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Abstract. Let a denote an ideal in a Noetherian ring R, and M a finitely generated
R-module. We introduce the concept of the cohomological dimension filtration M =
{Mi}ci=0, where c = cd(a,M) and Mi denotes the largest submodule of M such that
cd(a,Mi) ≤ i. Some properties of this filtration are investigated. In particular, if (R,m) is
local and c = dimM , we are able to determine the annihilator of the top local cohomology
moduleHc

a(M), namely AnnR(H
c
a(M)) = AnnR(M/Mc−1). As a consequence, there exists

an ideal b of R such that AnnR(H
c
a(M)) = AnnR(M/H0

b (M)). This generalizes the main
results of Bahmanpour et al. (2012) and Lynch (2012).

1. Introduction. Let R be an arbitrary commutative Noetherian ring
(with identity), a an ideal of R, and M a finitely generated R-module. An
important problem concerning local cohomology is to determine the annihi-
lators of the ith local cohomology module H i

a(M). This problem has been
studied by several authors (see for example [11], [12], [13], [15]–[17]) and has
led to some interesting results. In particular, Bahmanpour et al. [2] proved
an interesting result about the annihilator AnnR(H

d
m(M)) of the dth local

cohomology module when (R,m) is a complete local ring.
The purpose of the present paper is to introduce the concept of the co-

homological dimension filtration M = {Mi}ci=0, where c = cd(a,M) and
Mi denotes the largest submodule of M such that cd(a,Mi) ≤ i. Because
M is a Noetherian R-module, it follows easily from [9, Theorem 2.2] that
the submodules Mi are well-defined. They also form an increasing family
of submodules. Some properties of this filtration are investigated. In par-
ticular, if (R,m) is local and c = dimM , we are able to determine the
annihilator of the top local cohomology module Hc

a(M). In fact, it is shown
that

AnnR(H
c
a(M)) = AnnR(M/Mc−1).
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As a consequence, there exists an ideal b of R such that

AnnR(H
c
a(M)) = AnnR(M/H0

b (M)).

This generalizes the main results of [2] and [12].
As a main result in the second section, we describe in more detail the

structure of the cohomological dimension filtration M = {Mi}ci=0 in terms
of the reduced primary decomposition of 0 in M . Namely, if 0 =

⋂n
j=1Nj

denotes a reduced primary decomposition of the zero submodule in M such
that Nj is a pj-primary submodule of M and ai :=

∏
cd(a,R/pj)≤i pj , we shall

show:

Theorem 1.1. Let R be a Noetherian ring and a an ideal of R. Let M be
a non-zero finitely generated R-module with finite cohomological dimension
c := cd(a,M) with respect to a and let M = {Mi}ci=0 be the cohomological
dimension filtration of M . Then, for all integers 0 ≤ i ≤ c:

(i) Mi = H0
ai(M) =

⋂
cd(a,R/pj)>iNj ,

(ii) AssR Mi = {p ∈ AssR M | cd(a, R/p) ≤ i},
(iii) AssR M/Mi = {p ∈ AssR M | cd(a, R/p) > i},
(iv) AssR Mi/Mi−1 = {p ∈ AssR M | cd(a, R/p) = i}.

Pursuing this point of view further we establish some results about the
annihilator of top local cohomology modules. More precisely, as a main
result of the third section, we derive the following consequence of Theo-
rem 1.1, which will describe the annihilator of the top local cohomology
module HdimM

a (M).

Theorem 1.2. Let a denote an ideal of a local (Noetherian) ring R and
let M be a finitely generated R-module of dimension c such that Hc

a(M) 6= 0.
Then

AnnR(H
c
a(M)) = AnnR(M/Mc−1).

Several corollaries of this result are given. A typical one is the following
generalization of [2, Theorem 2.6] and [12, Theorem 2.4] for an ideal a in an
arbitrary local ring R.

Corollary 1.3. Let R be a local (Noetherian) ring and a an ideal of R.
Let M be a non-zero finitely generated R-module of dimension d such that
Hd

a (M) 6= 0. Then

AnnR(H
d
a (M)) = AnnR(M/H0

b (M)) = AnnR

(
M/

⋂
cd(a,R/pj)=d

Nj

)
.

Here 0 =
⋂n

j=1Nj denotes a reduced primary decomposition of the zero sub-
module in M , Nj is a pj-primary submodule of M for all j = 1, . . . , n, and
b :=

∏
cd(a,R/pj) 6=d pj .
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Throughout this paper, R will always be a commutative Noetherian ring
with non-zero identity and a will be an ideal of R. For any R-module L, the
ith local cohomology module of L with support in V (a) is defined by

H i
a(L) := lim−→

n≥1
ExtiR(R/an, L).

For each R-module L, we denote by AsshR L (resp. mAssR L) the set
{p ∈ AssR L : dimR/p = dimL} (resp. the set of minimal primes of
AssR L). For an Artinian R-module A, we shall use AttR A to denote the
set of attached prime ideals of A. Also, for any ideal a of R, we denote
{p ∈ SpecR : p ⊇ a} by V (a). In addition, for any ideal b of R, the rad-
ical of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b
for some n ∈ N}. Finally, if (R,m) is a local (Noetherian) ring and M a
finitely generated R-module, then R̂ (resp. M̂) denotes the completion of R
(resp. M) with respect to the m-adic topology. For any unexplained notation
and terminology we refer the reader to [4] and [14].

2. Cohomological dimension filtration. For an R-module M , the
cohomological dimension of M with respect to an ideal a of R is defined as

cd(a,M) := sup{i ∈ Z | H i
a(M) 6= 0}.

If (R,m) is local and a = m, it is known that cd(a,M) = dimM.

The purpose of this section is to introduce the notion of cohomological
dimension filtration (abbreviated as cd-filtration) of M , which is a general-
ization of the concept of dimension filtration introduced by P. Schenzel [18].
Specifically, let a be an ideal of R, and M a non-zero finitely generated
R-module with finite cohomological dimension c := cd(a,M). For an integer
0 ≤ i ≤ c, let Mi denote the largest submodule of M such that cd(a,Mi) ≤ i.
In view of the maximal condition of a Noetherian R-module, it follows eas-
ily from [9, Theorem 2.2] that the submodules Mi of M are well-defined.
Moreover, it is clear that Mi−1 ⊆Mi for all 1 ≤ i ≤ c.

Definition 2.1. The increasing filtration M = {Mi}ci=0 of submodules
of M is called the cohomological dimension filtration (abbreviated as cd-
filtration) of M , where c = cd(a,M).

Before investigating some properties of the cohomological dimension fil-
tration, we state the following lemma which plays a key role in this paper.

Lemma 2.2 (see [9, Theorem 2.2]). Let R be a Noetherian ring and a
an ideal of R. Let M and N be two finitely generated R-modules such that
SuppN ⊆ SuppM . Then

cd(a, N) ≤ cd(a,M).
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Proposition 2.3. Let R be a Noetherian ring and a an ideal of R. Let M
be a non-zero finitely generated R-module with finite cohomological dimension
c := cd(a,M) and let M = {Mi}ci=0 be the cd-filtration of M . Then, for all
integers 0 ≤ i ≤ c, we have

Mi = H0
ai(M) =

⋂
cd(a,R/pj)>i

Nj .

Here 0 =
⋂n

j=1Nj denotes a reduced primary decomposition of the zero sub-
module in M , Nj is a pj-primary submodule of M , and ai =

∏
cd(a,R/pj)≤i pj .

Proof. First, we show that H0
ai(M) =

⋂
cd(a,R/pj)>iNj . The ⊇ inclu-

sion follows by easy arguments about the primary decomposition of the
zero submodule of M . Suppose that there exists x ∈ H0

ai(M) such that
x 6∈

⋂
cd(a,R/pj)>iNj . Then there exists an integer t such that x 6∈ Nt and

cd(a, R/pt) > i. Now, as x ∈ H0
ai(M), it follows that there is an integer

si ≥ 1 such that asii x = 0, and so asii x ⊆ Nt. Because x 6∈ Nt and Nt is a
pt-primary submodule, it follows that ai ⊆ pt. Hence there is an integer j
such that pj ⊆ pt and cd(a, R/pj) ≤ i. Therefore, in view of Lemma 2.2,

cd(a, R/pt) ≤ cd(a, R/pj) ≤ i,

which is a contradiction.
Now we show that Mi = H0

ai(M). Let x ∈ Mi. Then, in view of Lem-
ma 2.2, cd(a, Rx) ≤ i. Now, let p be a minimal prime ideal over AnnR Rx.
Then, using Lemma 2.2, we see that cd(a, R/p) ≤ i. On the other hand,
since p ∈ AssR Rx, it follows that p ∈ AssR M , and so there is 1 ≤ j ≤ n
such that pj = p. Hence

ai ⊆
⋂

cd(a,R/pj)≤i

pj ⊆
⋂

p∈mAssR(Rx)

p = Rad(AnnR Rx).

Therefore, there exists an integer ni ≥ 1 such that ani
i ⊆ AnnR Rx, and

hence ani
i x = 0. That is, x ∈ H0

ai(M), and so Mi ⊆ H0
ai(M).

On the other hand, as SuppH0
ai(M) ⊆ V (ai), it follows that for every

p ∈ SuppH0
ai(M), there exists an integer j ≥ 1 such that pj ⊆ p and

cd(a, R/pj) ≤ i. Since SuppR/p ⊆ SuppR/pj , Lemma 2.2 implies that
cd(a, R/p) ≤ cd(a, R/pj) ≤ i. Therefore, in view of [19, Corollary 2.2], we
have cd(a, H0

ai(M)) ≤ i. Now, the maximality of Mi yields Mi = H0
ai(M),

as required.

Definition 2.4. Let R be a Noetherian ring and a an ideal of R. Let
M be a non-zero finitely generated R-module with finite cohomological di-
mension c := cd(a,M). We denote by TR(a,M) the largest submodule of M
such that cd(a, TR(a,M)) < c.
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Using Lemma 2.2, it is easy to check that TR(a,M) =
⋃
{N ≤ M |

cd(a, N) < c}. In particular, for a local ring (R,m), we denote TR(m,M) by
TR(M). Thus

TR(M) =
⋃
{N ≤M | dimN < dimM}.

Remark 2.5. Let R be a Noetherian ring, a an ideal of R, and M a
non-zero finitely generated R-module with finite cohomological dimension
c := cd(a,M). Let {Mi}ci=0 be a cd-filtration of M . Then TR(a,M) = Mc−1,
and by Proposition 2.3 we have

TR(a,M) = H0
b (M) =

⋂
cd(a,R/pj)=c

Nj ,

where 0 =
⋂n

j=1Nj denotes a reduced primary decomposition of the zero sub-
module in M , Nj is a pj-primary submodule of M , and b =

∏
cd(a,R/pj)6=c pj .

The next proposition provides information about the associated primes
of the cohomological dimension filtration of M .

Proposition 2.6. Let R be a Noetherian ring and a an ideal of R. Let
M be a non-zero finitely generated R-module with finite cohomological di-
mension c := cd(a,M), and let {Mi}ci=0 be the cd-filtration of M . Then, for
all integers 0 ≤ i ≤ c:

(i) AssR Mi = {p ∈ AssR M | cd(a, R/p) ≤ i},
(ii) AssR M/Mi = {p ∈ AssR M | cd(a, R/p) > i},
(iii) AssR Mi/Mi−1 = {p ∈ AssR M | cd(a, R/p) = i}.

Proof. In view of Proposition 2.3, Mi = H0
ai(M), and so by [3, Sec-

tion 2.1, Proposition 10],

AssR Mi = AssR M ∩ V (ai).

Now, (i) follows from Lemma 2.2. To show (ii), use [4, Exercise 2.1.12]. Fi-
nally, for (iii), asMi/Mi−1⊆M/Mi−1, it follows from (ii) that AssR Mi/Mi−1
⊆ AssR M and cd(a, R/p) ≥ i for every p ∈ AssR Mi/Mi−1. Furthermore, in
view of the exact sequence

0→Mi−1 →Mi →Mi/Mi−1 → 0

and Lemma 2.2, we have

cd(a,Mi/Mi−1) ≤ cd(a,Mi) ≤ i.

Hence, using again Lemma 2.2, we deduce that cd(a, R/p) ≤ i for all p ∈
AssR Mi/Mi−1. Therefore,

AssR Mi/Mi−1 ⊆ {p ∈ AssR M | cd(a, R/p) = i}.
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Now, let p ∈ AssR M and cd(a, R/p) = i. Then p ∈ AssR Mi by (i). As
p /∈ AssR Mi−1, it follows from the exact sequence,

0→Mi−1 →Mi →Mi/Mi−1 → 0

that p ∈ AssR Mi/Mi−1, and so

AssR Mi/Mi−1 = {p ∈ AssR M | cd(a, R/p) = i}.

3. Annihilators of top local cohomology modules. The main point
of this section is to determine the annihilator of top local cohomology mod-
ules in terms of the reduced primary decomposition of the zero submodule.
Our main result is Theorem 3.5. The following lemmas and proposition play
a key role in the proof.

Lemma 3.1 (cf. [4, Lemma 7.3.1]). Let R be a Noetherian ring and a
an ideal of R. Let M be a non-zero finitely generated R-module of finite
dimension d such that Hd

a (M) 6= 0. Set G := M/TR(a,M). Then:

(i) cd(a, G) = d,
(ii) G has no non-zero submodule of cohomological dimension (with re-

spect to a) less than d,
(iii) AssR G = AttR Hd

a (G) = {p ∈ AssR M | cd(a, R/p) = d},
(iv) Hd

a (G) ∼= Hd
a (M).

Proof. The assertion follows easily from Proposition 2.6(ii), [8, Theo-
rem 2.5], Lemma 2.2 and the exact sequence

0→ TR(a,M)→M → G→ 0.

Before stating the next lemma let us recall the important notion of a
cofinite module with respect to an ideal. For an ideal a of R, an R-module M
is said to be a-cofinite if M has support in V (a) and ExtiR(R/a,M) is finitely
generated for each i. This concept was introduced by R. Hartshorne [10].

Lemma 3.2. Let (R,m) be a local (Noetherian) ring such that R̂ is in-
tegral over R. Let a be an ideal of R and M a non-zero finitely generated
R-module of dimension d. Then

AttR(H
d
a (M)) = {p ∈ AsshR M | Rad(a+ p) = m}.

Proof. Let p ∈ AttR(H
d
a (M)). Then [7, Theorem A] implies that p ∈

AsshR M and cd(a, R/p) = d. Now, since by [6, Theorem 3] the R-module
Hd

a (M) is Artinian and a-cofinite, it follows from p ∈ AttR(H
d
a (M)) and [1,

Theorem 2.2] that Rad(a+ p) = m. Hence

AttR(H
d
a (M)) ⊆ {p ∈ AsshR M | Rad(a+ p) = m}.

To prove the reverse inclusion, let p ∈ AsshR M be such that Rad(a+ p)
= m. Then, as dimR/p = d and
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Hd
a (R/p) ∼= Hd

a(R/p)(R/p) ∼= Hd
m(R/p),

it follows that cd(a, R/p) = d, and so in view of [7, Theorem A], p ∈
AttR(H

d
a (M)).

Corollary 3.3. Let (R,m) be a complete local (Noetherian) ring, a an
ideal of R, and M a non-zero finitely generated R-module of dimension d.
Then

AttR(H
d
a (M)) = {p ∈ AsshR M | Rad(a+ p) = m}.

Proof. This follows from Lemma 3.2.

The following proposition will serve to shorten the proof of the main
theorem.

Proposition 3.4. Let (R,m) be a complete local (Noetherian) ring and a
an ideal of R. Let M be a non-zero finitely generated R-module of dimension
d such that Hd

a (M) 6= 0. Then

AnnR(H
d
a (M)) = AnnR(M/TR(a,M)).

Proof. Let G := M/TR(a,M). In view of Lemma 3.1, it is enough to
show that AnnR(Hd

a (G)) = AnnR(G). To do so, it follows easily from Lem-
ma 3.1(iii) and Corollary 3.3 that m = Rad(a + AnnR(G)). Consequently,
Hd

a (G) ∼= Hd
m(G), and hence, in view of [2, Theorem 2.6],

AnnR(H
d
a (G)) = AnnR(G/TR(G)).

Now, since
cd(a, TR(G)) ≤ dimTR(G) < dimG,

Lemma 3.1(ii) shows that TR(G) = 0, and so AnnR(H
d
a (G)) = AnnR(G), as

required.

We are now ready to prove the main theorem of this section, which gen-
eralizes all of the previous results concerning the annihilators of top local
cohomology modules.

Theorem 3.5. Let (R,m) be a local (Noetherian) ring and a an ideal
of R. Let M be a non-zero finitely generated R-module of dimension d such
that Hd

a (M) 6= 0. Then

AnnR(H
d
a (M)) = AnnR(M/TR(a,M)).

Proof. In view of Lemma 3.1, we may assume that TR(a,M) = 0. Now,
as

AnnR(M) ⊆ AnnR(H
d
a (M)),

it is enough to show that AnnR(H
d
a (M)) ⊆ AnnR(M). To this end, we let

x ∈ AnnR(H
d
a (M)) and show that xM = 0. Suppose that xM 6= 0. Then, as

TR(a,M) = 0, it follows that cd(a, xM) = d. Hence cd(aR̂, xM̂) = d. This
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implies xHd
aR̂

(M̂) 6= 0. Indeed, if xHd
aR̂

(M̂) = 0, then xR̂ ⊆ AnnR̂(H
d
aR̂

(M̂)).

Hence, in view of Proposition 3.4,

xR̂ ⊆ AnnR̂(M̂/TR̂(aR̂, M̂)),

and so xM̂ ⊆ TR̂(aR̂, M̂). Therefore, cd(aR̂, xM̂) < d, a contradiction.
Consequently, xHd

a (M) 6= 0, that is, x 6∈ AnnR(H
d
a (M)), contrary to

assumption.

The first application of Theorem 3.5 improves a result of Coung et al. [5,
Lemma 3.2].

Corollary 3.6. Let R be a local (Noetherian) ring and a an ideal of R.
Let M be a non-zero finitely generated R-module of dimension d such that
Hd

a (M) 6= 0. Then V (AnnR(H
d
a (M))) = Supp(M/TR(a,M)).

Proof. In view of Theorem 3.5, we have

V (AnnR(H
d
a (M)) = V (AnnR(M/TR(a,M))) = Supp(M/TR(a,M)).

Corollary 3.7. Let R be a local (Noetherian) ring and a an ideal of R
such that HdimR

a (R) 6= 0. Then AnnR(H
dimR
a (R)) is the largest ideal of R

such that
cd(a,AnnR(H

dimR
a (R))) < dimR.

Proof. The assertion follows from Theorem 3.5.

Proposition 3.8. Let R be a local (Noetherian) ring and a an ideal
of R. Let M be a non-zero finitely generated R-module of dimension d such
that Hd

a (M) 6= 0. Then

AnnR(H
d
a (M)) = AnnR(M/H0

b (M)) = AnnR

(
M/

⋂
cd(a,R/pj)=d

Nj

)
.

Here 0 =
⋂n

j=1Nj denotes a reduced primary decomposition of the zero sub-
module in M , Nj is a pj-primary submodule of M for all j = 1, . . . , n, and
b =

∏
cd(a,R/pj)6=d pj .

Proof. The assertion follows easily from Theorem 3.5 and Remark 2.5.

The following corollary is a generalization of the main result of [12, The-
orem 2.4].

Corollary 3.9. Let R be a local (Noetherian) ring of dimension d and
a an ideal of R such that Hd

a (R) 6= 0. Then

AnnR(H
d
a (R)) = H0

b (R) =
⋂

cd(a,R/pj)=d

qj ,

where 0 =
⋂n

j=1 qj is a reduced primary decomposition of the zero ideal of R,
qj is a pj-primary ideal of R for all 1 ≤ j ≤ n, and b =

∏
cd(a,R/pj)6=d pj .
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Proof. The result follows readily from Proposition 3.8.

Proposition 3.10. Let R be a local (Noetherian) ring and a an ideal
of R. Let M be a non-zero finitely generated R-module of dimension d such
that Hd

a (M) 6= 0. Then

(i) Rad(AnnR(H
d
a (M)) =

⋂
p∈AssR M, cd(a,R/p)=d p,

(ii) Supp(Hd
a (M)) ⊆

⋃
p∈AssR M, cd(a,R/p)=d V (p+ a).

Proof. Assertion (i) follows from Proposition 3.8. In order to prove (ii),
by using (i) we have

Supp(Hd
a (M)) ⊆ V (AnnR(H

d
a (M))) = V (Rad(AnnR(H

d
a (M)))

= V
( ⋂
p∈AssR M, cd(a,R/p)=d

p
)
=

⋃
p∈AssR M, cd(a,R/p)=d

V (p).

Now, as Supp(Hd
a (M)) ⊆ V (a), it follows that

Supp(Hd
a (M)) ⊆

( ⋃
p∈AssR M, cd(a,R/p)=d

V (p)
)
∩ V (a),

and the desired result follows.

Corollary 3.11. Let R be a local (Noetherian) ring, a an ideal of R,
and x ∈ R. Let M be a non-zero finitely generated R-module of dimension
d such that Hd

a (M) 6= 0. Then Hd
a (xM) = 0 if and only if xHd

a (M) = 0.
In particular, AnnR(H

d
a (M)) = 0 if and only if cd(a, rM) = d for every

non-zero element r of R.

Proof. The assertion follows readily from Theorem 3.5.

The following result is a generalization of [12, Corollary 2.5] and [2, Corol-
lary 2.9].

Corollary 3.12. Let (R,m) be a local (Noetherian) ring of dimension d,
and a an ideal of R. Then the following conditions are equivalent:

(i) AnnR Hd
a (R) = 0,

(ii) AssR R = AttR Hd
a (R).

Proof. (i)⇒(ii). Let AnnR(Hd
a (R))=0 and p∈AssR R. Then R/p ∼= Rx

for some x ( 6= 0) ∈ R. Thus Corollary 3.11 yields cd(a, R/p) = cd(a, Rx) = d,
and so by [7, Theorem A], p ∈ AttR Hd

a (R), as required.
(ii)⇒(i). In view of Theorem 3.5 and Corollary 3.11, it is enough to

show that cd(a, Rx) = d for every non-zero element x of R. In view of [19,
Corollary 2.2], there exists p ∈ AssR Rx such that cd(a, R/p) = cd(a, Rx).
By (ii), p ∈ AttR Hd

a (R), and so cd(a, R/p) = d. Therefore cd(a, Rx) = d, as
required.
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Corollary 3.13. Let (R,m) be a local (Noetherian) domain of dimen-
sion d and a an ideal of R such that Hd

a (R) 6= 0. Then AnnR(H
d
a (R)) = 0.

Proof. Since AssR R = 0, the assertion follows immediately from Corol-
lary 3.12.

Corollary 3.14. Let R be a Noetherian domain and a an ideal of R
with ht a = n. Then AnnR(H

n
a (R)) = 0.

Proof. Suppose that AnnR(H
n
a (R)) 6= 0. Then there exists a non-zero

element r in AnnR(H
n
a (R)). Hence, rHn

a (R) = 0. Now, let q be a minimal
prime ideal of a such that ht q = n. Then Rq is a local (Noetherian) domain
of dimension n and rHn

qRq
(Rq) = 0. Thus r/1 ( 6= 0) ∈ AnnRq(H

n
qRq

(Rq)),
and so by Corollary 3.13, we achieve a contradiction.

Corollary 3.15. Let (R,m) be a local (Noetherian) ring of dimension
d and a an ideal of R such that grade a = d. Then AssR R = AttR Hd

a (R).

Proof. The assertion follows from [12, Theorem 3.3] and Corollary 3.12.

Corollary 3.16. Let R be a local (Noetherian) ring and a an ideal of R.
Let M be a non-zero finitely generated R-module of dimension d such that
AssR M = AttR Hd

a (M). Then AnnR(H
d
a (M)) = AnnR M .

Proof. Let 0 =
⋂n

j=1Nj denote a reduced primary decomposition of the
zero submodule inM such thatNj is a pj-primary submodule ofM for all j =
1, . . . , n. Then, as AssR M = AttR Hd

a (M) it follows that
⋂

cd(a,R/pj)=dNj

= 0, and so by Proposition 3.8 AnnR(H
d
a (M)) = AnnR M , as required.
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