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DIFFERENTIAL SMOOTHNESS OF AFFINE HOPF ALGEBRAS OF
GELFAND–KIRILLOV DIMENSION TWO

BY

TOMASZ BRZEZIŃSKI (Swansea)

Abstract. Two-dimensional integrable differential calculi for classes of Ore exten-
sions of the polynomial ring and the Laurent polynomial ring in one variable are con-
structed. Thus it is concluded that all affine pointed Hopf domains of Gelfand–Kirillov
dimension two which are not polynomial identity rings are differentially smooth.

1. Introduction. An affine algebra A is said to be differentially smooth
if it admits an integrable differential calculus of dimension equal to the
Gelfand–Kirillov dimension of A (see Section 2 for definitions). The aim of
this paper is to prove

Theorem 1.1. Every affine pointed Hopf domain (over an algebraically
closed field of characteristic 0) of Gelfand–Kirillov dimension two that is
not a polynomial identity ring is differentially smooth.

Hopf algebras satisfying the assumptions of Theorem 1.1 are classified
in [6] and are obtained by constructions described in [3]. The latter are
examples of skew polynomial algebras or Ore extensions of the polynomial
or Laurent polynomial ring in one variable. Therefore, along the way to
Theorem 1.1 we prove more generally that members of a particular class
of skew polynomial rings of Gelfand–Kirillov dimension two are differen-
tially smooth. This is achieved by constructing explicitly two-dimensional
integrable differential calculi over such rings.

2. Preliminaries. All algebras considered in this paper are associative
and unital over an algebraically closed field K of characteristic 0.

Let A be an algebra. By an n-dimensional differential calculus over A
we mean a differential graded algebra (ΩA, d) such that

(a) ΩA =
⊕n

k=0Ω
kA, with Ω0A = A and ΩnA 6= 0;

(b) as an algebra, ΩA is generated by A and d(A);
(c) ker d|A = K.1.
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Traditionally, the product of elements of ΩA of positive degree is denoted
by ∧.

An n-dimensional differential calculus over A admits a volume form,
say ω, if ΩnA is freely generated by ω as a right A-module. Associated to
a volume form ω are the algebra automorphism νω : A → A and the right
A-module isomorphism πω : ΩnA→ A, given by

(2.1) aω = ωνω(a), πω(ωa) = a for all a ∈ A.

We write IkA for the space of right A-module maps ΩkA → A. The direct
sum IA :=

⊕n
k=0 IkA is a right ΩA-module with multiplication

(ϕ · ω′)(ω′′) = ϕ(ω′ ∧ ω′′) for all ω′ ∈ ΩkA, ω′′ ∈ ΩmA, ϕ ∈ Ik+mA.

Note that πω ∈ InA. A volume form ω ∈ ΩnA is said to be an integrating
form if the left multiplication maps by πω,

ΩkA→ In−kA, ω′ 7→ πω · ω′, k = 1, . . . , n− 1,

are bijective. A calculus admitting such a form is said to be integrable.
An integrable calculus can be equivalently characterized by the existence
of a bimodule complex (I•A,∇) (known as the complex of integral forms)
isomorphic to the de Rham complex (ΩA, d). The boundary map ∇ : I1A
→ A is a divergence, i.e. it satisfies the (right connection) Leibniz rule

∇(ϕ · a) = ∇(ϕ)a+ ϕ(da) for all a ∈ A, ϕ ∈ I1A.

The cokernel map Λ : A→ coker∇ is called an integral associated to ∇.

An affine algebra of Gelfand–Kirillov dimension n is said to be differ-
entially smooth if it admits an n-dimensional integrable calculus. Thus in
contrast to other notions of smoothness of algebras [4], [5], which are more
of homological nature, differential smoothness requires existence of a par-
ticular differential structure of a specified dimension which admits a non-
commutative version of the Hodge star isomorphism. Examples of differen-
tially smooth algebras include the coordinate algebras of quantum groups
such as O(SLq(2)) or of quantum spaces such as the Podleś standard two-
sphere or the Manin plane. More surprisingly perhaps, they also include
coordinate algebras of classically non-smooth manifolds such as the pillow
orbifold, cones or singular lens spaces [2]. It might be worth pointing out
that all these examples are also homologically smooth in the sense of [5].

A characterization of differentially smooth algebras which will be of main
usage in what follows is given in

Lemma 2.1 ([2, Lemma 2.7]). Let ΩA by an n-dimensional differen-
tial calculus over A admitting a volume form ω. Assume that, for all k =
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1, . . . , n − 1, there exist a finite number of forms ωk
i , ω̄

k
i ∈ ΩkA such that,

for all ω′ ∈ ΩkA,

(2.2) ω′ =
∑
i

ωk
i πω(ω̄n−k

i ∧ ω′) =
∑
i

ν−1
ω (πω(ω′ ∧ ωn−k

i ))ω̄k
i ,

where πω and νω are defined by (2.1). Then ω is an integrating form.

In the case of Lemma 2.1, the divergence is

(2.3) ∇ : I1A→ A, ϕ 7→ (−1)n−1
∑
i

πω
(
d(ν−1

ω (ϕ(ω1
i )))ω̄n−1

i

)
.

3. Integrable differential calculi over skew polynomial rings. Let
A be an algebra and σ an automorphism of A. The linear map δ : A→ A is
called a σ-derivation provided for all a, a′ ∈ A,

δ(aa′) = δ(a)a′ + σ(a)δ(a′).

An Ore extension of A or a skew polynomial ring over A associated to a
σ-derivation δ is an extension of A obtained by adjoining a generator y that
is required to satisfy

ya = σ(a)y + δ(a) for all a ∈ A.
Such an extension is denoted by A[y;σ, δ].

3.1. Differentially smooth Ore extensions of the polynomial
ring. All automorphisms σ of the polynomial ring K[x] have the form

(3.1) σq,r(x) = qx+ r,

where q, r ∈ K, q 6= 0. Furthermore, any element p(x) ∈ K[x] determines a
σq,r-derivation of K[x] by

(3.2) δp(f(x)) =
f(σq,r(x))− f(x)

σq,r(x)− x
p(x),

where (3.2) is to be understood as a suitable limit when q = 1, r = 0,
i.e. when σq,r is the identity map. The Ore extension k[x][y;σq,r, δp] will be
denoted by A[q, r; p(x)]. Thus A[q, r; p(x)] is generated by x, y subject to
the relation

(3.3) yx = qxy + ry + p(x).

Lemma 3.1. Let

(3.4) νx(x) = x, νx(y) = qy+p′(x) and νy(x) = σ−1
q,r (x), νy(y) = y,

where p′(x) is the x-derivative of p(x).

(1) The symbols defined by (3.4) simultaneously extend to algebra auto-
morphisms νx, νy of A[q, r; p(x)] only in the following three cases:

(a) q = 1, r = 0 with no restriction on p(x);
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(b) q = 1, r 6= 0 and p(x) = c, c ∈ K;
(c) q 6= 1, p(x) = c

(
x+ r

q−1

)
, c ∈ K with no restriction on r.

(2) In any of the cases (a)–(c),

(3.5) νy ◦ νx = νx ◦ νy.

Proof. (1) Clearly (a)–(c) exhaust all possible choices of q and r, hence
only restrictions on p(x) need be studied in each case. The map νx can be
extended to an algebra homomorphism if and only if the definitions of νx(x),
νx(y) respect relation (3.3), i.e.

(3.6) νx(y)νx(x)− νx(qx+ r)νx(y) = p(νx(x)).

This yields a differential equation

(3.7) ((q − 1)x+ r)p′(x) = (q − 1)p(x).

If q = 1 and r = 0, both sides of (3.7) are identically zero, hence there is no
restriction on p(x). If q = 1 and r 6= 0, then p′(x) = 0, so p(x) is a constant
polynomial. Finally, if q 6= 1, by equating the coefficients of the polynomials
on both sides of (3.7) one easily finds that p(x) = c

(
x+ r

q−1

)
for any c ∈ K.

Thus νx is an algebra map precisely in one of the cases (a)–(c).

Condition (3.6) for νy leads to the constraint

(3.8) p(σ−1
q,r (x)) = δp(σ

−1
q,r (x)).

Since σ−1
q,r (x) = q−1(x − r) and δp is a σq,r-derivation with δp(x) = p(x),

equation (3.8) is equivalent to

(3.9) p(q−1(x− r)) = q−1p(x).

Obviously, if q = 1 and r = 0, there are no restrictions on p. If q = 1 and
r 6= 0, then p(x−r) = p(x), which implies that p(x) is a constant polynomial.
If q 6= 1, one easily checks that p(x) = c

(
x + r

q−1

)
solves equation (3.9).

This completes the proof that both νx and νy can be extended to algebra
endomorphisms of A[q, r; p(x)] if and only if one of the conditions (a)–(c) is
satisfied. In all these cases, the inverses of νx and νy can be defined by

ν−1
x (x) = x, ν−1

x (y) = q−1(y − p′(x)), ν−1
y (x) = σq,r(x), ν−1

y (y) = y,

thus completing the proof of the first assertion of the lemma.

(2) Since νx, νy are algebra maps, it suffices to check the equality (3.5)
on the generators x, y. In the case (a), νy is the identity map, hence (3.5) is
automatically satisfied. In the case (b), νx is the identity map, hence again
(3.5) is automatically satisfied. Finally, in the case (c) the equality (3.5)
follows by the fact that x is a fixed point of νx and y is a fixed point of νy,
while the actions on the the other generators simply rescale and translate
them by a constant.
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Remark 3.2. Note that if q 6= 1 is a root of unity, then (3.9) has a
richer space of solutions. Suppose qn = 1. Since the polynomial x+ r

q−1 satis-

fies (3.9), so does any linear combination of the polynomials
(
x+ r

q−1

)ln+1
,

l ∈ N.

Proposition 3.3. If A[q, r; p(x)] satisfies one of the conditions (a)–(c)
in Lemma 3.1, then it is differentially smooth.

Proof. Since the algebras A[q, r; p(x)] have Gelfand–Kirillov dimension
two, a two-dimensional integrable calculus has to be constructed. Let
Ω1A[q, r; p(x)] be a free right A[q, r; p(x)]-module of rank two with gen-
erators dx, dy. Define a left A[q, r; p(x)]-module structure by

(3.10) adx = dxνx(a), ady = dyνy(a) for all a ∈ A[q, r; p(x)],

where νx, νy are the algebra automorphisms defined in Lemma 3.1. Ex-
plicitly, in terms of generators, the relations in Ω1A[q, r; p(x)] come out as

xdx = dxx, xdy = q−1dyx− q−1rdy,(3.11a)

ydx = qdxy + dxp′(x), ydy = dyy.(3.11b)

We would like to extend x 7→ dx, y 7→ dy to a map d : A[q, r; p(x)] →
Ω1A[q, r; p(x)] satisfying the Leibniz rule. This is possible if the Leibniz rule
is compatible with the only non-trivial relation (3.3), i.e. if

(3.12) dyx+ ydx = qdxy + qxdy + rdy + dp(x).

Note that in view of the first of equations (3.11a) which defines the usual
commutative calculus on the polynomial ring K[x], dp(x) = dxp′(x). One
easily checks using (3.11) that the equality (3.12) is true.

Define linear maps ∂x, ∂y : A[q, r; p(x)]→ A[q, r; p(x)] by

(3.13) d(a) = dx∂x(a) + dy∂y(a) for all a ∈ A[q, r; p(x)].

These are well-defined since dx and dy are free generators of the right
A[q, r; p(x)]-module Ω1A[q, r; p(x)]. By the same token, d(a) = 0 if and
only if ∂x(a) = ∂y(a) = 0. Using relations (3.10) and the definitions of the
maps νx and νy one easily finds that

(3.14) ∂x(xkyl) = kxk−1yl, ∂y(xkyl) = lσq,r(x
k)yl−1 = l(qx+ r)kyl−1.

In particular, ∂x(
∑

k,l cklx
kyl) = 0 if and only if ck,l = 0 whenever (k, l) 6=

(0, 0). Thus d(a) = 0 if and only if a is a scalar multiple of the identity.

The universal extension of d to higher forms compatible with (3.11) gives
the following rules for Ω2A[q, r; p(x)]:

(3.15) dx ∧ dx = dy ∧ dy = 0, dy ∧ dx = −qdx ∧ dy.

Note that the last of the necessary conditions (3.15) does not induce any
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additional constraints since for all a ∈ A,

a(dy ∧ dx+ qdx ∧ dy) = dy ∧ dxνx ◦ νy(a) + qdx ∧ dyνy ◦ νx(a)

= qdx ∧ dy(νy ◦ νx(a)− νx ◦ νy(a)) = 0,

by (3.5). Thus ω := dx ∧ dy freely generates Ω2A[q, r; p(x)] as a right
A[q, r; p(x)]-module. Furthermore,

aω = ωνy(νx(a)) for all a ∈ A[q, r; p(x)],

and since both νx and νy are automorphisms, ω is a volume form and νω =
νy ◦ νx. This completes the construction of a two-dimensional differential
calculus ΩA[q, r; p(x)] with a volume form.

Define

(3.16) ω1 = dx ω̄1 = −q−1dy, and ω2 = dy, ω̄2 = dx.

Then, for all ω′ = dxa+ dyb,

ω1πω(ω̄1 ∧ ω′) + ω2πω(ω̄2 ∧ ω′) = dxπω(−q−1dy ∧ dxa) + dyπω(dx ∧ dyb)
= dxa+ dyb = ω′.

Furthermore, using relations (3.10) we can compute∑
i

ν−1
ω (πω(ω′ ∧ ωi))ω̄i = −q−1ν−1

ω (πω(dyb ∧ dx))dy + ν−1
ω (πω(dxa ∧ dy)dx

= ν−1
y (b)dy + ν−1

y ◦ ν−1
x ◦ νy(a)dx

= dyb+ dxνx ◦ ν−1
y ◦ ν−1

x ◦ νy(a) = ω′,

where the last equality follows by (3.5). By Lemma 2.1, differential calculus
ΩA[q, r; p(x)] is integrable, and hence A[q, r; p(x)] is a differentially smooth
algebra as claimed.

Remark 3.4. The maps ϕx, ϕy : Ω1A[q, r; p(x)] → A[q, r; p(x)] defined
by

ϕx(dxa+ dyb) = a, ϕy(dxa+ dyb) = b

form a free basis for the module I1A[q, r; p(x)]. An easy calculation yields

(3.17) ∇(ϕx) = ∇(ϕy) = 0,

where ∇ is the divergence defined by (2.3). Hence, for all a, b ∈ A[q, r; p(x)],

∇(ϕx · a+ ϕy · b) = ∂x(a) + ∂y(b),

where ∂x, ∂y are defined by (3.13). It follows that ∇ is surjective, and the
corresponding integral Λ is identically zero.

Directly by their construction, ∂x and ∂y are skew derivations (with
corresponding automorphisms νx, νy), and Ω1A[q, r; p(x)] is the calculus
induced by them in the sense of [1]. Therefore, ∇ is a unique divergence
that satisfies condition (3.17) by [1, Theorem 3.4].
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3.2. Differentially smooth Ore extensions of the Laurent poly-
nomial ring. Automorphisms of the Laurent polynomial ring K[x, x−1]
have the form

σq,±(x) = qx±1, q ∈ K \ {0}.
As in the case of the polynomial ring, σq,±-derivations are determined by
their values at x, and we write δp for the derivation such that δp(x) = p(x).
An Ore extension K[x, x−1][y;σq,±, δp] is denoted by A[q,±; p(x)]. Explicitly,
A[q,±; p(x)] is generated by x, by its inverse x−1 and by y such that

(3.18) yx = qx±1y + p(x).

Lemma 3.5. Define

ν̄x(x) = x, ν̄x(y) = −qx−2y + p′(x),(3.19a)

ν̄y(x) = qx−1, ν̄y(y) = y.(3.19b)

Then both ν̄x, ν̄y simultaneously extend to automorphisms of the algebra
A[q,−; p(x)] if and only if

(3.20) p(x) = c(x− qx−1), c ∈ K.
Furthermore, the resulting automorphisms satisfy

(3.21) ν̄y ◦ ν̄x(a)x2 = x2ν̄x ◦ ν̄y(a) for all a ∈ A[q,−; c(x− qx−1)].

Proof. Arguing as in the proof of Lemma 3.1, ν̄x can be extended to an
algebra homomorphism provided

ν̄x(y)ν̄x(x) = qν̄x(x)−1ν̄x(y) + p(ν̄x(x)).

This leads to the differential equation

(x− qx−1)p′(x) = (1 + qx−2)p(x),

with the polynomials (3.20) as the only solutions. On the other hand, one
easily checks that

ν̄y(y)ν̄y(x) = qν̄y(x)−1ν̄y(y) + c(ν̄y(x)− qν̄y(x)−1).

Thus also ν̄y can be extended to an algebra endomorphism. Clearly, ν̄y is
then an automorphism. The inverse of ν̄x is determined from ν̄−1

x (y) =
q−1(c(x2 + q)− x2y).

Since ν̄x and ν̄y are algebra maps, the equality (3.21) has to be checked
only for a = x, y. The first case is trivial; in the second case

ν̄y ◦ ν̄x(y)x2 = −q−1x2yx2 +c(1+q−1x2)x2 = −qy+c(x2 +q) = x2ν̄x ◦ ν̄y(y),

where the middle equality follows by repeated use of (3.18) with p(x) =
c(x− qx−1).

Remark 3.6. More generally ν̄y alone extends to an algebra automor-
phism whenever p(x) =

∑n
i=1 ai(x

i − qix−i).
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Proposition 3.7. The algebras A[q,−; c(x − qx−1)], A[1,+; p(x)] and
A[q,+; c] are differentially smooth.

Proof. All these algebras have Gelfand–Kirillov dimension two, so two-
dimensional integrable calculi have to be constructed. The last two alge-
bras are localizations of A[q, 0; p(x)], and localizations of differential calculi
described in the proof of Proposition 3.3 yield integrable two-dimensio-
nal calculi, hence A[1,+; p(x)] and A[q,+; cx] are differentially smooth.
An integrable calculus ΩA[q,−; c(x − qx−1)] over A[q,−; c(x − qx−1)] is

defined as follows: Ω1A[q,−; c(x − qx−1)] is a right A[q,−; c(x − qx−1)]-
module freely generated by dx and dy. The left module structure is de-
fined by

(3.22) adx = dxν̄x(a), ady = dyν̄y(a) for all a ∈ A[q,−; c(x− qx−1)].

This bimodule extends to a graded algebra generated by x, y, dx, dy subject
to the relations

xdx = dxx, xdy = qdyx−1,(3.23a)

ydx = −qdxx−2y + cdx(1 + qx−2), ydy = dyy,(3.23b)

dx ∧ dx = dy ∧ dy = 0, dx ∧ dy = qdy ∧ dxx−2.(3.23c)

With these definitions the assignment x 7→ dx, y 7→ dy can be extended
to an exterior differential, thus yielding a differential graded algebra over
A[q,−; c(x− qx−1)].

Linear endomorphisms ∂x, ∂y of A[q,−; c(x − qx−1)] can be defined by
a formula analogous to (3.13). In particular ∂x will have exactly the form
(3.14) with the only difference that k is an integer, and the same argu-
ment as in the proof of Proposition 3.3 shows that d(a) = 0 only if a is a
scalar multiple of the identity. Thus ΩA[q,−; c(x− qx−1)] is a calculus over
A[q,−; c(x− qx−1)].

The last of equations (3.23c) does not induce any additional constraints
since, for all a ∈ A,

a(dx ∧ dy − qdy ∧ dxx−2) = dx ∧ dyν̄y ◦ ν̄x(a)− qdy ∧ dxν̄x ◦ ν̄y(a)x−2

= −qdy ∧ dx
(
x−2ν̄x ◦ ν̄y(a)− ν̄y ◦ ν̄x(a)x−2

)
= 0,

by (3.21). Thus the module Ω2A[q,−; c(x − qx−1)] is freely generated by
ω̄ = dy ∧ dx. This is a volume form with the corresponding automorphism
νω̄ = ν̄x ◦ ν̄y. Finally, setting

ω1 = dx, ω̄1 = dy and ω2 = dy, ω̄2 = qdxx−2,

one can verify that the requirements of Lemma 2.1 are fulfilled (in proving
the second of equalities (2.2), the relation (3.21) plays a crucial role).
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3.3. Proof of Theorem 1.1. By [6], if H is a pointed affine Hopf
domain of Gelfand–Kirillov dimension two that does not satisfy a polynomial
identity then it falls into the following three classes:

(a) H is the universal enveloping algebra of a two-dimensional solvable
Lie algebra, thus it is an algebra of type A[1, 0;x] with both x and
y primitive elements.

(b) H is isomorphic to the algebra A[q,+; 0], q 6= 1, with x a grouplike
element and the coproduct ∆(y) = y ⊗ 1 + xn ⊗ y.

(c) H is isomorphic to the algebra A[1,+;xn − x], with x a grouplike
element and the coproduct ∆(y) = y ⊗ xn−1 + 1⊗ y

All these algebras satisfy the conditions in Lemmas 3.1 and 3.5, and hence
they are differentially smooth by Propositions 3.3 and 3.7.
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