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A TOPOLOGICAL DICHOTOMY
WITH APPLICATIONS TO COMPLEX ANALYSIS
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Abstract. Let X be a compact topological space, and let D be a subset of X. Let
Y be a Hausdorff topological space. Let f be a continuous map of the closure of D to Y
such that f(D) is open. Let E be any connected subset of the complement (to Y ) of the
image f(∂D) of the boundary ∂D of D. Then f(D) either contains E or is contained in
the complement of E.

Applications of this dichotomy principle are given, in particular for holomorphic maps,
including maximum and minimum modulus principles, an inverse boundary correspon-
dence, and a proof of Haagerup’s inequality for the absolute power moments of linear
combinations of independent Rademacher random variables. (A three-line proof of the
main theorem of algebra is also given.) More generally, the dichotomy principle is natu-
rally applicable to conformal and quasiconformal mappings.

1. Images of subsets: filling/containment dichotomy. Let X be a
compact topological space, and let D be a subset of X, with the closure D
and “boundary” ∂D := D \D; note that, if the set D is open, then ∂D will
be the boundary of D in the usual sense. Let Y be a Hausdorff topological
space. Let f : D → Y be a continuous map such that f(D) is open.

Dichotomy Principle (DP). Let E be any connected subset of the
complement f(∂D)c of f(∂D) to Y . Then either E ⊆ f(D) or f(D) ⊆ Ec;
that is, the image f(D) of D under f either fills the set E or is contained
in Ec.

Proof. The argument is almost trivial. Observe first that E ⊆ f(D) ∪
f(D)c (since E ⊆ f(∂D)c). Next, f(D) is open (by assumption) and f(D)c is
open as well (since f(D) is compact). Therefore, and because E is connected,
either E ∩ f(D) = E (that is, E ⊆ f(D)) or E ∩ f(D)c = E (that is,
f(D) ⊆ Ec).
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The DP can be rewritten in the following “containment” form.

Containment Principle (CP). One has f(D)⊆(
⋃
y∈f(D)c Ey)

c, where

Ey denotes the connected component of y in f(∂D)c.

Proof. Indeed, take any y ∈ f(D)c. Then y ∈ f(∂D)c and y ∈ Ey \f(D),
whence Ey 6⊆ f(D). So, by the DP, f(D) ⊆ Ec

y. Thus, the DP implies the CP.
Vice versa, suppose now that the CP holds. Let E be any connected

subset of f(∂D)c. Suppose that the first alternative, E ⊆ f(D), in the DP
is false. Then there exists some y ∈ E \ f(D), so that y ∈ f(D)c (since
y ∈ E ⊆ f(∂D)c). Hence, by the CP, f(D) ⊆ Ec

y ⊆ Ec.

The following tripartite corollary of the DP may be viewed as an ab-
stract, topological generalization of the Jordan Filling Principle for Y = C
presented in the next section.

Quasi-Jordan Filling Principle (QJFP). Suppose that D 6= ∅ and
let E and F stand for some connected subsets of Y .

(I) If f(D) ⊆ E ⊆ f(∂D)c, then f(D) = E.
(II) If E ⊆ f(∂D)c ⊆ E ∪ F , f(D) ⊆ F c, and f(∂D) ⊆ F , then

f(D) = E (moreover, it follows that E 6= ∅, E ∩ F = ∅, and
f(D) ⊆ f(∂D)c, that is, f does not take on D any of the values it
takes on ∂D).

(III) If f(∂D)c = E ∪ F , F 6⊆ f(D), and f(∂D) ⊆ F , then f(D) = E
(moreover, it follows that E 6= ∅, F 6= ∅, E ∩ F = ∅, and f does
not take on D any of the values it takes on ∂D).

Proof. (I) The conditions D 6= ∅ and f(D) ⊆ E imply f(D) 6⊆ Ec and
hence f(D) 6⊆ Ec. So, by the DP, E ⊆ f(D) ⊆ E.

(II) Assume that the assumptions of (II) hold. We first verify the last
conclusion, that f(D) ⊆ f(∂D)c: indeed, if that were false, then one would
have ∅ 6= f(D)∩ f(∂D) ⊆ f(D)∩F , which would contradict the conditions
that f(D) is open and f(D) ⊆ F c. So, f(D) ⊆ f(∂D)c∩F c ⊆ (E∪F )∩F c =
E\F . Therefore and by (I), E = f(D) ⊆ E\F . This in turn yields E∩F = ∅.
Also, the conditions D 6= ∅ and E = f(D) imply E 6= ∅.

(III) This follows from (II). Indeed, the condition f(∂D)c = E∪F implies
F ⊆ f(∂D)c; hence, by the DP, the condition F 6⊆ f(D) yields f(D) ⊆ F c,
so that all the assumptions of (II) hold. Also, the condition F 6⊆ f(D)
implies F 6= ∅.

In the above proof, we deduced QJFP(II) from QJFP(I), and QJFP(III)
from QJFP(II). So, one may say that QJFP(I) is the most general of the
three parts of the QJFP, while QJFP(III) is the most special one.

In the case when f : Ω → Ω′ is a proper holomorphic map, where Ω
and Ω′ are open connected subsets of Cn, Rudin [9, Proposition 15.1.5]
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shows that the “filling” conclusion f(Ω) = Ω′ holds
(
f is said to be proper

if f−1(K) is compact in Ω for any compact K ⊆ Ω′
)
. Rudin [9, Theo-

rem 15.1.6] also shows that, for a holomorphic map f : Ω → Ω′ to be locally
proper and hence open, it is enough that the set f−1(w) be compact (or,
equivalently, finite) for every w ∈ Ω′.

More generally, the topological DP is naturally applicable to conformal
and quasiconformal mappings.

The QJFP (especially parts (II) and (III)) will be quite useful in certain
contexts, such as the proof of the JFP in the next section. However, at this
point let us just present a simple, almost trivial illustration of how the QJFP
can be applied:

If D = X 6= ∅ and Y is connected, then f(D) = Y .

This follows immediately by invoking QJFP(II) with E = Y and F = ∅.
Perhaps surprisingly, the purely topological (and almost trivial) dicho-

tomy principle (DP) turns out to be convenient and useful in applications
to various interesting inequalities, even in the special case when the map f
is holomorphic.

2. Special cases and applications

2.1. Case Y = C. In this subsection, let us assume that the general
conditions stated in the first paragraph of Section 1 hold. In addition, assume
that Y = C := C ∪ {∞}, the Riemann sphere, whereas X may still be any
compact topological space.

However, when X equals C, D is a domain (that is, an open connected
set), and the map f : D → C is non-constant and holomorphic on D, then,
by the open map theorem (cf. e.g. [1, Theorem 5.77] or [2, VI.I.3]), the
condition that f(D) be open will be satisfied. (Here we shall say that f is
holomorphic on D if for any point z0 ∈ D there exist Möbius transformations
M1 and M2 of C such that M1(z0) is finite (that is, is in C) and the function
M2 ◦ f ◦ M−11 is finite and differentiable (in the complex-variable sense)
in a neighborhood of M1(z0). Clearly, if D ⊆ C and f(D) ⊆ C, then this
extended notion of a holomorphic function is equivalent to the more usual
one.)

Finite Containment Principle (FCP). If f is finite on D, then
f(D) ⊆ Ec

∞.

Proof. This follows immediately from the CP.

Jordan Filling Principle (JFP). Suppose that f is finite on D and
f(∂D) = J , where J is the image (in C) of a Jordan curve. Then f(D) =
I(J), where I(J) denotes the inside of J , that is, the bounded connected
component in C of C \ J .
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Proof. This follows immediately from QJFP(III) (on letting E := I(J)
and F := E∞).

The JFP may be compared with the following result, based on the ar-
gument principle (cf. e.g. [1, Corollary 9.16 and Exercise 9.17]):

Darboux–Picard Theorem (DPT). Assume that X = C, D is a
domain, and the function f is non-constant and holomorphic on D. Let D
be the inside of the image of a Jordan curve, and suppose that f is finite
on D and one-to-one on ∂D. Then f is one-to-one on D, and f(D) is the
inside of f(∂D).

A partial extension of the DPT to X = Y = Cn was given by Chen [3],
where, in addition to the injectivity of f on D, it was proved only that f(D)
is a subset of the inside (rather than exactly the inside) of f(∂D).

One can see that, in contrast with the DPT, in the JFP we do not
require that D be a domain, or that f be one-to-one on the boundary ∂D,
or that ∂D be the image of a Jordan curve (or any other curve), or even
that the space X be C or C. On the other hand, the conclusion of the JFP
is somewhat weaker than that of the DPT, in that the former is, naturally,
missing the injectivity of f on D.

Of course, the QJFP is significantly more general that the JFP, even
when X = Y = C and f is holomorphic on D.

Example 1. Let X = Y = C, D = C \ {0,∞}, f(z) = z + 1/z for
z ∈ D, and f(0) = f(∞) = ∞, so that ∂D = {0,∞}, f(∂D) = {∞},
and f(∂D)c = C. Thus, f(∂D) is not the image of a Jordan curve; so, the
JFP is not applicable here, and therefore the DPT is not applicable either.
However, one can easily apply QJFP(II) (with E := C and F := {∞}) to
conclude that f(D) = C. Of course, in this very simple situation the same
conclusion can be obtained directly, by solving a quadratic equation.

The following, less trivial example may be viewed as a toy model for the
setting to be considered in Subsection 2.2.

Example 2. Let X = Y = C and D = {z ∈ C : <z > 0, =z > 0}, so
that ∂D = {∞} ∪ Γ1 ∪ Γ2, where Γ1 := {z ∈ C : <z ≥ 0, =z = 0} and
Γ2 := {z ∈ C : <z = 0, =z > 0}. Let next f(z) = 2z

z2−1 for z ∈ D \ {1,∞},
f(1) = ∞, and f(∞) = 0. Then f(∂D) = f(Γ1) ∪ f(Γ2), f(Γ1) = {∞} ∪
{w ∈ C : =w = 0}, and f(Γ2) = {w ∈ C : <w = 0, −1 ≤ =w < 0}. Let
now H+ := {w ∈ C : =w ≥ 0}, F := f(Γ2) ∪ H+ and E := f(∂D)c \ F =
C \ f(Γ2) \ H+. Then one can verify that the condition f(D) ⊆ F c of

QJFP(II) holds. Indeed, note first that for z ∈ D one has f(z) = 2(z|z|2−z)
|z2−1|2 ,

whence =f(z) < 0, so that f(D) ⊆ Hc
+. Also, for z ∈ D one has f(z) =

2|z|2
z|z|2−z , whence <f(z) = 0 iff |z| = 1, in which case |f(z)| =

∣∣ 2
z−z
∣∣ > 1, so
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that f(D) ⊆ f(Γ2)
c. Thus, the condition f(D) ⊆ F c is verified. The other

conditions of QJFP(II) are even easier to check. Therefore, f(D) = E.

However, the JFP is not applicable here (and therefore the DPT is not
applicable either), because f(∂D) cannot be the image of a simple closed
curve in C; indeed, f(Γ1) is a proper closed subset of f(∂D), and yet C\f(Γ1)
is not connected—cf. e.g. [1, Exercise 4.39]. One may also note the following.
Suppose that z traces out Γ1 from ∞ to 1 to 0, and then traces out Γ2 from
0 to ∞; at that, f(z) will first trace out the positive real semi-axis from 0
to∞, then jump to −∞ and trace out the negative real semi-axis from −∞
to 0, then the vertical segment f(Γ2) from 0 down to −i, and finally f(Γ2)
back from −i to 0. (Of course, the “jump” from ∞ to −∞ is not really a
jump on the Riemann sphere C.) Thus, f is not one-to-one on ∂D. This
example is illustrated below.

0 G1

G2

0

-i

f HG1L

f HG2L

Consider now applications of the dichotomy principle to maximum and
minimum modulus principles (again for any compact X). For any r ∈ [0,∞],
let Br := {w ∈ C : |w|< r}= {w ∈ C : |w|< r} and Br := {w ∈ C : |w| ≤ r}.
One may note that the closure Br of Br coincides with Br unless r = 0,
in which latter case Br = ∅ and Br = {0}. Let also M := sup |f |(∂D) and
m := inf |f |(∂D).

Finite Maximum Modulus Principle (FinMaxMP). If f is finite
(on D) then max |f |(D) = sup |f |(∂D).

Proof. Indeed, if M = ∞ then the FinMaxMP is trivial. Assume now
that M < ∞ and let E := B

c
M . Then E is a connected subset of f(∂D)c

and E 6⊆ f(D), since ∞ ∈ E \ f(D). So, by the DP, f(D) ⊆ Ec = BM .

More generally, the DP (with E = B
c
M ) immediately yields

Maximum Modulus Principle (MaxMP). Either

(Fmax) f(D) ⊇ Bc
M ,

that is, f takes on D all the values that are > M in modulus, or

(Cmax) f(D) ⊆ BM ,

that is, all the values that f takes on D are ≤M in modulus.
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Note that the “containment” alternative (Cmax) can be rewritten as
max |f |(D) = sup |f |(∂D); cf. the FinMaxMP.

Quite similarly, the DP (with E = Bm) yields

Minimum Modulus Principle (MinMP). Either

(Fmin) f(D) ⊇ Bm,
that is, f takes on D all the values that are < m in modulus, or

(Cmin) f(D) ⊆ Bc
m,

that is, all the values that f takes on D are ≥ m in modulus.
Note that the “containment” alternative (Cmin) can be rewritten as

min |f |(D) = inf |f |(∂D).

Observe also that each of the two alternatives in the MaxMP and in the
MinMP (and thus in the DP) actualizes. Indeed, take the trivial example of
f(z) = z for all z ∈ D, where D is either B1 or B

c
1.

Various versions of the maximum and minimum modulus principles (for
non-constant finite holomorphic functions on domains in X = C) may be
found e.g. in [4]. The FinMaxMP presented above corresponds to the second
of the three maximum principles given in [4, pp. 124–125].

Our MinMP can be compared with the minimum modulus principle
stated (for non-constant finite holomorphic functions on bounded domainsD)
in Exercise 1 on p. 125 of [4], the latter having the alternative f(D) 3 0
instead of f(D) ⊇ Bm; let us refer to that statement in [4] as the 0-MinMP.
This somewhat less informative principle is enough to obtain immediately
the main theorem of algebra. Indeed, let R ∈ (0,∞) be such that m :=
min|z|=R |f(z)| > |f(0)|, where f is a given polynomial of degree ≥ 1. Then
the polynomial f takes on the value 0 in D := BR, since the alternative
(|f | ≥ m on D) cannot take place.

One may note that (again in the case when f is a non-constant holomor-
phic function on D and D is a domain) it is not hard to deduce the general
MinMP from the 0-MinMP. Indeed, fix any w∗ ∈ Bm. Let g be a Möbius
transformation of C leaving each of sets Bm, ∂Bm, and B

c
m invariant, and

such that g(w∗) = 0. Let h := g ◦ f . Then min |h|(∂D) = m. So, by the
0-MinMP, either |h| ≥ m or h(D) 3 0; that is, either |f | ≥ m or f(D) 3 w∗.
However, our MinMP is more informative and directly derived.

2.2. Haagerup’s inequality. Haagerup’s inequalities [5] provide exact
upper and lower bounds on the absolute power moments of normalized linear
combinations of independent Rademacher random variables. Namely, let
a1, a2, . . . be real numbers such that a21 + a22 + · · · = 1, and let ε1, ε2, . . .
be independent Rademacher random variables (r.v.’s), so that P(εi = 1) =
P(εi = −1) = 1/2 for all i = 1, 2, . . . . Let S := a1ε1 + a2ε2 + · · · . Haagerup
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[5] showed that, for each real p > 0, the best constants Ap and Bp in the
inequalities

(2.1) Ap ≤ E|S|p ≤ Bp
are given by the formulas

(2.2) Ap = 1 ∧ E|ζ2|p ∧ E|Z|p and Bp = 1 ∨ E|Z|p,
where Z is a standard normal r.v. and ζ2 := (ε1 + ε2)/

√
2. The best upper

bound of the somewhat related Rosenthal type was recently obtained in [8]
for p ≥ 5.

Note that (2.1) and (2.2) can be rewritten more explicitly as

Ap ≤
1�

0

|a1r1(t) + a2r2(t) + · · · |p dt ≤ Bp

with ri(t) := sign(sin 2iπt) for i = 1, 2, . . . and t ∈ [0, 1],

Ap =


2p/2−1 if 0 < p ≤ p0,
2p/2√
π
Γ

(
p+ 1

2

)
if p0 < p < 2,

1 if p ≥ 2,

Bp =


1 if 0 < p ≤ 2,

2p/2√
π
Γ

(
p+ 1

2

)
if p ≥ 2,

where p0 is the only root p ∈ (1, 2) of the equation Γ
(p+1

2

)
=
√
π/2.

Unfortunately, the proof given in [5] is very long and difficult. Nazarov
and Podkorytov [7] discovered a short and ingenious way to prove Haagerup’s
result; an online preprint version of [7] can be found in [6]; these latter papers
treat only the case when p ∈ (0, 2)—see the footnote on the first page of
either of these two versions.

The proof in [7] contains the following statement:

Argument Containment Proposition (ACP). The domain

D := {z ∈ C : 0 < <z < π/2, =z > 0}
is mapped into the set

∆p := {w ∈ C : − πp/2 < argw ≤ 0}
by the function f defined by

(2.3) f(z) := z−p− (π − z)−p + (π + z)−p− (2π − z)−p+(2π + z)−p− · · · ,
where 1 < p < 2 and the principal branch of the power function is used, so
that z−p > 0 for any z > 0; as usual, the values of the argument function arg
are assumed to be in the interval (−π, π]; let us also assume that arg 0 = 0.
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Note that the function f defined by formula (2.3) is denoted by S in [7]
and defined there at the bottom of p. 258 (correspondingly, middle of [6,
p. 13]).

The authors of [7] note in the penultimate paragraph on p. 259 (cor-
respondingly, in the second paragraph on p. 14 in [6]) that for all z ∈ D
the points z−p, (π + z)−p, (2π + z)−p, . . . are in ∆p. Then, to conclude that
f(z) is in ∆p for each z ∈ D, they proceed to claim that the points
−(π− z)−p,−(2π− z)−p, . . . are also in ∆p; however, this claim is obviously
false: if a point z ∈ D is close to (say) π/4, then the arguments of the points
−(π − z)−p,−(2π − z)−p, . . . are close to −π /∈ [−πp/2, 0]. A less stringent
argument containment, with −π < argw ≤ 0 in place −πp/2 < argw ≤ 0,
would allow the proof in [7] to proceed. One may however wonder whether
the more stringent ACP holds anyway.

One may then wonder whether the ACP can be saved by simple means
such as trying to prove that each of the differences z−p − (π − z)−p,
(π+ z)−p − (2π− z)−p, . . . is in ∆p. However, this latter conjecture is false,
even if one instead considers partial sums of these differences; e.g., the argu-
ment of the sum of the first 100 differences is < −(πp/2)(1 + 3.5× 10−18) <
−πp/2 for z = 10−30 + 10−6i and p = 19/10. Alternatively, one may try
to consider f(z) as the sum of the terms z−p,−(π − z)−p + (π + z)−p,
−(2π − z)−p + (2π + z)−p, . . . ; however, this simple trick does not work
either, as already the term −(π − z)−p + (π + z)−p is outside ∆p e.g. when
z = π/4 + 10−2i and p = 19/10.

Fortunately, the ACP can be rather easily proved using the topologi-
cal Dichotomy Principle (DP). Thus, the DP method can be effective in
situations where no other methods seem to work.

Proof of the ACP. Note that ∂D = Γ1 ∪ · · · ∪ Γ5, where (trying to keep
up with the corresponding notation in [7])

Γ1 := {0},
Γ2 := {z ∈ C : <z = 0, =z > 0},
Γ3 := {∞},
Γ4 := {z ∈ C : <z = π/2, =z ≥ 0},
Γ5 := {z ∈ C : 0 < <z < π/2, =z = 0};

this is illustrated by the picture opposite on the left, with a portion of D
near∞ cut off. Note that |f(z)−z−p| ≤ (π/2)−p/2(1−p+2−p+ · · · ) <∞ for
all z ∈ D; so, by dominated convergence, f can be extended to D \ {0,∞}
by the same formula (2.3); let also f(0) := ∞ and f(∞) := 0, so that f is
continuous on D, and non-constant and holomorphic on D.

Thus, f = ∞ on Γ1 and f = 0 ∈ ∆p on Γ3. Let us now prove that the
images of Γ2, Γ4, Γ5 under f are contained in ∆p. (These images, as well as



A TOPOLOGICAL DICHOTOMY 145

part of the boundary of the angular set ∆p, are shown in the picture below
on the right, with a portion of ∆p near ∞ cut off.)

G2 G4

G5
0 Π�2

Dp

f HG2L
f HG4L

f HG5L

-1 0 1

-1

0

For z ∈ Γ4, one has <f(z) = 0 and =f(z) ≤ 0 (cf. [7, p. 262, second
displayed formula]). Thus, f(Γ4) ⊆ ∆p. At this point one may note that
f(π/2) = f(∞) = 0; so f(z) traces out the vertical segment f(Γ4) on the
imaginary axis (at least) twice as z traces out the vertical ray Γ4. Therefore,
the one-to-one condition of the Darboux–Picard Theorem stated in Subsec-
tion 2.1 does not hold here. Yet, the dichotomy principle (DP) of Section 1
allows us to proceed and obtain the containment result.

For z ∈ Γ5, one has =f(z) = 0 and <f(z) > 0, since (kπ + t)−p >
(kπ + π − t)−p for all k ≥ 0 and t ∈ (0, π/2). Thus, f(Γ5) ⊆ ∆p.

Finally, for z ∈ Γ2 one has <f(z) < 0 and =f(z) < <f(z) tan(−πp/2)
(cf. [7, middle of p. 261]). Thus, f(Γ2) ⊆ ∆p.

We conclude that f(∂D) ⊆ ∆p ∪ {∞}. Let now E := C \∆p. Then E is
a connected subset of f(∂D)c. Moreover, every w ∈ C with =w > 0 is in E.
On the other hand, =w < 0 for any w ∈ f(D) (since =[(kπ + z)−p] < 0 and
=[−(kπ + π − z)−p] < 0 for any k ≥ 0 and z ∈ D). So, E 6⊆ f(D). Thus,
by the dichotomy principle, f(D) ⊆ Ec = ∆p ∪ {∞}. Since f(D) ⊆ C, it
follows that f(D) ⊆ ∆p. In fact, since =w < 0 for any w ∈ f(D), one has a
little more: f(D) is contained in the interior of ∆p.

While the ACP is enough as far as the proof of Haagerup’s inequality
is concerned, one might want to prove more. One improvement is easy. Let
A and B denote, respectively, the sets of all points in C strictly above and
below f(∂D). Then the DP with E = A (instead of E = C \ ∆p in the
above proof of the ACP) yields f(D) ⊆ Ac = B ∪ f(∂D), and the latter set
is a proper subset of ∆p. Now, by QJFP(II) of Section 1 with E = B and
F = A∪ f(Γ4), one could conclude that f(D) = B, provided that one could
show that f(D) ⊆ f(Γ4)

c (cf. Example 2 of Subsection 2.1); however, this
does not appear easy to do.
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The inequality =f(z) < <f(z) tan(−πp/2) for p ∈ (1, 2) and z = x+ iy
with x ∈ (0, π/2) and y > 0, implied by the ACP, can be rewritten as

(∗)
∞∑
k=0

sin
(
p arccot y

πk+x

)(
(πk + x)2 + y2

)p/2 > ∞∑
k=0

sin
(
p arccot −y

πk+π−x
)(

(πk + π − x)2 + y2
)p/2

(with the values of arccot in (0, π)). To appreciate the usefulness of the
topological dichotomy principle, one may try to prove (∗) by other methods,
say by using calculus.
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