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Abstract. Binomial coefficients and central trinomial coefficients play important
roles in combinatorics. Let p > 3 be a prime. We show that

Tp−1 ≡
(
p

3

)
3p−1 (mod p2),

where the central trinomial coefficient Tn is the constant term in the expansion of (1 +
x + x−1)n. We also prove three congruences modulo p3 conjectured by Sun, one of which
is

p−1∑
k=0

(
p− 1

k

)(
2k

k

)
((−1)k − (−3)−k) ≡

(
p

3

)
(3p−1 − 1) (mod p3).

In addition, we get some new combinatorial identities.

1. Introduction. Throughout this paper, we set N = {0, 1, 2, . . .} and
Z+ = {1, 2, 3, . . .}.

Let A,B ∈ Z. The Lucas sequences un = un(A,B) (n ∈ N) and vn =
vn(A,B) (n ∈ N) are defined by

u0 = 0, u1 = 1, un+1 = Aun −Bun−1 (n ∈ Z+),

v0 = 2, v1 = A, vn+1 = Avn −Bvn−1 (n ∈ Z+).

The roots of the characteristic equation x2 −Ax+B = 0 are

α =
A+
√
∆

2
and β =

A−
√
∆

2
,

where ∆ = A2 − 4B. By induction, one can easily deduce the following
known formulae:

(α− β)un = αn − βn and vn = αn + βn for any n ∈ N.
(Note that in the case ∆ = 0 we have vn = 2(A/2)n for all n ∈ N.) It is
well-known that

(1.1) up ≡
(
∆

p

)
(mod p) and up−(∆p)

≡ 0 (mod p)
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for any odd prime p not dividing B (see, e.g., Sun [3]), where (−) denotes
the Legendre symbol.

Let p > 3 be a prime and let m be an integer not divisible by p. Recently,
Sun [3, 4] established the following general congruences involving central
binomial coefficients and Lucas sequences:

(1.2)

p−1∑
k=0

(
2k
k

)
mk
≡
(
∆

p

)
+ up−(∆p)

(m− 2, 1) (mod p2)

and

(1.3)

p−1∑
k=0

(
p− 1

k

) (
2k
k

)
(−m)k

≡
(
∆

p

)
(m− 4)p−1 +

(
1− m

2

)
up−(∆p)

(m− 2, 1) (mod p2),

where ∆ = m2−4m. Clearly
(
p−1
k

)
≡ (−1)k (mod p) for all k = 0, . . . , p−1.

Note that for each n = 0, 1, 2, . . . the central binomial coefficient
(
2n
n

)
is the constant term of (1 + x)2n/xn = (2 + x + x−1)n. For n ∈ N, the
central trinomial coefficient Tn is the constant term in the expansion of
(1 + x+ x−1)n, i.e.,

Tn =

bn/2c∑
k=0

n!

k!k!(n− 2k)!
=

bn/2c∑
k=0

(
n

k

)(
n− k
k

)
.

Central trinomial coefficients arise naturally in enumerative combinatorics
(cf. Sloane [2]), e.g., Tn is the number of lattice paths from the point (0, 0)
to (n, 0) with the only allowed steps (1, 0), (1, 1) and (1,−1). As Andrews
[1] pointed out, central trinomial coefficients were first studied by L. Euler.
Recently, Sun [6] investigated congruence properties of central trinomial

coefficients; for example, he proved that
∑p−1

k=0 T
2
k ≡

(−1
p

)
(mod p) for any

odd prime p.

Now we state our first theorem.

Theorem 1.1. Let p > 3 be a prime.

(i) We have

(1.4) Tp−1 ≡
(
p

3

)
3p−1 (mod p2)

and

(1.5)

p−1∑
k=0

(
p− 1

k

)(
2k

k

)
((−1)k − (−3)−k) ≡

(
p

3

)
(3p−1 − 1) (mod p3).
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(ii) If p ≡ ±1 (mod 12), then

(1.6)

p−1∑
k=0

(
p− 1

k

)(
2k

k

)
(−1)kuk(4, 1) ≡ (−1)(p−1)/2up−1(4, 1) (mod p3).

If p ≡ ±1 (mod 8), then

(1.7)

p−1∑
k=0

(
p− 1

k

)(
2k

k

)
uk(4, 2)

(−2)k
≡ (−1)(p−1)/2up−1(4, 2) (mod p3).

Remark. (1.5) and part (ii) of Theorem 1.1 were conjectured by Sun
[5, Conj. 1.3].

During our efforts to prove Theorem 1.1, we also obtain some combina-
torial identities.

Theorem 1.2. Let n be a positive integer.

(i) If 6 |n, then

(1.8)
n∑

k=0

(
n

k

)(
2k

k

)(k
3

)
4k

= 0.

If n ≡ 3 (mod 6), then

(1.9)

n∑
k=0

(
n

k

)(
2k

k

)
3[3 | k]− 1

4k
= 0,

where [3 | k] is 1 or 0 according as 3 | k or not.
(ii) If 4 |n, then

(1.10)
n∑

k=0

(
n

k

)(
2k

k

)
uk(2, 2)

(−4)k
= 0.

If n ≡ 2 (mod 4), then

(1.11)

n∑
k=0

(
n

k

)(
2k

k

)
vk(2, 2)

(−4)k
= 0.

(iii) If 3 |n, then

(1.12)
n∑

k=0

(
n

k

)(
2k

k

)
uk(3, 3)

(−4)k
= 0.

We will provide two lemmas in the next section and prove Theorems 1.1
and 1.2 in Section 3.

2. Two lemmas

Lemma 2.1. Let A ∈ Z+ and B,m ∈ Z \ {0} with ∆ = A2 − 4B 6= 0.
Let α = (A+

√
∆)/2 and β = (A−

√
∆)/2. Then, for every n ∈ N,
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n∑
k=0

(
n

k

)(
2k

k

)
uk(A,B)

mk
=
dn/2(αn − (−β)n)

mn(α− β)

bn/2c∑
k=0

(
n

k

)(
n− k
k

)
d−k,(2.1)

n∑
k=0

(
n

k

)(
2k

k

)
vk(A,B)

mk
=
dn/2(αn + (−β)n)

mn

bn/2c∑
k=0

(
n

k

)(
n− k
k

)
d−k,(2.2)

where m = −4B/A and d = 4∆/A2.

Proof. For a polynomial P (x) over the field of complex numbers, we use
[xn]P (x) to denote the coefficient of xn in P (x). It is easy to see that

[xn]((1 + αx)2 +mx)n = [xn]
n∑

k=0

(
n

k

)
(1 + αx)2k(mx)n−k

= mn
n∑

k=0

(
n

k

)(
2k

k

)
αk

mk
.

On the other hand,

[xn]((1 + αx)2 +mx)n = [xn](α2x2 + (2α+m)x+ 1)n

= [xn]
∑

r,s,t≥0
r+s+t=n

(
n

r, s, t

)
α2r(2α+m)sx2r+s

= αn
∑
r,s≥0

2r+s=n

(
n

r, s, r

)(
2 +

m

α

)s

= αn

bn/2c∑
k=0

(
n

k

)(
n− k
k

)(
2 +

m

α

)n−2k
.

So we obtain

(2.3) mn
n∑

k=0

(
n

k

)(
2k

k

)
αk

mk
= αn

bn/2c∑
k=0

(
n

k

)(
n− k
k

)(
2 +

m

α

)n−2k
.

Similarly,

(2.4) mn
n∑

k=0

(
n

k

)(
2k

k

)
βk

mk
= βn

bn/2c∑
k=0

(
n

k

)(
n− k
k

)(
2 +

m

β

)n−2k
.

As 4B = −mA, we see that

2 +
2m

A±
√
∆

= 2 +
2m(A∓

√
∆)

4B
= ± 2m

mA

√
A2 +mA = ±

√
d,

i.e., 2 +m/α =
√
d and 2 +m/β = −

√
d. Since uk = (αk − βk)/(α− β) and

vk = αk + βk for all k ∈ N, combining (2.3) and (2.4) we get (2.1) and (2.2)
immediately.
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Lemma 2.2. Let p > 3 be a prime, and let d ∈ Z with p - d. Then

(2.5)

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
d−k

≡
(
D

p

)(
1− dp−1

2
+ (d− 4)p−1

)
− d

4
up−(Dp)

(d− 2, 1) (mod p2),

where D = d(d− 4).

Proof. For every k = 0, 1, . . . , p− 1, we clearly have

(2.6)

(
p− 1

k

)
= (−1)k

∏
0<j6k

(
1− p

j

)
≡ (−1)k(1− pHk) (mod p2),

where Hk denotes the harmonic number
∑

0<j6k 1/j. Thus

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
d−k

≡
(p−1)/2∑
k=0

(−1)k(1− pHk)

(
p− 1− k

k

)
d−k

=

(p−1)/2∑
k=0

(
p− 1− k

k

)
(−d)−k − p

(p−1)/2∑
k=0

Hk

(
p− 1− k

k

)
(−d)−k (mod p2).

Since
(
p−1−k

k

)
≡
(−1−k

k

)
= (−1)k

(
2k
k

)
(mod p) for all k = 0, . . . , p − 1, we

obtain from the above

(2.7)

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
d−k

≡
(p−1)/2∑
k=0

(
p− 1− k

k

)
(−d)−k − p

(p−1)/2∑
k=0

Hk

(
2k

k

)
d−k (mod p2).

It is known that

un+1(A,B) =

bn/2c∑
k=0

(
n− k
k

)
An−2k(−B)k for all n = 0, 1, 2, . . . ,

which can be easily proved by induction. So we have

up(d, d) =

(p−1)/2∑
k=0

(
p− 1− k

k

)
dp−1−2k(−d)k

= dp−1
(p−1)/2∑
k=0

(
p− 1− k

k

)
(−d)−k.
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By [3, Lemma 2.4],

2up(d, d)−
(
D

p

)
dp−1 ≡ up(d− 2, 1) + up−(Dp)

(d− 2, 1) (mod p2).

In view of [4, (3.6)], if p - d− 4 then

up(d− 2, 1)−
(
D

p

)
≡
(
d

2
− 1

)
up−(Dp)

(d− 2, 1) (mod p2).

This also holds when p | d− 4, since
(
D
p

)
= 0 and

up(d− 2, 1) = up−(D
p
)(d− 2, 1) = u

p−( (d−2)2−4·1
p

)
(d− 2, 1) ≡ 0 (mod p)

by (1.1). Combining the above two congruences we immediately get

up(d, d) ≡
(
D

p

)
dp−1 + 1

2
+
d

4
up−(Dp)

(d− 2, 1) (mod p2).

Hence

(2.8)

(p−1)/2∑
k=0

(
p− 1− k

k

)
(−d)−k

≡
(
D

p

)
dp−1 + 1

2dp−1
+
d

4
up−(Dp)

(d− 2, 1) (mod p2)

since up−(D
p
)(d− 2, 1) ≡ 0 (mod p) and dp−1 ≡ 1 (mod p).

Note that p |
(
2k
k

)
for k = (p+ 1)/2, . . . , p− 1. By (2.6), we have

p

(p−1)/2∑
k=0

Hk

(
2k

k

)
d−k ≡

(p−1)/2∑
k=0

(
1− (−1)k

(
p− 1

k

))(
2k

k

)
d−k

=

(p−1)/2∑
k=0

(
2k
k

)
dk
−

(p−1)/2∑
k=0

(
p− 1

k

) (
2k
k

)
(−d)k

=

(p−1)/2∑
k=0

(
2k
k

)
dk

+

p−1∑
k=(p+1)/2

(
p− 1

k

) (
2k
k

)
(−d)k

−
p−1∑
k=0

(
p− 1

k

) (
2k
k

)
(−d)k

≡
p−1∑
k=0

(
2k
k

)
dk
−

p−1∑
k=0

(
p− 1

k

) (
2k
k

)
(−d)k

(mod p2).

Thus, applying (1.2) and (1.3) with m = d we see that p
∑(p−1)/2

k=0 Hk

(
2k
k

)
d−k

is congruent to(
D

p

)
+ up−(Dp)

(d− 2, 1)−
(

1− d

2

)
up−(Dp)

(d− 2, 1)−
(
D

p

)
(d− 4)p−1
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modulo p2. Hence

(2.9) p

(p−1)/2∑
k=0

Hk

(
2k

k

)
d−k

≡
(
D

p

)
(1− (d− 4)p−1) +

d

2
up−(Dp)

(d− 2, 1) (mod p2).

Combining (2.7)–(2.9), we finally obtain

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
d−k

≡
(
D

p

)(
1− dp−1

2dp−1
+ (d− 4)p−1

)
− d

4
up−(Dp)

(d− 2, 1)

≡
(
D

p

)(
1− dp−1

2
+ (d− 4)p−1

)
− d

4
up−(Dp)

(d− 2, 1) (mod p2).

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1(i). Denote the primitive cubic root (−1+
√
−3)/2

by ω. For each k = 0, 1, 2, . . . , we clearly have

u3k(−1, 1) = u3k(ω + ω̄, ωω̄) =
ω3k − ω̄3k

ω − ω̄
= 0.

As

Tp−1 =

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
,

applying (2.5) with d = 1 we get

Tp−1 ≡
(
−3

p

)
(−3)p−1 − 1

4
up−(−3

p
)(−1, 1) =

(
p

3

)
3p−1 (mod p2).

This proves (1.4).
Note that uk(4, 3) = (3k − 1)/(3 − 1) for all k ∈ N. By Lemma 2.1

and (1.4), we have

p−1∑
k=0

(
p− 1

k

)(
2k

k

)
uk(4, 3)

(−3)k

=
3p−1 − (−1)p−1

(3− 1)(−3)p−1

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
=

3p−1 − 1

2× 3p−1
Tp−1

≡ 3p−1 − 1

2× 3p−1

(
p

3

)
3p−1 (mod p3)

and hence the desired (1.5) follows.



134 H.-Q. CAO AND Z.-W. SUN

Proof of Theorem 1.1(ii). Suppose that p ≡ ±1 (mod 12). In light of the
second congruence in (1.1),

up−1(4, 1) = u
p−( 42−4·1

p
)
(4, 1) ≡ 0 (mod p).

By Lemma 2.2,

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
3−k

≡
(
−3

p

)(
1− 3p−1

2
+(−1)p−1

)
− 3

4
up−(−3

p
)(1, 1) ≡

(
p

3

)
3− 3p−1

2
(mod p2)

since

u3k(1, 1) =
(−ω)3k − (−ω̄)3k

−ω − (−ω̄)
= 0 for all k ∈ N.

Combining this with Lemma 2.1 we get

p−1∑
k=0

(
p− 1

k

)(
2k

k

)
(−1)kuk(4, 1)

=
3(p−1)/2

(−1)p−1
up−1(4, 1)

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
3−k

≡ 3(p−1)/2up−1(4, 1)

(
p

3

)
3− 3p−1

2
(mod p3).

Note that 3p−1 ≡ 2 · 3(p−1)/2− 1 (mod p2) since 3(p−1)/2 ≡ (3p) = 1 (mod p).
So we have

p−1∑
k=0

(
p− 1

k

)(
2k

k

)
(−1)kuk(4, 1) ≡ 3(p−1)/2

(
−3

p

)
3− 3p−1

2
up−1(4, 1)

≡ (−1)(p−1)/23(p−1)/2(2− 3(p−1)/2)up−1(4, 1)

≡ (−1)(p−1)/2up−1(4, 1) (mod p3).

This proves (1.6).

Now assume that p ≡ ±1 (mod 8). By the second congruence in (1.1),

up−1(4, 2) = u
p−( 42−4·2

p
)
(4, 2) ≡ 0 (mod p).

By Lemma 2.2,
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(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
2−k

≡
(
−4

p

)(
1− 2p−1

2
+ (−2)p−1

)
− 2

4
up−(−4

p
)(0, 1)

=

(
−1

p

)
1 + 2p−1

2
(mod p2)

since u2k(0, 1) = 0 for all k ∈ N. Combining this with Lemma 2.1 we get

p−1∑
k=0

(
p− 1

k

)(
2k

k

)
uk(4, 2)

(−2)k

=
2(p−1)/2

(−2)p−1
up−1(4, 2)

(p−1)/2∑
k=0

(
p− 1

k

)(
p− 1− k

k

)
2−k

≡ up−1(4, 2)

2(p−1)/2

(
−1

p

)
1 + 2p−1

2
(mod p3).

This is equivalent to (1.7) since 2p−1 + 1− 2 · 2(p−1)/2 = (2(p−1)/2 − 1)2 ≡ 0
(mod p2).

Proof of Theorem 1.2. (i) As −ω − ω̄ = 1 and (−ω)(−ω̄) = 1, for any
k ∈ Z we have

uk(1, 1) =
(−ω)k − (−ω̄)k

−ω − (−ω̄)
= (−1)k−1

(
k

3

)
,

vk(1, 1) = (−ω)k + (−ω̄)k = (−1)k(3[3 | k]− 1).

If 6 |n, then (−ω)n = 1 = ω̄n and hence by (2.1) we deduce

n∑
k=0

(
n

k

)(
2k

k

)
uk(1, 1)

(−4)k
= 0,

which is equivalent to (1.8). If n ≡ 3 (mod 6), then (−ω)n = −1 = −ω̄n and
hence by (2.2) we have

n∑
k=0

(
n

k

)(
2k

k

)
vk(1, 1)

(−4)k
= 0,

which is equivalent to (1.9).

(ii) Clearly (1 + i) + (1− i) = (1 + i)(1− i) = 2. When n is even,

(1 + i)n = in(1− i)n = (−1)n/2(1− i)n =

{
(i− 1)n if 4 | n,

−(i− 1)n if n ≡ 2 (mod 4).

So we get the desired result in Theorem 1.2(ii) by applying Lemma 2.1.
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(iii) Let α = (3 +
√
−3)/2 and β = (3−

√
−3)/2. Then α+ β = αβ = 3.

Observe that
α2 − αβ + β2 = (α+ β)2 − 3αβ = 0

and so α3 = (−β)3. If 3 | n, then αn = (−β)n and hence (1.12) holds by
(2.1).
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