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A NOTE ON THE EXPONENTIAL DIOPHANTINE EQUATION
(4m2 + 1)x + (5m2 − 1)y = (3m)z

BY

JIANPING WANG, TINGTING WANG and WENPENG ZHANG (Xi’an)

Abstract. Let m be a positive integer. Using an upper bound for the solutions of
generalized Ramanujan–Nagell equations given by Y. Bugeaud and T. N. Shorey, we prove
that if 3 - m, then the equation (4m2 + 1)x + (5m2 − 1)y = (3m)z has only the positive
integer solution (x, y, z) = (1, 1, 2).

1. Introduction. Let Z,N be the sets of all integers and positive integers
respectively. Let a, b, cbe fixed coprime positive integers with min{a, b, c} > 1.
Recently, many papers investigated the exponential Diophantine equation

(1.1) ax + by = cz, x, y, z ∈ N.

(see [FM, HTY, L, M1, M2, M3, M4, MT]). In this connection, N. Terai [T]
proved that if a, b, c satisfy

(1.2) a = 4m2 + 1, b = 5m2 − 1, c = 3m, m ∈ N,

then (1.1) has only the solution (x, y, z) = (1, 1, 2) under some conditions.
The proof of this result is based on elementary methods and Baker’s method.

In the present paper, using an upper bound for the solutions of gener-
alized Ramanujan–Nagell equations given by Y. Bugeaud and T. N. Sho-
rey [BS], we prove a general result:

Theorem 1.1. Let a, b, c be positive integers satisfying (1.2). If 3 - m,
then (1.1) has only the solution (x, y, z) = (1, 1, 2).

2. Preliminaries. In this section, we assume that a, b, c are positive
integer satisfying (1.2). Then, (1.1) can be written as

(2.1) (4m2 + 1)x + (5m2 − 1)y = (3m)z, x, y, z ∈ N.

We further assume that (x, y, z) is a solution of (2.1) with (x, y, z) 6= (1, 1, 2).

Lemma 2.1. If m > 1 and 3 - m, then 2 - m, 2 - x, y = 1 and 2 | z.
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Proof. Since m > 1 and min{x, y} ≥ 1, we see from (2.1) that z ≥ 2 and
1 + (−1)y ≡ (4m2 + 1)x + (5m2 − 1)y ≡ (3m)z ≡ 0 (mod m2), whence

(2.2) 2 - y.

Since (x, y, z) 6= (1, 1, 2), we have z ≥ 3. Hence, by (2.1) and (2.2), we
get (4x+ 5y)m2 ≡ (4m2 + 1)x + (5m2 − 1)y ≡ (3m)z ≡ 0 (mod m3), so

(2.3) 4x+ 5y ≡ 0 (mod m).

If 2 |m, then from (2.3) we get 2 | y, which contradicts (2.2). So we have

(2.4) 2 - m.

If 2 |x, then from (2.1), (2.2) and (2.4) we get

(2.5) 1 =

(
−(5m2 − 1)

3m

)
,

where
(∗
∗
)

is the Jacobi symbol. Since 3 - m, we have m2 ≡ 1 (mod 3),

−(5m2 − 1) ≡ −1 (mod 3) and
(−(5m2−1)

3

)
= −1. Hence, by (2.5), we get

(2.6)

1 =

(
−(5m2 − 1)

3

)(
−(5m2 − 1)

m

)
= −

(
−(5m2 − 1)

m

)
= −

(
1

m

)
= −1,

a contradiction. This implies that

(2.7) 2 - x.

If 2 - z, then from (2.1), (2.2) and (2.7) we get

(2.8) 1 =

(
3m(5m2 − 1)

4m2 + 1

)
=

(
3

4m2 + 1

)(
m

4m2 + 1

)(
5m2 − 1

4m2 + 1

)
.

Notice that 4m2+1 ≡ 1 (mod 4), 4m2+1 ≡ −1 (mod 3) and 5m2−1 ≡ (3m)2

(mod 4m2 + 1). We have

(2.9)

(
3

4m2 + 1

)
= −1,

(
m

4m2 + 1

)
=

(
5m2 − 1

4m2 + 1

)
= 1.

Therefore, (2.8) is false. Consequently,

(2.10) 2 | z.

Finally, since 4m2 + 1 ≡ 5 (mod 8), 5m2− 1 ≡ 4 (mod 8) and (3m)2 ≡ 1
(mod 8), we deduce from (2.1), (2.7) and (2.10) that 5 + 4y ≡ 5x + 4y ≡
(4m2 + 1)x + (5m2 − 1)y ≡ (3m)z ≡ ((3m)2)z/2 ≡ 1 (mod 8), whence

(2.11) y = 1.

Thus, by (2.4), (2.7), (2.10) and (2.11), the lemma is proved.
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Lemma 2.2. If m ≥ 7 and 3 - m, then

(2.12) x ≥ 1

8
(7m4 − 45m2 − 10).

Proof. By Lemma 2.1, we have 2 - m, x ≥ 3, y = 1 and 2 | z. Since
m ≥ 7, by (2.1), we get (3m)z > (4m2 + 1)x ≥ (4m2 + 1)3 > 64m6 > (3m)4.
Thus z ≥ 6. Further, since y = 1 and z ≥ 6, we see from (2.1) that

(2.13) (4x+ 5) +

(
x

2

)
16m2 ≡ 0 (mod m4).

By (2.13), we get 4x+ 5 ≡ 0 (mod m2) and

(2.14) 4x+ 5 = m2r, r ∈ N.
Substituting (2.14) into (2.13), we have

(2.15) 2r + 4x(4x− 4) ≡ 2r + 45 ≡ 0 (mod m2).

Since 2 - m, we find from (2.15) that

(2.16) r ≡ m2 − 45

2
(mod m2).

Further, since r and m2−45
2 are positive integers with m2−45

2 < m2, we have

(2.17) r =
m2 − 45

2
+m2s, s ∈ N, s ≥ 0,

by (2.16). Substituting (2.17) into (2.14), we get

(2.18) x =
1

4
(m2r − 5) =

1

8
(m4(2s+ 1)− 45m2 − 10).

Furthermore, since m4 ≡ m2 ≡ 1 (mod 8) and x is a positive integer, we see
from (2.18) that m4(2s+ 1)− 45m2 − 10 ≡ (2s+ 1)− 55 ≡ (2s+ 1)− 7 ≡ 0
(mod 8). This implies that 2s+1 ≥ 7 since 2s+1 is a positive integer. Thus,
by (2.18), x satisfies (2.12).

For any nonnegative integer s, let Fs and Ls denote the sth Fibonacci
number and sth Lucas number respectively. Then

(2.19) F0 = 0, F1 = 1, Fs+2 = Fs+1 + Fs, s ≥ 0.

Lemma 2.3 ([BS, Theorem 2]). Let D1, D2, k be positive integers such
that min{D1, D2, k} > 1 and gcd(D1, D2) = gcd(k, 2D1D2) = 1. If (X,n) is
a solution of the equation

(2.20) D1X
2 +D2 = kn, X, n ∈ N,

then

(2.21) n <
4

π

√
D1D2 log(2e

√
D1D2),

except possibly for the following cases:
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(i) D1f
2 + D2 = kg and 3D1f

2 − D2 = ±1, where f, g are positive
integers.

(ii) (D1, D2, k) = (Ft−2ε, Lt+ε, Ft), where t is a positive integer with
t ≥ 2, ε ∈ {±1}.

Lemma 2.4 ([W]). The largest Fibonacci number of the form 4m2 + 1
is 5.

Lemma 2.5 ([N]). The equation

(2.22) 5x + 4y = 3z, x, y, z ∈ N,
has only the solution (x, y, z) = (1, 1, 2).

Lemma 2.6. The equation

(2.23) 101x + 124y = 15z, x, y, z ∈ N,
has only the solution (x, y, z) = (1, 1, 2).

Proof. Since (2.23) is the special case of (2.1) for m = 5, by Lemma
2.1, if (x, y, z) is a solution of (2.23) with (x, y, z) 6= (1, 1, 2), then 2 - x,
x ≥ 3, y = 1, 2 | z and z ≥ 4. Hence, by (2.23), 0 ≡ 15z ≡ 101x + 124y

≡ (1 + 100)x + 124 ≡ (1 + 100x) + (−1) ≡ 100x (mod 53). It implies that

(2.24) 5 |x.
On the other hand, since 101 ≡ 2 (mod 11), 124 ≡ 3 (mod 11), 2 - x,

y = 1 and 2 | z, we deduce from (2.23) and (2.24) that

15z ≡ (15z/2)2 ≡ 101x + 124y ≡ 2x + 3 ≡ (25)x/5 + 3(2.25)

≡ (−1)x/5 + 3 ≡ (−1) + 3 ≡ 2 (mod 11).

But, since 11 ≡ 3 (mod 8) and 2 is not a quadratic residue modulo 11, (2.25)
is false. Thus, (2.23) has only the solution (x, y, z) = (1, 1, 2).

3. Proof of Theorem 1.1. Assume that (x, y, z) is a solution of (2.1)
with (x, y, z) 6= (1, 1, 2). By Lemmas 2.5 and 2.6, the conclusion of the
theorem holds for m ∈ {1, 5}. Since 3 - m, by Lemma 2.1, we have 2 - m,
m ≥ 7, 2 - x and y = 1. This implies that the equation

(3.1) (4m2 + 1)X2 + (5m2 − 1) = (3m)n, X, n ∈ N,
has a solution

(3.2) (X,n) = ((4m2 + 1)(x−1)/2, z).

Since (5m2 − 1)± 1 ≤ 5m2 < 3(4m2 + 1), we have

(3.3) 3(4m2 + 1)f2 − (5m2 − 1) 6= ±1, f ∈ N.
On the other hand, by Lemma 2.4,

(3.4) (4m2 + 1, 5m2 − 1, 3m) 6= (Ft−2ε, Lt+ε, Ft), t ∈ N, ε ∈ {±1}.
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Therefore, by (3.3) and (3.4), applying Lemma 2.3 to (3.1) and (3.2), we get

(3.5) z <
4

π

√
(4m2 + 1)(5m2 − 1) log(2e

√
(4m2 + 1)(5m2 − 1)).

Since m ≥ 7, by Lemma 2.2, x satisfies (2.12). Hence, by (2.1) and (2.12),
we have (3m)z > (4m2 + 1)x > (2m)2x and

(3.6) z > 2x
log(2m)

log(3m)
>

1

4
(7m4 − 45m2 − 10)

log(2m)

log(3m)
.

The combination of (3.5) and (3.6) yields

(3.7) (7m4 − 45m2 − 10)
log(2m)

log(3m)

<
16

π

√
(4m2 + 1)(5m2 − 1) log(2e

√
(4m2 + 1)(5m2 − 1)).

But, since m ≥ 7, (3.7) is false. Thus, (2.1) has only the solution (x, y, z) =
(1, 1, 2).

Acknowledgements. This research was partly supported by the Na-
tional Natural Science Foundation of P.R. China (No. 11071194) and the
Fundamental Research Funds for the Central Universities, Chang’an Uni-
versity (No. 2013G1121083).

REFERENCES

[BS] Y. Bugeaud and T. N. Shorey, On the number of solutions of the generalized
Ramanujan–Nagell equation, J. Reine Angew. Math. 539 (2001), 55–74.

[FM] Y. Fujita and T. Miyazaki, Jeśmanowicz’ conjecture with congruence relations,
Colloq. Math. 128 (2012), 211–222.
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