t′ \
int(D′e′), Σe′) and to the good stratified families D0

t,M \{De}, (D′)0
t′,M \{D′e′},

D1+
t,M,j , (D′)1+

t′,M,j and D1−
t,M,j , (D′)1−

t′,M,j to get an (orientation preserving or
boundary orientation preserving if necessary) homeomorphism h′t : Mt \
int(De) → M ′t′ \ int(D′e′) extending (φ′)−1

e′ ◦ fω(e) ◦ φe which respects the
stratifications. Set ft = h′t ∪ fedDe .

Suppose now that e ∈ Obd
T . Then there is a unique pair (M, j) such that

Dē ∈ D1+
ω(e),M,j or Dē ∈ D1−

ω(e),M,j . Suppose the former case holds (the latter
is similar). Let e′ ∈ Obd

T be the unique edge such that fω(e)[Dē] = D′
ē′

and
let t′ = α′(e′). Set λm+1(t) = t′, λm+1(e) = e′ and λm+1(ē) = ē′.

Note that D′
ē′
∈ (D′)1+

λm(ω(e)),M,j since fω(e) respects the stratifications.
Moreover, De ⊂ N+

t,M,j and D′e′ ⊂ (N ′)+
t′,M,j . Consider the orientation pre-

serving homeomorphism (φ′)−1
e′ ◦ fω(e) ◦ φe : De → D′e′ . Since De and D′e′

are flat in ∂Mt and ∂M ′t′ (and thus in N+
t,M,j and (N ′)+

t′,M,j) respectively,
and since c(t) = c′(t′), by Fact 3.1 there is an orientation preserving homeo-
morphism h′t : N+

t,M,j → (N ′)+
t′,M,j extending (φ′)−1

e′ ◦fω(e)◦φe. We can extend
h′t to a homeomorphism h′′t : ∂Mt → ∂M ′t′ . Moreover, since h′t is isotopic to
a homeomorphism which is extendable, we can extend it to an (orientation
preserving or boundary orientation preserving if necessary) homeomorphism
ht : Mt →M ′t′ .

We now apply Lemma 4.5 to ht : (Mt, De) → (M ′t′ , D
′
e′) and to the

good stratified families D0
t,M , (D′)0

t′,M , D1+
t,M,j \ {De}, (D′)1+

t′,M,j \ {D
′
e′} and

D1−
t,M,j , (D′)1−

t′,M,j to get a homeomorphism ft : Mt →M ′t′ coinciding with ht
on De (and thus extending (φ′)−1

e′ ◦ fω(e) ◦φe) and isotopic to ht (orientation
preserving or boundary orientation preserving if necessary), which respects
the stratifications.

Finally, set λm+1(t) = λm(t) for t ∈ VTm(t0), λm+1(e) = λm(e) for e ∈
OTm(t0) and note that conditions (i)–(ii) are satisfied with m replaced by
m+ 1.

To finish the proof set λ =
⋃
m λm and note that F = (λ, {ftdKt}) is an

isomorphism of the tree systems Θ and Θ′.

Remark 5.7. Note that in our construction, operations of boundary sum
are performed separately along oriented and nonorientable parts of bound-
aries.

This obstruction can be omitted using Stalling’s notion of dense orien-
tation (see [St]), but this notion is very technical and complicated, thus we
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have decided to restrict our construction to the case described before Defi-
nition 5.4.

5.3. Topological dimension. In this section we calculate the topo-
logical dimension of (boundary) trees of manifolds. The main result of this
section is the following:

Theorem 5.8.

(i) Let Θ be a saturated tree system of n-manifolds with boundary from
M. Then dim(limΘ) = n− 1.

(ii) Let Θ be a saturated boundary tree system of n-manifolds with bound-
ary fromM. Then dim(limΘ) = n− 1.

Before the proof we need some preparation. We will need the following:

Lemma 5.9.

(i) Let M be an n-manifold with nonempty boundary and let D be a good
family of n-cells for M . Then for every D ∈ D there is a retraction
r∂D : M \ int(D)→ ∂D such that r∂D[D′] is a point for every D′ ∈
D \ {D}.

(ii) Let M be an n-manifold with nonempty boundary, let D0 be a good
family of n-cells for M and let D1 be a good family of (n − 1)-cells
for ∂M . Then:

(a) for every D ∈ D0 there is a retraction r∂D : M \ int(D) → ∂D
such that r∂D[D′] is a point for every D′ ∈ (D0 \ {D}) ∪ D1,

(b) for every D ∈ D1 there is a retraction rD : M → D such that
rD[D′] is a point for every D′ ∈ D0 ∪ (D1 \ {D}).

In the proof of this lemma we will use the notion of a shrinkable decom-
position of a topological space, which we recall below.

A decomposition G of a topological space X is a partition of X. A de-
composition G of X is upper semicontinuous (usc) if it consists of compact
elements and for each g ∈ G and every open neighbourhood U ⊂ X of g there
is an open neighbourhood V ⊂ X of g such that every g′ ∈ G intersecting
V is contained in U . An usc decomposition G of X is shrinkable if for every
open, G-saturated cover U of X (i.e. every U ∈ U is G-saturated) and every
open cover V of X there is a homeomorphism h : X → X satisfying:

• for every x ∈ X there is U ∈ U such that x, h(x) ∈ U ,
• for every g ∈ G there is V ∈ V such that h[g] ⊂ V .

For a decomposition G of X let HG = {g ∈ G : g contains more than one
point} and let NG =

⋃
HG .
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A compact subset C ⊂ X is locally shrinkable in X if for every open
neighbourhood U ⊂ X of C and every open cover V of X there are a hom-
eomorphism h : X → X and V ∈ V such that h[C] ⊂ V and hdX\U= id.

In the proof of Lemma 5.9 we will use the following two lemmas.

Lemma 5.10. Let D be a good family of n-cells for Dn. Then for every
ε > 0 there is a homeomorphism h : Dn → Dn isotopic to the identity such
that hdSn−1= id and diam(h[D]) < ε for every D ∈ D.

The proof is almost the same as the proof of Lemma 2 from [M], so we
omit it.

Lemma 5.11.

(i) Let M be an n-manifold with (possibly empty) boundary and let D be
a good family of n-cells for M . Then for every D ∈ D and for every
open neighbourhood U of D there is another open neighbourhood UD
of D contained in U such that cl(UD) is an n-cell flat in M and
∂(cl(UD)) is disjoint from elements of D.

(ii) Let M be an n-manifold with nonempty boundary, let D0 be a good
family of n-cells for M and let D1 be a good family of (n − 1)-cells
for ∂M . Then:

(a) for every D ∈ D0 and every open neighbourhood U of D there
is another open neighbourhood UD of D contained in U such
that cl(UD) is an n-cell flat in M and ∂(cl(UD)) is disjoint from
elements of D0,

(b) for every D ∈ D1 and every open neighbourhood U of D there
is another open neighbourhood UD of D contained in U such
that cl(UD) is an n-cell flat in (M,∂M), cl(UD) ∩ ∂M is a flat
(n− 1)-cell in ∂M with boundary disjoint from elements of D1,
and ∂(cl(UD)) is disjoint from elements of D0.

Proof. For (i) we consider a decomposition G ofM such thatHG = D. By
[Fr, Theorem 7.2] this decomposition is shrinkable (for M = R3 this result
is due to [Bi] and [M], and actually its proof easily adapts to any manifold
of any dimension), and thus by [D, Theorem 2, p. 23] the quotient map Π :
M → M/G can be approximated by homeomorphisms. In particular M/G
is homeomorphic to M . Consider now an n-cell D̄ flat in M/G containing
Π[D] such that ∂D̄ ∩ Π[D] = ∅. Its preimage clearly satisfies the required
conditions.

The proof of (ii)(a) is the same. To prove (ii)(b) we first consider a
decomposition G1 of ∂M such that HG1 = D1 to get an (n − 1)-cell D̃ flat
in ∂M containing D with boundary disjoint from elements of D1. Denote
this boundary by S. We then consider a decomposition G0 of M such that
HG0 = D0. Again M/G0 is homeomorphic to M . Let D̄ be an n-cell flat in
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(M/G, ∂[M/G]) such that D̄ ∩ ∂M = D̃ and ∂D̄ is disjoint from Π[D0]. Its
preimage satisfies the required conditions.

Proof of Lemma 5.9. For (i), let M ′ = M \ int(D). Consider a decompo-
sition G of M ′ such that HG = D \ {D}. By [D, Proposition 3, p. 14], G is
usc, and by [Fr, Theorem 7.2] it is shrinkable. Therefore, by [D, Theorem 2,
p. 23], the decomposition map π : M ′ → M ′/G can be approximated by
homeomorphisms. In particularM ′/G is homeomorphic toM ′ and thus is an
n-manifold with disconnected boundary. Note also that πd∂D: ∂D → ∂D is a
homeomorphism. By Fact 3.3.ii, there is a retraction r′π[∂D] : M ′/G → π[∂D].
The composition r∂D = (πd∂D)−1 ◦ r′π[∂D] ◦π satisfies the desired conditions.

For (ii)(a), consider a decomposition G of M ′ = M \ int(D) such that
HG = (D0 \ {D}) ∪ D1, which is again usc.

For ε > 0 and g ∈ G set N(g, ε) = {x ∈ M ′ : d(x, g) < ε}. We will
show that for every ε > 0 and every g0 ∈ HG there is a homeomorphism
h : M ′ →M ′ such that:

• hdM ′\N(g0,ε)= id,
• diam(h[g0]) < ε,
• for every g ∈ G we have diam(h[g]) < ε or h[g] ⊂ N(g, ε).

To see this, for g ∈ D0 \ {D} consider an open neighbourhood Ug of g
given by Lemma 5.11(ii)(a). By Lemma 5.10 there is a homeomorphism h′ :
cl(Ug)→ cl(Ug) such that diam(h′[g′]) < ε for every g′ ∈ G with g′ ⊂ Ug and
h′d∂(cl(Ug))= id. It can be extended via id to a homeomorphism h : M ′ →M ′

which clearly satisfies the required conditions.
For g ∈ D1 consider an open neighbourhood Ug of g given by Lemma

5.11(ii)(b). Set Dg = cl(Ug) ∩ ∂M ; this is an (n − 1)-cell flat in ∂M . By
Lemma 5.10 there is a homeomorphism f ′ : Dg → Dg such that f ′d∂Dg= id
and diam(f ′[g′]) < ε for every g′ ∈ D1 with g′ ⊂ Dg. It can be extended
via id to a homeomorphism f ′′ : ∂(cl(Ug)) → ∂(cl(Ug)), which extends to a
homeomorphism f : cl(Ug) → cl(Ug). Using Lemma 5.10 we get a homeo-
morphism h′ : cl(Ug) → cl(Ug) which is the identity on the boundary and
diam(h′[f ′[g′]]) < ε for every g′ ∈ D0 with g′ ⊂ cl(Ug). The composition
h′ ◦ f ′ extends via id to a homeomorphism h : M ′ → M ′ which clearly
satisfies the desired conditions.

Therefore the assumptions of [D, Theorem 5, p 47] are fullfilled and hence
the decomposition G is shrinkable. Using the same arguments as in the proof
of (i) we get a retraction r∂D : M ′ → ∂D with the desired properties.

For (ii)(b), consider a decomposition G of M such that HG = D0 ∪
(D1 \ {D}). Using arguments similar to those above, applying Fact 3.3(ii)
instead of Fact 3.3(i), we get a retraction rD : M → D with the desired
properties. We omit further details.



TREES OF MANIFOLDS WITH BOUNDARY 21

Proof of Theorem 5.8. In both cases we will show that Θ admits a trivial
associated family of extended spaces and maps, which is fine.

To see this in case (i), first note that since Θ is saturated, it is not hard
to find a partition Π of the underlying tree T into finite subtrees such that
every S ∈ Π has a vertex t with ∂Mt 6= ∅. Therefore we can assume that
every manifold fromM has nonempty boundary. Let e ∈ OT be an edge and
consider the manifold Mω(e) \ int(Dē). By Lemma 5.9(i) there is a retraction
re : Mω(e)\int(Dē)→ Σē such that re[Σe′ ] is a point for every e′ ∈ Nω(e)\{ē}.
The composition δe = φē ◦ (redKω(e)

) : Kω(e) → Σe satisfies δedΣē= φē, and
moreover δe[Σe′ ] is a point for every e′ ∈ Nω(e) \ {ē}. Set K̂e = Kω(e) and
note that E = {{K̂e : e ∈ OT }, {δe : e ∈ OT }} is a fine, trivial associated
family of extended spaces and maps for Θ.

We now show that dimKt = n − 1 for every t ∈ VT , and thus the
statement will follow from Fact 2.5. Since Kt contains the boundary of an
n-cell, whose interior was removed, we have dimKt ≥ n−1. To see the reverse
inequality, suppose first that Mt is a closed manifold. It can be covered by
a countable family {U1, U2, . . .} of open subsets, each homeomorphic to Rn.
Since Kt = Mt \ S(Dt), where Dt is a good family of n-cells for Mt, the
intersections Kt ∩ Ui contain no interior points and thus all have dimension
< n (see [AP, Theorem 20, p. 133]). Therefore dimKt ≤ n− 1.

If Mt has the boundary, let Nt = Mt × {0, 1}/∼, where ∼ is the equiva-
lence relation given by (x, 0) ∼ (x, 1) for x ∈ ∂Mt. Note that Nt is a closed
n-manifold. Now dim(Kt×{0, 1}/∼) ≤ n− 1 by the previous argument and
thus dimKt ≤ n− 1. This finishes the proof of case (i).

The proof in (ii) is similar, so we omit it.

6. The conjecture. In this section we precisely formulate the conjecture
mentioned in the Introduction, concerning the appearance of boundary trees
of manifolds with boundary as ideal boundaries of certain groups. This conjec-
ture was suggested by J. Świątkowski. To do this we need some preparation.

We start by recalling some terminology concerning simplicial complexes.
Let K be a simplicial complex and let L be its subcomplex. We say that K
is flag if every set of its vertices pairwise connected by edges spans a simplex
in K. Further, L is called full in K if every simplex in K spanned by a set of
vertices from L is a simplex in L. We say that L is 2-geodesically convex in
K if it is full in K and every geodesic of length 2 in the 1-skeleton of K with
endpoints from L is entirely contained in L (this condition was introduced
in [JS], where it was called 3-convexity).

Before we formulate the conjecture, we introduce a new kind of regular
tree systems of manifolds with boundary, the limits of which will appear in
the statement of the conjecture.
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Let N be a fixed n-manifold with nonempty boundary, let D0 = {D0
i :

i ∈ N} be a good family of n-cells for N and let D1 = {D1
i : i ∈ N} be a

good family of (n− 1)-cells for ∂N .
Let T be a countable, locally infinite tree. Let cE : OT → {0, 1} be a

function such that cE(e) = cE(ē). Suppose that for every t ∈ VT and for i =
0, 1 the set {e ∈ Nt : cE(e) = i} is infinite. For i = 0, 1 set OiT = {e ∈ OT :
cE(e) = i} and let ciE : OiT → N be a map such that ciE(e) = ciE(ē) and for
every t ∈ VT the restriction ciEdNt is bijective.

For t ∈ VT set Mt = N ×{t}, D0
t = {D0

i ×{t} : i ∈ N}, D1
t = {D1

i ×{t} :
i ∈ N} and Kt = Mt \ S(D0

t ).
For e ∈ O0

T set Σe = ∂(D0
c0E(α(e))

× {α(e)}) ⊂ Kα(e), for e ∈ O1
T set

Σe = (D1
c1E(α(e))

× {α(e)}) ⊂ Kα(e) and for every e ∈ OT let φe : Σe → Σē

be given by φe((x, α(e))) = (x, ω(e)) (it is well defined since ciE(e) = ciE(ē)).
Using arguments very similar to those used in the proof of Theorem 5.5

one can show that there is only one, up to isomorphism, tree system Θ =
(T, {Kt}, {Σe}, {φe}) as described above. We denote it by Θr

bd(N) and call
a regular reflective boundary tree system of manifolds N . Its limit, denoted
by X r

bd(N), is thus unique up to homeomorphism and we call it a regular
reflective boundary tree of manifolds N . By Theorem 5.8, if dimN = n, then
dimX r

bd(N) = n− 1.
We now formulate the conjecture.

Conjecture 6.1. Let K be a flag PL-triangulation of a manifold N with
boundary and let L be its subcomplex corresponding to ∂N . Suppose that L
is 2-geodesically convex in K. Let W be a Coxeter group with nerve K. Then
the CAT(0)-boundary of W is homeomorphic to X r

bd(N).

Note that this hypothesis is in a natural way consistent with Fischer’s
result for closed PL-manifolds N . It not hard to construct examples showing
that the condition of 2-geodesic convexity for L (or at least some additional
condition) is necessary.
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