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SIMPLE MIXING ACTIONS
WITH UNCOUNTABLY MANY PRIME FACTORS

BY

ALEXANDRE I. DANILENKO and ANTON V. SOLOMKO (Kharkiv)

Abstract. Via the (C,F )-construction we produce a 2-fold simple mixing transfor-
mation which has uncountably many non-trivial proper factors and all of them are prime.

0. Introduction. This paper is about prime factors of simple probabil-
ity preserving actions. We first recall the related definitions from the theory
of joinings.

Let T = (Tg)g∈Γ be an ergodic action of a locally compact second count-
able group Γ on a standard probability space (X,B, µ). Our main interest
is in Z- and R-actions. A measure λ on X ×X is called a 2-fold self-joining
of T if it is (Tg × Tg)g∈Γ -invariant and it projects onto µ on both coordi-
nates. Denote by Je

2(T ) the set of all ergodic 2-fold self-joinings of T . Let
C(T ) stand for the centralizer of T , i.e. the set of all µ-preserving invertible
transformations of X commuting with Tg for each g ∈ Γ . Given a transfor-
mation S ∈ C(T ), we denote by µS the corresponding off-diagonal measure
on X × X defined by µS(A × B) := µ(A ∩ S−1B) for all A,B ∈ B. In
other words, µS is the image of µ under the map x 7→ (x, Sx). Of course,
µS ∈ Je

2(T ) for every S ∈ C(T ). If T is weakly mixing, µ × µ is also an
ergodic self-joining. If Je

2(T ) ⊂ {µS | S ∈ C(T )} ∪ {µ× µ} then T is called
2-fold simple [Ve], [dJR]. By a factor of T we mean a non-trivial proper
T -invariant sub-σ-algebra of B. If T has no non-trivial proper factors then
it is called prime. In [Ve] it was shown that if T is 2-fold simple then for
each non-trivial factor F of T there exists a compact (in the strong operator
topology) subgroup KF ⊂ C(T ) such that F = FKF

, where

FK = {A ∈ B | µ(kA4A) = 0 for all k ∈ K}

is the fixed algebra of K. In particular, F (or, more precisely, the restriction
of T to F) is prime if and only if KF is a maximal compact subgroup of
C(T ).
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One of the natural questions arising after the general theory of simple
actions was developed in [dJR] is: are there simple maps with non-unique
prime factors? The first example of such maps was constructed by Glasner
and Weiss [GlW] as an inverse limit of certain horocycle flows. For that
they used some subtle facts from Ratner’s theory of joinings for horocycle
flows and properties of lattices in SL2(R). Danilenko and del Junco [DdJ]
later utilized a more elementary cutting-and-stacking technique to construct
a weakly mixing 2-fold simple transformation which has countably many
factors, all of which are prime.

Our purpose in the present paper is to use a similar cutting-and-stacking
technique to produce a mixing transformation which has uncountably many
factors, all of which are prime.

Via the (C,F )-construction we produce a measure preserving action T
of an auxiliary group G = Z× (RoZ2) such that the transformation T(1,0,0)
is mixing 2-fold simple and C(T(1,0,0)) = {Tg | g ∈ G}. Since all non-trivial
compact subgroups of G are Gb = {(0, 0, 0), (0, b, 1)}, b ∈ R, and all of them
are maximal, this gives an example of a 2-fold simple transformation with
uncountably many prime factors. All these factors are 2-to-1 and pairwise
isomorphic.

We also correct a gap in the proof of [DdJ, Lemma 2.3(ii)] (see Re-
mark 2.4).

The skeleton of the proof of the main result is basically the same as in
[DdJ], where the “discrete case” (i.e. when the auxiliary group is discrete)
was under consideration. To work with the (C,F )-construction for actions of
continuous (i.e. non-discrete) groups we use the approximation techniques
from [Da2].

1. (C,F )-construction. We now briefly outline the (C,F )-construction
of measure preserving actions for locally compact groups. For details see
[Da1] and references therein.

LetG be a unimodular locally compact second countable (l.c.s.c.) amena-
ble group. Fix a (σ-finite) Haar measure λ on it. Given E,F ⊂ G, we denote
by EF their algebraic product, i.e. EF = {ef | e ∈ E, f ∈ F}. The set
{e−1 | e ∈ E} is denoted by E−1. If E is a singleton, say E = {e}, then we
write eF for EF . For abelian groups we use additive notation. Given a finite
setA, |A|will denote the cardinality ofA. Given a subset F ⊂ G of finite Haar
measure, λF will denote the probability on F given by λF (A) := λ(A)/λ(F )
for each measurable A ⊂ F . If D is finite, then κD is the equidistributed
probability on D, that is, κD(A) := |A ∩D|/|D| for each A. The notation
a 6= b ∈ A will refer to two distinct elements a, b of a set A.

To define a (C,F )-action of G we need two sequences (Fn)∞n=0 and
(Cn)∞n=1 of subsets in G such that the following are satisfied:
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(Fn)∞n=0 is a Følner sequence in G,(1.1)

Cn is finite and |Cn| > 1,(1.2)

FnCn+1 ⊂ Fn+1,(1.3)

Fnc ∩ Fnc′ = ∅ for all c 6= c′ ∈ Cn+1.(1.4)

This means that FnCn+1 consists of |Cn+1| mutually disjoint ‘copies’ Fnc,
c ∈ Cn+1, of Fn, and all these copies are contained in Fn+1.

First, we define a probability space (X,µ) in the following way. We equip
Fn with the measure (|C1| · · · |Cn|)−1λ�Fn and endow Cn with the equidis-
tributed probability measure. Let Xn := Fn×

∏
k>nCk stand for the product

of measure spaces. Define an embedding Xn → Xn+1 by setting

(fn, cn+1, cn+2, . . .) 7→ (fncn+1, cn+2, . . .).

It is easy to see that this embedding is measure preserving. Then X1 ⊂
X2 ⊂ · · · . Let X :=

⋃∞
n=0Xn denote the inductive limit of the sequence

of measure spaces Xn and let B and µ denote the corresponding Borel
σ-algebra and measure on X respectively. Then X is a standard Borel space
and µ is σ-finite. It is easy to check that µ is finite if and only if

(1.5) lim
n→∞

λ(Fn)

|C1| · · · |Cn|
<∞.

If (1.5) is satisfied then we choose (i.e., normalize) λ in such a way that
µ(X) = 1.

Now we define a µ-preserving action of G on X. Suppose that

(1.6) for any g ∈ G, there is m ≥ 0 with gFnCn+1 ⊂ Fn+1 for all n ≥ m.

For such n, take x∈Xn⊂X and write the expansion x=(fn, cn+1, cn+2, . . .)
with fn ∈ Fn and ci ∈ Ci, i > n. Then we let

Tgx := (gfncn+1, cn+2, . . .) ∈ Xn+1 ⊂ X.

It follows from (1.6) that Tg is a well defined µ-preserving transformation
of X. Moreover, TgTh = Tgh, i.e. T := (Tg)g∈G is a µ-preserving Borel action
of G on X; it is called the (C,F )-action of G associated with (Cn+1, Fn)∞n=0.

We now recall some basic properties of (X,B, µ, T ). Given a Borel subset
A ⊂ Fn, we set

[A]n := {x ∈ X | x = (fn, cn+1, cn+2, . . .) ∈ Xn and fn ∈ A}

and call it an n-cylinder. It is clear that the σ-algebra B is generated by
the family of all cylinders. Given Borel subsets A,B ⊂ Fn, we have
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[A ∩B]n = [A]n ∩ [B]n, [A ∪B]n = [A]n ∪ [B]n,(1.7)

[A]n = [ACn+1]n+1 =
⊔

c∈Cn+1

[Ac]n+1,(1.8)

µ([A]n) = |Cn+1|µ([Ac]n+1) for every c ∈ Cn+1,(1.9)

µ([A]n) = µ(Xn)λFn(A),(1.10)

Tg[A]n = [gA]n if gA ⊂ Fn,(1.11)

Tg[A]n = Th[h−1gA]n if h−1gA ⊂ Fn.(1.12)

Each (C,F )-action is of funny rank one (for the definition see [Fe] for the
case of Z-actions and [So] for the general case) and hence ergodic. It also
follows from (1.2) that T is conservative.

2. Main result. We denote by Zn a cyclic group of order n: Zn =
Z/nZ = {0, 1, . . . , n− 1}. Let G := Z× (Ro Z2) with multiplication law

(x, a, n)(y, b,m) := (x+ y, a+ (−1)nb, n+m).

Then the center C(G) of G is Z× {0} × {0}. Each compact subgroup of G
coincides with Gb = {(0, 0, 0), (0, b, 1)} for some b ∈ R. Notice that Gb is a
maximal compact subgroup of G for each b ∈ R.

To construct the required (C,F )-action ofG we will determine a sequence
(Cn+1, Fn)∞n=0. Let (rn)∞n=0 be an increasing sequence of positive integers
such that

(2.1) lim
n→∞

n4/rn = 0.

Below—just after Lemma 2.1—one more restriction on the growth of (rn)∞n=0

will be imposed: we will assume that rn is so large that (2.7) is satisfied.
We recurrently define three other sequences (ãn)∞n=0, (an)∞n=0 and (bn)∞n=1

of positive integers by setting

ã0 := 1, a0 := 1,

an := (2rn−1 + 1)ãn−1 for n ≥ 1,

bn := (2n− 1)ãn−1 for n ≥ 1,

ãn := an + bn + n for n ≥ 1.

For each n ∈ N, we let

In := {−n, . . . , n}2 ⊂ Z2,

Hn := {−rn, . . . , rn}2 ⊂ Z2,

Fn := (−an, an]Z × (−an, an]R × Z2,

Sn := (−bn, bn]Z × (−bn, bn]R × Z2,

F̃n := (−ãn, ãn]Z × (−ãn, ãn]R × Z2.



SIMPLE MIXING ACTIONS 41

We also consider the homomorphism φn : Z2 → G given by

φn(i, j) := (2iãn, 2jãn, 0).

We then have

Sn ⊂ Fn, FnSn = SnFn ⊂ F̃n ⊂ G,(2.2)

Sn+1 = F̃nφn(In) =
⊔
h∈In

F̃nφn(h) =
⊔
h∈In

φn(h)F̃n,(2.3)

Fn+1 = F̃nφn(Hn) =
⊔
h∈Hn

F̃nφn(h) =
⊔
h∈Hn

φn(h)F̃n,(2.4)

We also equip Fn with a finite partition ξn such that:

(i) the diameter of each atom of ξn is less than 1/n,
(ii) for each atom A ∈ ξn−1 and each c ∈ Cn, the subset Ac ⊂ Fn is

ξn-measurable, and
(iii) ξn is symmetric, that is, A−1 ∈ ξn whenever A ∈ ξn.

For instance, we can define such partitions inductively in the following way.
Each ξn will consist of ‘rectangles’ of the form {a} ×∆ × {m} ⊂ G, where
a ∈ (−an, an]Z, m ∈ Z2 and ∆ ⊂ (−an, an]R is a subinterval of length
less than 1/n. Let ξ0 := {F0}. Now suppose we have already defined ξn−1.
Denote by En−1 ⊂ R the finite set of endpoints of the intervals ∆ for all
the atoms {a} × ∆ × {m} ∈ ξn−1. Let π2 : G → R stand for the natural
projection on the second coordinate. Set

E′n := En−1 + π2(Cn) and En := −E′n ∪ E′n ∪ {k/n | k ∈ Z, |k| ≤ nan}.

The finite set En ⊂ R defines a partition ξ
(2)
n of [−an, an)R into intervals

with endpoints in En. Denote by ln the length of the shortest interval from

ξ
(2)
n . Finally, set ξn := ε

(1)
n × ξ(2)n × ε(3)n , where ε

(1)
n and ε

(3)
n are partitions

of (−an, an]Z and Z2 respectively into single points. Properties (i)–(iii) are
clearly satisfied for ξn.

It follows that for each measurable subset A ⊂ Fn, any ε > 0 and
for all k large enough, there is a ξk-measurable subset B ⊂ Fk such that
µ([A]n4 [B]k) < ε. We will denote by σ(ξn) the σ-algebra on Fn generated
by ξn.

For a finite subset D in Sn, we denote by κD the corresponding nor-
malized Dirac comb, i.e. the measure on Sn given by κD(A) := |A ∩D|/|D|
for each subset A ⊂ Sn. Given two subsets A,B ⊂ Fn define a function
fA,B : Sn×Sn → R by setting fA,B(x, y) := λ(Ax∩By)/λ(Fn) for x, y ∈ Sn.
We now define a finite subset Dn in Sn by

Dn := {(a, k/(nln),m) | a ∈ (−bn, bn]Z, k ∈ (−nlnbn, nlnbn]Z, m ∈ Z2}.
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It is an easy exercise to check that for such ξn and Dn,

(2.5)

∣∣∣∣κDn(Ag)− 1

λ(Sn)
λ(Ag)

∣∣∣∣ < 1

n

for each ξn-measurable subset A ⊂ Fn and g ∈ Fn, and

(2.6)

∣∣∣∣ �

Sn×Sn

fAg,Bh dκDn dκDn −
1

λ(Sn)2

�

Sn×Sn

fAg,Bh dλ dλ

∣∣∣∣ < 1

n

for any ξn-measurable subsets A,B ⊂ Fn and any g, h ∈ Fn such that
AgSn, BhSn ⊂ Fn. We also notice that |D0

n| = |D1
n|.

Given a finite (signed) measure ν on a finite set D, we let ‖ν‖1 :=∑
d∈D |ν(d)|. If π : D → E then clearly ‖ν ◦ π−1‖1 ≤ ‖ν‖1. Given a finite

set Y and a mapping s : Y → D, let disty∈Y s(y) denote the image of the
equidistribution on Y under s:

disty∈Y s(y) :=
1

|Y |
∑
y∈Y

δs(y) = κD ◦ s−1.

The following lemma easily follows from [dJ, Lemma 2.1] (cf. [Da2,
Lemma 3.2]).

Lemma 2.1. Let D be a finite set. Then given ε, δ > 0, there is R ∈ N
such that for each r > R, there exists a map s : {−r, . . . , r}2 → D such that∥∥dist0≤t<N (sn(h+ (t, 0)), sn(h′ + (t, 0)))− κD × κD

∥∥
1
< ε

for each N > δr and h 6= h′ ∈ {−r, . . . , r}2 with h1+N < r and h′1+N < r.

Applying this lemma with ε = 1/n and δ = 1/n2 we get the following. If
rn is large enough then there is a mapping sn : Hn → Dn such that for any
N > rn/n

2 and h 6= h′ ∈ Hn ∩ (Hn − (N − 1, 0)) we have

(2.7)
∥∥dist0≤t<N (sn(h+ (t, 0)), sn(h′ + (t, 0)))− κDn × κDn

∥∥
1
< 1/n.

From now on we assume that rn is so large that this condition is satisfied,
and for each n we fix sn : Hn → Dn satisfying (2.7).

Now we define a map cn+1 : Hn → G by setting cn+1(h) := sn(h)φn(h).
We set Cn+1 := cn+1(Hn).

The reader should have the following picture in mind. The set Fn+1 is
exactly tiled with the sets F̃nφn(h), h ∈ Hn, which may be thought of as

‘windows’. Each Fn has a ‘natural’ translate Fnφn(h) in F̃nφn(h) but the
translate we actually choose is the natural translate perturbed by a further
translation sn(h) which is chosen in a ‘random’ way and does not move
Fnφn(h) out of its window.

It is easy to derive that properties (1.1)–(1.6) are satisfied for the se-
quence (Fn, Cn+1)

∞
n=0. Hence the associated (C,F )-action T = (Tg)g∈G of

G is well defined on a standard probability space (X,B, µ).
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We now state the main result.

Theorem 2.2. The transformation T(1,0,0) is mixing and 2-fold simple.
All non-trivial proper factors of T(1,0,0) are of the form FGb

, b ∈ R. All these
factors are 2-to-1, prime and pairwise isomorphic.

We first prove some technical lemmata. After that in Proposition 2.8
we show mixing for T(1,0,0), and in Proposition 2.9 we prove simplicity and
describe the centralizer of T(1,0,0). The structure of factors then follows from
Veech’s theorem.

Denote by G0 the subgroup Z × R × {0} of index 2 in G. Given any
subset A in G we set A0 := A ∩ G0 and A1 := A \ A0. We will refer to
A0 and A1 as levels of A. We will say that a subset A ⊂ G is ε-balanced
if

|λ(A0)− λ(A1)| < ελ(A).

Denote by π3 : G→ Z2 the natural projection on the third coordinate. Since
κDn ◦ π−13 = κZ2 , it follows from (2.7) that

(2.8) ‖disth∈Hn π3 ◦ sn(h)− κZ2‖1 < 1/n.

In particular, for any A∗ ⊂ Fn the set A = A∗Cn+1 is 1/n-balanced:

(2.9) |λ(A0)− λ(A1)| < 1

n
λ(A).

Indeed, since

A0 =
⊔

h∈s−1
n (G0)

A∗0cn(h) t
⊔

h∈s−1
n (G1)

A∗1cn(h),

we have

λ(A0) = λ(A∗0)|s−1n (G0)|+ λ(A∗1)|s−1n (G1)|,
and similarly

λ(A1) = λ(A∗1)|s−1n (G0)|+ λ(A∗0)|s−1n (G1)|.
Hence

|λ(A0)− λ(A1)| = |λ(A∗0)− λ(A∗1)|
∣∣|s−1n (G0)| − |s−1n (G1)|

∣∣
≤ 1

|Hn|
λ(A)

∣∣|s−1n (G0)| − |s−1n (G1)|
∣∣.

It remains to notice that

1

|Hn|
∣∣|s−1n (G0)| − |s−1n (G1)|

∣∣ ≤ ∣∣∣∣ |s−1n (G0)|
|Hn|

− 1

2

∣∣∣∣+

∣∣∣∣ |s−1n (G1)|
|Hn|

− 1

2

∣∣∣∣
= ‖disth∈Hn π3 ◦ sn(h)− κZ2‖1 < 1/n

by (2.9). It follows that A = A∗Cn+1 is 1/n-balanced for each A∗⊂Fn.
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Given h = (h1, h2) ∈ Z2, we let h∗ := (h1,−h2).

Lemma 2.3. Let f = f ′φn−1(h) with f ′ ∈ F̃n−1 and h ∈ Z2.

(i) Suppose f ∈ Gα and let β := 1− α. Let

L−n := F̃αn−1φn−1(In−2 + h) t F̃ βn−1φn−1(In−2 + h∗),

L+
n := F̃αn−1φn−1(In + h) t F̃ βn−1φn−1(In + h∗).

Then L−n ⊂ fSn ⊂ L+
n . Hence

λ(fSn 4 L−n )

λ(Sn)
= o(1).

(ii) If, in addition, fSn ⊂ Fn then for any subset A = A∗Cn−1 with
A∗ ⊂ Fn−2 we have

λ(ACn ∩ fSn)

λ(Sn)
= λFn−1(A) + o(1).

Here o(1) means a sequence that goes to 0 as n → ∞ and does not
depend on the choice of A∗ in Fn−2.

Proof. (i) Suppose f ∈ G0 (the case f ∈ G1 is considered in a similar
way). We have

fSn = f ′φn−1(h)F̃n−1φn−1(In−1)

= f ′F̃ 0
n−1φn−1(h+ In−1) t f ′F̃ 1

n−1φn−1(h
∗ + In−1).

Since F̃ 0
n−1F̃

α
n−1 ⊂

⊔
u∈I1 F̃

α
n−1φn−1(u), there exists a partition of F̃αn−1 into

subsets Aαu , u ∈ I1, such that f ′Aαu ⊂ F̃αn−1φn−1(u) for any u and α = 0, 1.
Therefore

fSn =⊔
u∈I1

(
f ′A0

uφn−1(u)−1φn−1(u+h+In−1)tf ′A1
uφn−1(u)−1φn−1(u+h∗+In−1)

)
.

It remains to notice that
⊔
u∈I1 f

′Aαuφn−1(u)−1 = F̃αn−1.

(ii) Since fSn ⊂ Fn and Fn = F̃n−1φn−1(Hn−1), it follows from (i) that
the subsets K := In−1 + h and K∗ := In−1 + h∗ are contained in Hn−1.
Therefore

λ(ACn ∩ fSn)

λ(Sn)
=

∑
k∈Hn−1

λ(Acn(k) ∩ fSn)

λ(Sn)
=

∑
k∈Hn−1

λ(Acn(k) ∩ L−n )

λ(Sn)
+ o(1)

=
1

λ(Sn)

∑
k∈Hn−1

λ
(
Asn−1(k)φn−1(k)∩ F̃αn−1φn−1(K)t F̃ βn−1φn−1(K

∗)
)

+o(1)

=
1

λ(Sn)

∑
k∈K

λ(Asn−1(k) ∩ F̃αn−1) +
1

λ(Sn)

∑
k∈K∗

λ(Asn−1(k) ∩ F̃ βn−1) + o(1).
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Notice that

λ(Asn−1(k) ∩ F̃αn−1) =

{
λ(Aα) if sn−1(k) ∈ G0,

λ(Aβ) if sn−1(k) ∈ G1.

In any case, since A = A′Cn−1 is 1
n−2 -balanced, we conclude from (2.9) that

λ(Asn−1(k) ∩ F̃αn−1) = (1/2 + o(1))λ(A).

In a similar way

λ(Asn−1(k) ∩ F̃ βn−1) = (1/2 + o(1))λ(A).

Hence

λ(ACn ∩ fSn)

λ(Sn)
=
λ(A)|K|(1 + o(1))

λ(Sn)
+ o(1)

=
λ(A)

λ(Fn−1)
· λ(Fn−1)|K|

λ(Sn)
· (1 + o(1)) + o(1)

= λFn−1(A) · λ(Fn−1)(2n− 1)2

(2n+ 1)2λ(F̃n−1)
· (1 + o(1)) + o(1)

= λFn−1(A) + o(1).

Remark 2.4. We note that there is a gap in [DdJ, Lemma 2.3(ii)]. It
was stated there that the claim (ii) is true for each subset A ⊂ Fn−1. This
is not true. However—as shown in Lemma 2.3(ii) above—the claim is true
if A = A∗Cn−1 for an arbitrary subset A∗ ⊂ Fn−2. This corrected version
of the claim suffices to apply it in the proof of [DdJ, Theorem 2.5] which is
the only place in that paper where [DdJ, Lemma 2.3(ii)] was used.

We will also use the following simple lemma.

Lemma 2.5. Let A, B and S be subsets of finite Haar measure in G.
Then �

S×S
λ(Ax ∩By) dλ(x) dλ(y) =

�

A×B
λ(aS ∩ bS) dλ(a) dλ(b).

Proof. Notice that G is unimodular. Consider two subsets in G3:

Ω1 := {(a, x, y) | x ∈ S, y ∈ S, a ∈ A ∩Byx−1}
= {(a, x, y) | a ∈ A, y ∈ S, x ∈ a−1By ∩ S},

Ω2 := {(a, b, y) | a ∈ A, b ∈ B, y ∈ b−1aS ∩ S}
= {(a, b, y) | a ∈ A, y ∈ S, b ∈ B ∩ aSy−1}.

It is clear that the maping Ω1 3 (a, x, y) 7→ (a, axy−1, y) ∈ Ω2 is 1-to-1 and
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λ3-preserving. Applying the Fubini theorem we obtain�

S×S
λ(Ax ∩By) dλ(x) dλ(y) = λ3(Ω1) = λ3(Ω2)

=
�

A×B
λ(aS ∩ bS) dλ(a) dλ(b).

The following lemma is the first step to prove mixing for T(1,0,0). Let

h0 := (1, 0) ∈ Z2. Then φn(h0) = (1, 0, 0)2ãn .

Lemma 2.6. Given a sequence of subsets H∗n ⊂ Hn such that |H∗n|/|Hn|
→ δ for some δ ≥ 0, let C∗n := cn(H∗n−1). Then

sup
A∗,B∗∈σ(ξn−1)

∣∣µ(Tφn(h0)[A
∗C∗n]n ∩ [B∗]n−1)− µ([A∗C∗n]n)µ([B∗]n−1)

∣∣→ 0.

Proof. Let A,B ∈ σ(ξn). We set F ◦n := {f ∈ Fn | fSnS−1n ⊂ Fn},
A◦ := A ∩ F ◦n , B◦ := B ∩ F ◦n , H ′n := Hn ∩ (Hn − h0). It is clear that
µ(Fn \ F ◦n)→ 0 and |H ′n|/|Hn| → 1 as n→∞. Since φn(h0) ∈ C(G) for all
n ∈ N, we have

φn(h0)Acn+1(h) = Asn(h)φn(h0 + h) = Asn(h)sn(h0 + h)−1cn+1(h0 + h)

whenever h ∈ H ′n. In particular, φn(h0)A
◦cn+1(h) ⊂ Fn+1 for all h ∈ H ′n.

Then

µ(T φn(h0)[A]n ∩ [B]n) = µ(Tφn(h0)[A
◦]n ∩ [B◦]n) + o(1)

=
∑
h∈Hn

µ
(
Tφn(h0)[A

◦cn+1(h)]n+1 ∩ [B◦]n
)

+ o(1)

=
∑
h∈H′n

µ
(
Tφn(h0)[A

◦cn+1(h)]n+1 ∩ [B◦]n
)

+ o(1)

=
∑
h∈H′n

µ
(
[A◦sn(h)sn(h0 + h)−1cn+1(h0 + h)]n+1 ∩ [B◦]n

)
+ o(1)

=
∑
h∈H′n

µ
(
[(A◦sn(h)sn(h0 + h)−1 ∩B◦)cn+1(h0 + h)]n+1

)
+ o(1)

=
1

|Hn|
∑
h∈H′n

µ
(
[A◦sn(h)sn(h0 + h)−1 ∩B◦]n

)
+ o(1)

=
1

|Hn|
∑
h∈H′n

λFn

(
A◦sn(h) ∩B◦sn(h0 + h)

)
µ(Xn) + o(1)

=
1

|H ′n|
∑
h∈H′n

λFn

(
A◦sn(h) ∩B◦sn(h0 + h)

)
+ o(1)

=
1

|H ′n|
∑
h∈H′n

λFn

(
Asn(h) ∩Bsn(h0 + h)

)
+ o(1).
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Let νn := disth∈H′n(sn(h), sn(h + h0)). Set fA,B(x, y) := λFn(Ax ∩ By) =
λ(Ax ∩By)/λ(Fn). Notice that

νn =
1

2rn − 1

rn∑
i=−rn

dist−rn≤t<rn(sn(t, i), sn(t+ 1, i)).

It follows from (2.7) that ‖νn − κDn × κDn‖1 < 1/n. Then by (2.6),

µ(Tφn(h0)[A]n ∩ [B]n) =
�

Sn×Sn

fA,B dνn + o(1)

=
�

Sn×Sn

fA,B dκDn dκDn + o(1) =
1

λ(Sn)2

�

Sn×Sn

fA,B dλ dλ+ o(1),

Now let A := A∗Cn and B := B∗Cn for some ξn−1-measurable subsets
A∗, B∗ ⊂ Fn−1. We say that elements c and c′ of Cn are partners if Fn−1cSn∩
Fn−1c

′Sn 6= ∅. We then write c ./ c′. Since A∗cx ∩ B∗c′y = ∅ for c 6./ c′, it
follows that�

Sn×Sn

fA,B dλ dλ =
�

Sn×Sn

λFn(A∗Cnx ∩B∗Cny) dλ(x) dλ(y)

=
1

λ(Fn)

�

Sn×Sn

∑
C∗n3c./c′∈Cn

λ(A∗cx ∩B∗c′y) dλ(x) dλ(y).

Applying Lemma 2.5 we now obtain
�

Sn×Sn

fA,B dλ dλ =
1

λ(Fn)

∑
C∗n3c./c′∈Cn

�

A∗×B∗
λ(acSn ∩ bc′Sn) dλ(a) dλ(b).

Next, we note that

|λ(acSn ∩ bc′Sn)− λ(cSn ∩ c′Sn)| ≤ 8nλ(F̃n−1) = o(1)λ(Sn).

Each c ∈ Cn has no more than 2(4n+ 1)2 partners. Therefore

µ(Tφn(h0)[A
∗C∗n]n ∩ [B∗]n−1)

=
1

λ(Sn)2

∑
C∗n3c./c′∈Cn

�

A∗×B∗

λ(cSn ∩ c′Sn) + λ(Sn)o(1)

λ(Fn)
dλ(a) dλ(b) + o(1)

=
λ(A∗)λ(B∗)

λ(Fn−1)2
λ(Fn−1)

2

λ(Sn)2λ(Fn)

∑
C∗n3c./c′∈Cn

(
λ(cSn ∩ c′Sn) + λ(Sn)o(1)

)
+ o(1)

= λFn−1(A∗)λFn−1(B∗)θn ±
λ(Fn−1)

2|H∗n|2(4n+ 1)2λ(Sn)o(1)

λ(Sn)2λ(Fn)
+ o(1)

= λFn−1(A∗)λFn−1(B∗)θn ±
λ(Fn−1)

2|H∗n|2(4n+ 1)2o(1)

λ(F̃n−1)2(2n− 1)2|Hn|
+ o(1)

= λFn−1(A∗)λFn−1(B∗)θn + o(1),
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where

θn =
λ(Fn−1)

2

λ(Sn)2λ(Fn)

∑
C∗n3c./c′∈Cn

λ(cSn ∩ c′Sn).

Substituting A∗ = B∗ = Fn−1 and passing to the limit we find that θn → δ
as n→∞. Hence

µ(Tφn(h0)[A
∗C∗n]n ∩ [B∗]n−1) = µ([A∗C∗n]n)µ([B∗]n−1) + o(1).

Since o(1) does not depend on the choice of A∗ and B∗ inside Fn−1, the
claim is proven.

Corollary 2.7. The transformation T(1,0,0) is weakly mixing.

Proof. Substituting H∗n := Hn in Lemma 2.6 we obtain

sup
A∗,B∗∈σ(ξn−1)

∣∣µ(Tφn(h0)[A
∗]n−1 ∩ [B∗]n−1)− µ([A∗]n−1)µ([B∗]n−1)

∣∣→ 0.

Since each measurable subset of X can be approximated by [A∗]n−1 for large
n and some ξn−1-measurable subset A∗ ⊂ Fn−1, it follows that the sequence
(φn(h0))

∞
n=1 is mixing for T , that is, µ(Tφn(h0)A∩B)→ µ(A)µ(B) for every

pair of measurable subsets A,B ⊂ X.

Proposition 2.8. The transformation T(1,0,0) is mixing.

Proof. We have to show that

lim
n→∞

µ(TgnA ∩B) = µ(A)µ(B)

for any sequence (gn)∞n=1 that goes to infinity in C(G) and every pair of
measurable subsets A,B ⊂ X. Let gn ∈ Fn+1 \ Fn. It suffices to show
that a subsequence of (gn)∞n=1 is mixing for T . We write gn = fnφn(hn) for

some fn ∈ F̃n ∩ C(G) and hn ∈ Hn. Denote by z : Z → C(G) the natural
embedding z(x) := (x, 0, 0). We may assume that fn ∈ z(Z+) for all n (the
case fn ∈ z(Z−) is considered in a similar way). Let H ′n := Hn ∩ (Hn − hn)
and F ′n := Fn∩ (f−1n Fn). Passing to a subsequence if necessary, we may also
assume without loss of generality that

|H ′n|
|Hn|

→ δ1 and
λ(F ′n)

λ(Fn)
→ δ2

for some δ1, δ2 ≥ 0. Partition Hn into

H1
n := {h ∈ Hn | gnFncn+1(h) ⊂ Fn+1φn+1(h0)},

H2
n := {h ∈ Hn | gnFncn+1(h) ⊂ Fn+1},

H3
n := Hn \ (H1

n tH2
n).

As before, h0 = (1, 0) ∈ Z2. Let Cin+1 := φn+1(H
i
n). It is clear that |H3

n| ≤
4(n + 1)(2rn + 1) and

∣∣H2
n 4H ′n

∣∣ ≤ 2rn + 1. Since |Hn| = (2rn + 1)2, it
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follows that

|H1
n|

|Hn|
→ 1− δ1,

|H2
n|

|Hn|
→ δ1,

|H3
n|

|Hn|
→ 0.

Take two ξn-measurable subsets A,B ⊂ Fn. Since

µ([AC3
n+1]n+1) =

|C3
n+1|
|Cn+1|

µ([A]n) ≤ 1

2rn + 1
→ 0,

we have

(2.10)
∣∣µ(Tgn [AC3

n+1]n+1 ∩ [B]n)− µ([AC3
n+1]n+1)µ([B]n)

∣∣→ 0,

so [FnC
3
n+1]n+1 is negligible. It suffices to show mixing separately on each

of the remaining subsets [FnC
1
n+1]n+1 and [FnC

2
n+1]n+1.

First, we note that φn+1(h0)
−1gnFnC

1
n+1 ⊂ Fn+1. Thus, by (1.12),

Tgn [AC1
n+1]n+1 = Tφn+1(h0)[φn+1(h0)

−1gnAC
1
n+1]n+1.

By Lemma 2.6 (with C∗n+1 := φn+1(h0)
−1φn(hn)C1

n+1 and A∗ := fnA) we
obtain

(2.11)
∣∣µ(Tgn [AC1

n+1]n+1 ∩ [B]n)− µ([AC1
n+1]n+1)µ([B]n)

∣∣→ 0.

It remains to consider the second case involving C2
n+1. If δ1 = 0, then

obviously

(2.12) µ([AC2
n+1]n+1)→ 0.

Suppose now that δ1 > 0. Partition A into A1 := A ∩ f−1n Fn, A2 := A ∩
f−1n Fnφn(h0) and A3 := A \ (A1 tA2). In other words, fnA1 ⊂ Fn, fnA2 ⊂
Fnφn(h0), fnA3 ∩ (Fn t Fnφn(h0)) = ∅.

Note that

(2.13) µ([A3C
2
n+1]n+1) ≤ µ([A3]n) ≤ 2n+ 1

2rn + 1
→ 0.

For A1 and A2 we argue as in the proof of Lemma 2.6. Set F ◦n := {f ∈ Fn |
fSnS

−1
n ⊂ Fn}, A◦1 := A1 ∩ F ◦n and B◦ := B ∩ F ◦n . We have

µ(Tgn [A1C
2
n+1]n+1 ∩ [B]n) =

∑
h∈H′n

µ
(
[φn(hn)fnA

◦
1cn+1(h)]n+1 ∩ [B◦]n

)
+ o(1)

=
∑
h∈H′n

µ
(
[(fnA

◦
1sn(h)sn(hn + h)−1 ∩B◦)cn+1(h)]n+1

)
+ o(1)

=
1

|Hn|
∑
h∈H′n

µ
(
[fnA

◦
1sn(h)sn(hn + h)−1 ∩B◦]n

)
+ o(1)

=
δ1
|H ′n|

∑
h∈H′n

λFn

(
fnA

◦
1sn(h) ∩B◦sn(hn + h)n

)
+ o(1)

= δ1
�

Sn×Sn

fA1fn,B dνn + o(1),
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where νn :=disth∈H′n(sn(h), sn(hn+h)) and fA1fn,B(x, y)=λFn(A1fnx∩By).
Write hn = (tn, 0). Since

2rn − tn + 1

2rn + 1
=
|H ′n|
|Hn|

→ δ1 > 0

and

νn =
1

2rn − 1

rn∑
i=−rn

dist−rn≤t≤rn−tn(sn(t, i), sn(t+ tn, i)),

it follows from (2.7) and (2.6) that

µ(Tgn [A1C
2
n+1]n+1 ∩ [B]n) =

δ1
λ(Sn)2

�

Sn×Sn

fA1fn,B dλ dλ+ o(1).

Now take A := A∗C∗n and B := B∗Cn for some ξn−1-measurable subsets
A∗, B∗ ⊂ Fn−1. Let C ′n := Cn ∩ F ′n. It follows that |C ′n|/|Cn| → δ2 and
µ([A1]n 4 [A∗Cn]n) = o(1). Hence µ([A1]n) = δ2µ([A∗]n−1) + o(1). Arguing
as in the proof of Lemma 2.6 we obtain

µ(Tgn [A∗C ′nC
2
n+1]n+1 ∩ [B∗]n−1) = δ2µ([A∗]n−1)µ([B∗]n−1) + o(1).

Therefore

(2.14)
∣∣µ(Tgn [A1C

2
n+1]n+1 ∩ [B]n)− µ([A1C

2
n+1]n+1)µ([B]n)

∣∣→ 0.

Since Tgn [A2]n = Tφn(hn+h0)[φn(h0)
−1fnA2] with φn(h0)

−1fnA2 ⊂ Fn,
a similar reasoning yields

(2.15)
∣∣µ(Tgn [A2C

2
n+1]n+1 ∩ [B]n)− µ([A2C

2
n+1]n+1)µ([B]n)

∣∣→ 0.

Since

[A∗]n−1 = [A∗CnC
1
n+1]n+1 t

3⊔
i=1

[AiC
2
n+1]n+1 t [A∗CnC

3
n+1]n+1,

it follows from (2.10)–(2.15) that

lim
n→∞

sup
A∗,B∗∈σ(ξn−1)

∣∣µ(Tgn [A∗]n−1 ∩ [B∗]n−1)− µ([A∗]n−1)µ([B∗]n−1)
∣∣ = 0.

Since ξn-measurable cylinders generate the entire σ-algebra B as n → ∞,
we conclude that (gn)∞n=1 is a mixing sequence for T , as desired.

Proposition 2.9. The transformation T(1,0,0) is 2-fold simple and
C(T(1,0,0)) = {Tg | g ∈ G}.

Proof. Take an ergodic joining ν ∈ Je
2(T(1,0,0)). Let

Kn := [−an/n2, an/n2]Z, Jn := [−rn/n2, rn/n2]Z, Φn := Kn + 2ãnJn.
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We claim that ν-a.e. point (x, y) ∈ X × X is generic for T(1,0,0) × T(1,0,0),
i.e. for all cylinders A,B ⊂

⋃∞
n=1 σ(ξn) we have

(2.16) ν(A×B) = lim
n→∞

1

|Φn|
∑
i∈Φn

χA(T(i,0,0)x)χB(T(i,0,0)y).

To see this, we first note that (Φn)∞n=1 is a Følner sequence in Z. Since

an
n2

+
2ãnrn
n2

<
ãn(2rn + 1)

n2
<

2an+1

(n+ 1)2
,

it follows that Φn ⊂ Kn+1+Kn+1 and hence
⋃n
m=1 Φm ⊂ Kn+1+Kn+1. This

implies that |Φn+1 +
⋃
m≤n Φm| ≤ 3|Φn+1| for every n ∈ N, i.e. Shulman’s

condition [Li] is satisfied for (Φn)∞n=1. By [Li], the pointwise ergodic theorem
holds along (Φn)∞n=1 for any ergodic transformation. Since T×T is ν-ergodic,
(2.16) holds for ν-a.a. (x, y) ∈ X×X and for every pair of cylindersA,B ⊂ X
from

⋃∞
n=1 σ(ξn).

Fix a generic point (x, y) ∈ X × X. Since x, y ∈ Xn for all sufficiently
large n, we have the expansions

x = (fn, cn+1(hn), cn+2(hn+1), . . .),

y = (f ′n, cn+1(h
′
n), cn+2(h

′
n+1), . . .)

with fn, f
′
n ∈ Fn, hi, h

′
i ∈ Hi, i ≥ n. We let

H−n := [−(1− 1/n2)rn, (1− 1/n2)rn]2Z ⊂ Hn.

Since the marginals of ν are both equal to µ, we may assume without loss
of generality that hn, h

′
n ∈ H−n . Indeed,

µ
(
{x = (fn, cn+1(hn), cn+2(hn+1), . . .) ∈ Xn | hn 6∈ H−i }

)
< 2/i2,

and by the Borel–Cantelli lemma for µ-a.e. x ∈ Xn we have hi ∈ H−i for all
but finitely many i. So we may replace x = (fn, cn+1(hn), cn+2(hn+1), . . .)
∈ Xn with x = (fncn+1(hn) · · · cm(hm−1), cm+1(hm), . . .) ∈ Xm for some
m > n if necessary. Similarly, h′n ∈ H−n .

This implies, in turn, that

(2.17) fn+1 = fncn+1(hn) ∈ F̃nφn(H−n ) ⊂ [−cn, cn]Z× [−cn, cn]R×Z2,

where cn = ãn(1 + 2rn(1 − 1/n2)), and, similarly, f ′n+1 ∈ [−cn, cn]Z ×
[−cn, cn]R × Z2.

Given g ∈ Φn, there are some uniquely determined k ∈ Kn and j ∈ Jn
such that g = k + 2ãnj, i.e. (g, 0, 0) = (k, 0, 0)φn(j, 0). Moreover, we have
(j, 0) + hn ∈ Hn since hn ∈ H−n . It also follows from (2.17) that

(2.18) (k, 0, 0)fnSnS
±1
n ⊂ Fn.

Take g ∈ Φn and calculate T(g,0,0)x. We have

x = (fn, cn+1(hn), . . .) = (fncn+1(hn), . . .) = (fnsn(hn)φn(hn), . . .)
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and

(g, 0, 0)fnsn(hn)φn(hn) = (k, 0, 0)φn(j, 0)fnsn(hn)φn(hn)

= (k, 0, 0)fnsn(hn)φn((j, 0) + hn)

= (k, 0, 0)fnsn(hn)sn((j, 0) + hn)−1cn+1((j, 0)+hn)

= dcn+1((j, 0) + hn),

where d := (k, 0, 0)fnsn(hn)sn((j, 0) + hn)−1 ∈ Fn by (2.18). This means
that T(g,0,0)x = (d, . . .) ∈ Xn. Similarly,

(g, 0, 0)f ′n, sn(h′n)φn(h′n) = d′cn+1((j, 0) + h′n)

with d′ := (b, 0, 0)f ′nsn(h′n)sn((t, 0) + h′n)−1 ∈ Fn.

Now take any ξn−2-measurable subsets A∗, B∗ ⊂ Fn−2 and set A :=
A∗Cn−1Cn, B := B∗Cn−1Cn. Then

ν([A∗]n−2 × [B∗]n−2) = ν([A]n × [B]n)

= lim
n→∞

∣∣{g ∈ Φn | T(g,0,0)x ∈ [A]n, T(g,0,0)y ∈ [B]n}
∣∣

|Φn|

= lim
n→∞

∣∣{g ∈ Φn | d ∈ A, d′ ∈ B}∣∣
|Φn|

= lim
n→∞

1

|Kn|
∑
k∈Kn

∣∣{j ∈ Jn | d ∈ A, d′ ∈ B}∣∣
|Jn|

= lim
n→∞

1

|Kn|
∑
k∈Kn

ζn
(
A−1(k, 0, 0)fnsn(hn)×B−1(k, 0, 0)f ′nsn(h′n)

)
,

where ζn := distj∈Jn(sn((j, 0) + hn), sn((j, 0) + h′n)). We distinguish two
cases.

First case. Suppose first that hn 6= h′n for infinitely many, say bad, n.
Since |Jn| ≥ rn/n

2 it follows from (2.7) that ‖ζn − κDn × κDn‖ < 1/n.
Moreover, it follows from (2.5) and the properties (ii) and (iii) of ξn that

κDn(A−1(k, 0, 0)fnsn(h)) = λSn(A−1(k, 0, 0)fnsn(h)) + o(1).

Hence

1

|Kn|
∑
k∈Kn

ζn
(
A−1(k, 0, 0)fnsn(hn)×B−1(k, 0, 0)f ′nsn(h′n)

)
=

1

|Kn|
∑
k∈Kn

κDn(A−1(k, 0, 0)fnsn(hn))κDn(B−1(k, 0, 0)f ′nsn(h′n)) + o(1)

=
1

|Kn|
∑
k∈Kn

λSn(A−1(k, 0, 0)fnsn(hn))λSn(B−1(k, 0, 0)f ′nsn(h′n)) + o(1).
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Now we derive from Lemma 2.3(ii) that

λSn(A−1(k, 0, 0)fnsn(hn)) =
λ(A−1(k, 0, 0)fnsn(hn) ∩ Sn)

λ(Sn)

=
λ(A ∩ (k, 0, 0)fnsn(hn)Sn)

λ(Sn)

= λFn−2(A∗) + o(1)

and, in a similar way, λSn(B−1(b, 0, 0)f ′nsn(h′n)) = λFn−2(B∗) + o(1). Hence

ν([A∗]n−2 × [B∗]n−2) = λFn−2(A∗)λFn−2(B∗) + o(1)

= µ([A∗]n−2)µ([B∗]n−2) + o(1)

for all bad n and all ξn−2-measurable subsets A∗, B∗ ⊂ Fn−2. Since any
measurable set can be approximated by [A∗]n−2, it follows that in this case
ν = µ× µ.

Second case. Now we consider the case where hn = h′n for all n greater
than some N . Then it is easy to see that y = Tkx, where k = f ′Nf

−1
N ∈ G,

and then it follows immediately that (x, y) is generic for the off-diagonal
joining µTk :

ν([A]n × [B]n) = lim
n→∞

1

|Φn|
∑
i∈Φn

χ[A]n(T(i,0,0)x)χ[B]n(T(i,0,0)Tkx)

= lim
n→∞

1

|Φn|
∑
i∈Φn

χ[A]n∩T−1
k [B]n

(T(i,0,0)x)

= µ([A]n ∩ T−1k [B]n) = µTk([A]n × [B]n)

for all A,B ∈ σ(ξn), since ν projects onto µ. Since each measurable set can
be approximated by cylinder sets, we deduce that in this case ν = µTk with
k ∈ G.

Proof of Theorem 2.2. The conclusion follows now from Veech’s theorem,
Propositions 2.8, 2.9 and the fact that FGa and FGb

are isomorphic if and
only if Ga and Gb are conjugate in G [dJR, Corollary 3.3]. It is clear that
Gb = hGah

−1 with h = (0, (a+ b)/2, 1).

3. Concluding remarks. Notice that with some additional conditions
on sn in Lemma 2.1 (cf. [Da3, Lemma 2.3]) one can show that T(1,0,0) is actu-
ally mixing of all orders, as well as simple of all orders (cf. [Da4, Section 6]).
For the definitions of higher order simplicity we refer to [dJR].

If we replace G = Z×(RoZ2) with Γ := R×(RoZ2) and apply the same
construction (with obvious minor changes), we obtain a probability preserv-
ing Γ -action R such that the flow (R(t,0,0))t∈R is 2-fold simple mixing and
its centralizer coincides with the entire Γ -action. This gives an example of
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a 2-fold simple mixing flow with uncountably many prime factors. By [Ry],
each 2-fold simple flow is simple. Moreover, since Z ⊂ R is a closed co-
compact subgroup, the corresponding Z-subaction is also 2-fold simple and
C(R(1,0,0)) = {Rg | g ∈ Γ} by [dJR, Theorem 6.1]. Thus we get examples of
two non-isomorphic 2-fold simple transformations with uncountably many
prime factors: R(1,0,0) is embeddable into a flow while T(1,0,0) is not.
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