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A NOTE ON THE EXPONENTIAL DIOPHANTINE EQUATION
(4m? +1)% 4+ (5m? — 1)¥ = (3m)*?

BY

JIANPING WANG, TINGTING WANG and WENPENG ZHANG (Xi’an)

Abstract. Let m be a positive integer. Using an upper bound for the solutions of
generalized Ramanujan—Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove
that if 3 { m, then the equation (4m? + 1) + (5m? — 1)¥ = (3m)* has only the positive
integer solution (z,y,2) = (1,1, 2).

1. Introduction. Let Z, N be the sets of all integers and positive integers
respectively. Let a, b, ¢ be fixed coprime positive integers with min{a, b, ¢} > 1.
Recently, many papers investigated the exponential Diophantine equation

(1.1) a*+b=c* x,y,z€eN.

(see [EM, HTY! L) MT), M2, M3, M4, MT]). In this connection, N. Terai [T]]
proved that if a, b, ¢ satisfy

(1.2) a=4m*+1, b=5m?>—-1, ¢=3m, meN,

then (1.1) has only the solution (z,y,2) = (1, 1,2) under some conditions.
The proof of this result is based on elementary methods and Baker’s method.

In the present paper, using an upper bound for the solutions of gener-
alized Ramanujan—Nagell equations given by Y. Bugeaud and T. N. Sho-
rey [BS], we prove a general result:

THEOREM 1.1. Let a,b, c be positive integers satisfying (1.2). If 3 1 m,
then (1.1) has only the solution (x,y,z) = (1,1,2).

2. Preliminaries. In this section, we assume that a,b,c are positive
integer satisfying (1.2). Then, (1.1) can be written as

(2.1) (4m? + 1) + (5m? — 1) = (3m)*, z,y,2z € N.

We further assume that (z,y, ) is a solution of (2.1) with (z,y, z) # (1,1, 2).
LEMMA 2.1. If m >1 and 3{m, then 24m, 2tz, y=1 and 2| z.
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Proof. Since m > 1 and min{x,y} > 1, we see from (2.1) that z > 2 and
1+ (=1)Y = (4m? + 1% + (5m? — 1)Y = (3m)* = 0 (mod m?), whence

(2.2) 24y.

Since (z,y,2) # (1,1,2), we have z > 3. Hence, by (2.1) and (2.2), we
get (4z + 5y)m? = (4m? + 1)* + (5m? — 1)Y = (3m)? = 0 (mod m?), so

(2.3) 4x 4+ 5y = 0 (mod m).
If 2| m, then from (2.3) we get 2|y, which contradicts (2.2). So we have
(2.4) 24m.
If 2|z, then from (2.1), (2.2) and (2.4) we get
—(5m? — 1)
2. 1= ——
(25) (F7 =),

where (%) is the Jacobi symbol. Since 3 { m, we have m? = 1 (mod 3),

—(5m? — 1) = —1 (mod 3) and (_(5#2_1)) = —1. Hence, by (2.5), we get
(2.6)

- (—(517;2—1))(—(5m;—1)) :_<—(5n:n2—1)> :_<;> __1

a contradiction. This implies that
(2.7) 21z
If 21 2, then from (2.1), (2.2) and (2.7) we get

(2.8) 1= 3m(5m? — 1)\ 3 m 5m? — 1

' S\ dm?+1 ) \dm?+1)\4m? +1)\4m?+1)"
Notice that 4m?+1 = 1 (mod 4), 4m?+1 = —1 (mod 3) and 5m?—1 = (3m)?
(mod 4m? + 1). We have

3 m 5m? — 1
2. — 2 ) =1 — )= (=) =1
(29) <4m2+1> ’ <4m2+1> <4m2+1>
Therefore, (2.8) is false. Consequently,

(2.10) 2| 2.

Finally, since 4m?+1 =5 (mod 8), 5m? — 1 = 4 (mod 8) and (3m)? =1
(mod 8), we deduce from (2.1), (2.7) and (2.10) that 5 +4Y = 5% + 4¥ =
(4m? + 1)* + (5m? — 1)¥ = (3m)* = ((3m)?)*/? = 1 (mod 8), whence

(2.11) y=1.
Thus, by (2.4), (2.7), (2.10) and (2.11), the lemma is proved. m
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LEMMA 2.2. If m > 7 and 3t m, then
1
(2.12) x> g(7m4 — 45m? — 10).

Proof. By Lemma 2.1, we have 2 { m, x > 3, y = 1 and 2|z. Since
m > 7, by (2.1), we get (3m)* > (4m? +1)® > (4m? +1)3 > 64mS > (3m)%.
Thus z > 6. Further, since y = 1 and z > 6, we see from (2.1) that

(2.13) (4z +5) + (;”) 16m2 = 0 (mod m).
By (2.13), we get 4z +5 = 0 (mod m?) and
(2.14) dr+5=m?r, reN.
Substituting (2.14) into (2.13), we have
(2.15) 2r + 4x(4r — 4) = 2r + 45 = 0 (mod m?).
Since 2 t m, we find from (2.15) that
245

(2.16) r= mT (mod m?).
Further, since r and @ are positive integers with @ < m?, we have

2 —45
(2.17) r:mT—Fm%s, seN, s>0,

by (2.16). Substituting (2.17) into (2.14), we get
1 1
(2.18) T = Z(mQr —5) = g(m4(2s +1) — 45m? — 10).

Furthermore, since m* = m? = 1 (mod 8) and z is a positive integer, we see
from (2.18) that m*(2s+1) —45m? —10= (2s+1) —=55=(2s+1) —-7=0
(mod 8). This implies that 2s+1 > 7 since 2s+1 is a positive integer. Thus,
by (2.18), x satisfies (2.12). =

For any nonnegative integer s, let Fs and Ls denote the sth Fibonacci
number and sth Lucas number respectively. Then
(219) Fy =0, Fr =1, F$+2:FS+1+F5, s> 0.

LEMMA 2.3 (|BS, Theorem 2]). Let D1, Do,k be positive integers such
that min{ D1, Dy, k} > 1 and gcd(D1, D2) = ged(k,2D1D2) = 1. If (X, n) is
a solution of the equation

(2.20) DiX?+Dy=k", X,neN,
then

4
(221) n < ;\/ DDy 10g(2€\/ D1D2),

except possibly for the following cases:
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(i) D1f? + Dy = k9 and 3D1f? — Dy = +1, where f,g are positive
integers.

(ii) (D1,Da,k) = (Fi—2e, Li+e, F}), where t is a positive integer with
t>2 e {1}

LEMMA 2.4 ([W]). The largest Fibonacci number of the form 4m? + 1
15 5.
LeMMA 2.5 ([N]). The equation
(2.22) 5% +4Y =3%, x,y,z €N,
has only the solution (x,y,z) = (1,1,2).
LEMMA 2.6. The equation
(2.23) 101" +124Y = 15*, z,y,z € N,
has only the solution (x,y,z) = (1,1,2).

Proof. Since (2.23) is the special case of (2.1) for m = 5, by Lemma
2.1, if (z,y,2) is a solution of (2.23) with (z,y,2) # (1,1,2), then 2 { z,
x > 3,y =1, 2|z and z > 4. Hence, by (2.23), 0 = 15* = 101* + 124Y
= (1 +100)® + 124 = (1 + 100z) + (—1) = 100z (mod 53). It implies that

(2.24) 5| .

On the other hand, since 101 = 2 (mod 11), 124 = 3 (mod 11), 2 { z,
y =1 and 2|z, we deduce from (2.23) and (2.24) that

(2.25) 15 = (155/2)2 = 101° + 124Y = 2° + 3 = (2°)*/°> + 3
= (—1)*°+3=(—=1)+3=2 (mod 11).

But, since 11 = 3 (mod 8) and 2 is not a quadratic residue modulo 11, (2.25)
is false. Thus, (2.23) has only the solution (z,y,2) = (1,1,2). =

3. Proof of Theorem Assume that (z,y, z) is a solution of (2.1)
with (z,y,2) # (1,1,2). By Lemmas 2.5 and 2.6, the conclusion of the
theorem holds for m € {1,5}. Since 3 { m, by Lemma 2.1, we have 2 { m,
m > 7,21z and y = 1. This implies that the equation

(3.1) (4m* + 1)X%2 4+ (5m? —1) = (3m)", X,ncN,
has a solution
(3.2) (X,n) = ((4m? +1)@=1/2 2),
Since (5m? — 1) £ 1 < 5m? < 3(4m? + 1), we have
(3.3) 3(4m? +1)f2 — (5m* — 1) #+1, feN.
On the other hand, by Lemma 2.4,
(3.4)  (4m*+1,5m? —1,3m) # (Fi_oc, Li1e, Fy), tEN, e {1}
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Therefore, by (3.3) and (3.4), applying Lemma 2.3 to (3.1) and (3.2), we get

4
(3.5) z< ;\/(4m2 + 1)(5m2 — 1) log(2e+/(4m?2 + 1)(5m? — 1)).
Since m > 7, by Lemma 2.2, z satisfies (2.12). Hence, by (2.1) and (2.12),
we have (3m)* > (4m? 4+ 1)* > (2m)** and
log(2m) 1, 4 9
: DOV S —45m? -1
(3.6) z> 2w10g(3m) > 4(7m 5m 0)

The combination of (3.5) and (3.6) yields

log(2m)
log(3m)"

log(2m)

log(3m)
< 1776\/(47712 + 1)(5m2 — 1) log(2e+/(4m?2 + 1)(5m? — 1)).

(3.7)  (7Tm* — 45m? — 10)

But, since m > 7, (3.7)) is false. Thus, (2.1) has only the solution (z,y,z) =
(1,1,2).
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