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Abstract. Binomial coefficients and central trinomial coefficients play important
roles in combinatorics. Let p > 3 be a prime. We show that

Ty1 = (2)3”*1 (mod p?),

where the central trinomial coefficient T}, is the constant term in the expansion of (1 +
x4+ 271)". We also prove three congruences modulo p* conjectured by Sun, one of which

IS ("2 G == (F)e —b o

k=0
In addition, we get some new combinatorial identities.

1. Introduction. Throughout this paper, we set N = {0,1,2,...} and
7t ={1,2,3,...}.
Let A, B € Z. The Lucas sequences u, = u,(A,B) (n € N) and v, =
vn(A, B) (n € N) are defined by
up =0, u; =1, Upy1 = Aup — Bu,_1 (n€Z"),
vw=2 vi=A, vp1=Av,—Bv,1 (neZ").
The roots of the characteristic equation 22 — Az + B = 0 are
A+VA A—VA
=——— and f=—<—,
2 2
where A = A? — 4B. By induction, one can easily deduce the following
known formulae:
(a—Bup, =a" =" and v, =a"+p" for any n € N.

(Note that in the case A = 0 we have v, = 2(A/2)" for all n € N.) It is
well-known that

(1.1) up = <?) (mod p) and Uy () = 0 (mod p)
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for any odd prime p not dividing B (see, e.g., Sun [3]), where (—) denotes
the Legendre symbol.

Let p > 3 be a prime and let m be an integer not divisible by p. Recently,
Sun [3, 4] established the following general congruences involving central
binomial coefficients and Lucas sequences:

p—1 (Zk) A
AR — 2
(1.2) ;} = <p> +1t,_(2)(m = 2,1) (mod p?)
and
p—1 2k
p—-1\ (%)
(13) Y ( ) -
o\ kS Em)
_ (4 (m —4)P~1 ¢ -y ay(m —2,1) (mod p?)
\p 2 ) r=(3) ’ ’
where A = m? — 4m. Clearly (pgl) = (—=1)* (mod p) for all k = 0,...,p— 1.
Note that for each n = 0,1,2,... the central binomial coefficient (2:)

is the constant term of (1 4 z)?"/2" = (2 4+ x + 2~ !)". For n € N, the
central trinomial coefficient T, is the constant term in the expansion of
14z +z7H" ie,

[n/2] nl [n/2] n\ /n— k
T, = —_— = .
= 2w 2 (1))
k=0 k=0
Central trinomial coefficients arise naturally in enumerative combinatorics
(cf. Sloane [2]), e.g., T}, is the number of lattice paths from the point (0,0)
to (n,0) with the only allowed steps (1,0), (1,1) and (1,—1). As Andrews
[1] pointed out, central trinomial coefficients were first studied by L. Euler.
Recently, Sun [6] investigated congruence properties of central trinomial
coefficients; for example, he proved that Zi;é ¢ = (*71) (mod p) for any
odd prime p.
Now we state our first theorem.

THEOREM 1.1. Let p > 3 be a prime.

(i) We have
(1.4) Tp1 = (g) 3771 (mod p?)
and
p—1

(1.5)

Ic_o <p ; 1) <2kk> (—1)% — (=3)7F)

(5)@ = 1) (mod ),
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(ii) If p=+1 (mod 12), then

p—1

(1.6) > (p ; 1) <2kk>(—1)kuk(4, 1) = (-1)P" /2y, 1(4,1) (mod p?).
k=0

If p=+£1 (mod 8), then

(L) Z< >< )G = 002, 0.2) (mod 49,
REMARK. and part (ii)
[5, Conj. 1.3].

During our efforts to prove Theorem we also obtain some combina-
torial identities.

of Theorem |1.1] - were conjectured by Sun

THEOREM 1.2. Let n be a positive integer.
(i) If 6| n, then

(1.8) En% <Z> (2:) (fk) =0.

If n =3 (mod 6), then

(1.9) kzn:o (Z) <2:> 3[3|j’21 =0,

where [3| k] is 1 or 0 according as 3|k or not.

(ii) If 4|n, then

(1.10) ;0 (W)t =0
Ifn=2 (mod 4), then

(iii) If 3| n, then
1 kZO () G =0

We will provide two lemmas in the next section and prove Theorems
and [L.2in Section 3.

2. Two lemmas

LEMMA 2.1. Let A € Z* and B,m € Z\ {0} with A = A2 — 4B # 0.
Let a = (A4 +VA)/2 and B = (A —/A)/2. Then, for every n € N,
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o0 3 () () - ;?

(2.2) zn: <Z> <2:) Uk(;;ll;B) _ d”/2(a + gy

k=0
where m = —4B /A and d = 4A/A2.
Proof. For a polynomial P(z) over the field of complex numbers, we use
["]P(x) to denote the coefficient of 2™ in P(x). It is easy to see that

n

[2"]((1+ ax)? + ma)" = [2"] Y <Z> (1 + az)?* (ma)"*

k=0

o "L /n\ (2K afk
B k)\ k )mk
k=0

On the other hand,
[2"]((1 4 azx)? + ma)" = [2"](a?2® + 20+ m)z + 1)

So we obtain

CIEe W ESES AR GU IR

Similarly,

w0 w2 () ()5 ﬂZ (Z>("2’“>(2+Z‘>"_%-

As 4B = —mA, we see that
2m m(AF VA
+ —=2 + \/ A% +mA
A+VA 4B

ie., 2+m/a=+/dand 2+m/B = —/d. Since uk—(a —ﬁk — f) and
v = o + B¥ for all k € N, combining 1) and -i we get 1 and .
immediately. m
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LEMMA 2.2. Let p > 3 be a prime, and let d € 7 with ptd. Then

ooy () e

k=

D\ /1 —qgr! d
= _ -z _ p—1 _a B )
= (p) ( 5 + (d—4) ) 4up_(%)(d 2,1) (mod p“),
where D = d(d — 4).

Proof. For every k=0,1,...,p— 1, we clearly have

2o (7, 1) =0t I1 (1-2) = 0k - ptt) (mod 2

0<j<k
where Hj, denotes the harmonic number >, 1/j. Thus

~1)/2
(pz)/ p—1\ (p—1—k S
k k

k=0

(p—1)/2
p—1—Fk\ _
S cora—pi(T e

k=0
(p—1)/2 (p—1)/2
=S (TNt r Xom(PT T ) o od )

(mod p) for all k = 0,...,p— 1, we

Since (p_llg_k) =
obtain from the above

(p—1)/2
p—1\(p—1—Fk\ _,
(27) < A >< . )d
(p—1)/2 <2k

p—1)/2
= > (p_,ljk)<—d>—'f—p > k)d—k (mod 7).

It is known that

[n/2] n— k
uny1(A, B) = kzo < 1
which can be easily proved by induction. So we have

w12,
up(d, d) = (p L )dp”’%—d)’“

>A”2k(—B)k foralln=0,1,2,...,
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By [3, Lemma 2.4],

2uy(d, d) — <§) Pt = up(d —2,1) + up_(%)(d —2,1) (mod p?).

In view of [4, (3.6)], if ptd — 4 then
wp(d—2,1) <§) - (‘21 - 1>up_(?) (d—2,1) (mod p?).

This also holds when p|d — 4, since (%) =0 and
up(d —2,1) :up_(%)(d—Q,l) = @y 41)(d 2,1) =0 (mod p)

P

by (/1.1). Combining the above two congruences we immediately get

p—1
up(d, d) = <p>d2+1+j u,_(2y(d—2,1) (mod p?).

Hence

(p—1)/2
(28) (p_,i_k><—d>—k

k=0
_ (D@ 41 ,
<p> ST + - 14— (2 )(d 2,1) (mod p*)

since upf(g)(d —2,1) =0 (mod p) and d’~! =1 (mod p).
P
Note that p | (Qkk) fork=(p+1)/2,...,p—1. By 1) we have

(p—1)/2 (p—1)/2
2k ko ok p—1 2k\ &
p3om(i e =5 (-en () ()

0
(p—1)/2 (2:) (p—1)/2 <p— 1> (Zkk)
k

k=0 d* k=0 (=d)*

(r—1)/2 (2k p—1 2k p—1 2k
_ @ p—1\ (%) B p—1\ (%)
= *k:wm( = ,;( =T

—1 —1
:p @_p p—1 (Qkk) mod n?
=2 ko(k)(—dw( 17)

Thus, applying 1' and 1) with m = d we see that p Z (p— 1 )2 H;y, (Zkk) d—k

is congruent to

(f) +u, () (d—2,1) — (1 — Z>up_(§) (d—2,1) — <§> (d—4)Pt
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modulo p?. Hence

(p—1)/2
2
(29) p Hk< k)d_k

k
k=0
D o d
= (p) (1—(d—4)P 1)+ §up*(%)(d —2,1) (mod p?).

Combining (2.7)—(2.9), we finally obtain
(p—1)/2
pz p—1\(p—1-k d-k

k k

k=0

(B )

d
1"~
_ (?) (1_2dp_1 +(d- 4)P—1> - Zup_(?)(d —2.1) (mod p?). =

p—(2)(d = 2,1)

p

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem (z) Denote the primitive cubic root (—1++/—3)/2
by w. For each £k =0,1,2,..., we clearly have

3k -3k
U3k(—1, 1) = U3k(w +c21,w<21) = u =0.
w —w
As -1/
=3 (MO
p—1 — k k ’

k=0
applying (2.5)) with d = 1 we get

T, 1= <_;’) (a1 1y (z3y(-1,1) = <§>3p—1 (mod p?).

4P
This proves (|1.4)).
Note that ug(4,3) = (3¥ —1)/(3 — 1) for all k¥ € N. By Lemma

and , we have
pi p— 1\ (2K uk(4,3)
k k) (=3)k

k=0
ol (—qp! (”_215/2 p—1\(p—1—k)_31-1_
BNt =\ k k T o xge 1!
31 —1/p _

3
and hence the desired (1.5 follows. =



134 H.-Q. CAO AND Z.-W. SUN

Proof of Theorem (u) Suppose that p = +1 (mod 12). In light of the
second congruence in (|1.1)),

up—1(4,1) =u__ 42 4,.(4,1) =0 (mod p).
p—(5=)

ugk(l’ 1) _ (—w)3k _ (—_u_))“%

=0 forall ke N.
o= (%)

Combining this with Lemma we get

22 (e

3(p—1)/2 1)/ —1—k
_ p —k
~ T 2 ( )( k )3

=0

=302y (4, 1)<3>323 (mod p?).

Note that 37~ = 2.3®=1/2 _ 1 (mod p?) since 3¢—1/2 = (%) =1 (mod p).
So we have

O e s

(—1)@=D/23(=10/2(9 _ 3=1)/2),  (4,1)
(_1)(p_1)/2up71(4’ 1) (mod p3)

|M7
o —

This proves (|L.6]).
Now assume that p = +1 (mod 8). By the second congruence in ({1.1)),

Up—1 (4, 2) =u

_4.2,(4,2) =0 (mod p).
p7(42p42)( ) ( )

By Lemma
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(p—zli/2 p—1\[p—1—k -
k k
k=0
—4\ (1 —2r71 2
= RN - — p—l - _
—1\ 14271
- () mods?)
since ugy(0,1) = 0 for all k € N. Combining this with Lemma [2.1] we get

: ("))

2(p=1)/2 P2 N (p—1—k\._,
= a4 2 "0

upa(4,2) (—1) 1420
- 2(p—1)/2 P 2

This is equivalent to (1.7)) since 20~ 41 —2.2(=1/2 = (2>-1)/2 _1)2 =
(mod p?). =

Proof of Theorem[1.4 (i) As —w — & =1 and (—w)(—®) = 1, for any
k € Z we have

w = CL = (),
ue(1,1) = (~w)* + (~@)" = (-1)*(3[3| k] — 1).

If 6| n, then (—w)™ = 1 = ®" and hence by we deduce

i <n> <2k> u (L) _

= \k)\k (—4)k ’

which is equivalent to (1.8)). If n = 3 (mod 6), then (—w)” = —1 = —&" and

hence by (2.2) we have
"L/ [ 2k vp(1,1)

Z k k) (—4)k =0,

k=0
which is equivalent to ([1.9)).

(ii) Clearly (1 +4)+ (1 —4) = (1 +4)(1 — i) = 2. When n is even,

(i — 1)" if 4 ‘ n,
—@E—1" ifn=2 (mod 4).
So we get the desired result in Theorem (ii) by applying Lemma

p

i

(mod p?).

(14i)" = i"(1 — )" = (—1)™2(1 — )" = {
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(iii) Let « = (3++v/—3)/2 and f = (3 —+/—3)/2. Then a + f = af = 3.
Observe that
o> —af+p =(a+p)*-3a6=0
and so a® = (—f)3. If 3 | n, then o™ = (—3)" and hence (1.12)) holds by
21). -
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